Academic literature on the topic 'Microbial exopolysaccharides'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Microbial exopolysaccharides.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Microbial exopolysaccharides"

1

Wackett, Lawrence P. "Microbial exopolysaccharides." Environmental Microbiology 11, no. 3 (March 2009): 729–30. http://dx.doi.org/10.1111/j.1462-2920.2009.01894.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

PIROG, T. P. "NON-TRADITIONAL PRODUCERS OF MICROBIAL EXOPOLYSACCHARIDES." Biotechnologia Acta 11, no. 4 (August 2018): 5–27. http://dx.doi.org/10.15407/biotech11.04.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sutherland, Ian W. "Polysaccharases for microbial exopolysaccharides." Carbohydrate Polymers 38, no. 4 (April 1999): 319–28. http://dx.doi.org/10.1016/s0144-8617(98)00114-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kennedy, John F., and Haroldo C. B. Paula. "Biotechnology of microbial exopolysaccharides." Carbohydrate Polymers 15, no. 2 (January 1991): 232. http://dx.doi.org/10.1016/0144-8617(91)90037-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tabernero, Antonio, and Stefano Cardea. "Microbial Exopolysaccharides as Drug Carriers." Polymers 12, no. 9 (September 19, 2020): 2142. http://dx.doi.org/10.3390/polym12092142.

Full text
Abstract:
Microbial exopolysaccharides are peculiar polymers that are produced by living organisms and protect them against environmental factors. These polymers are industrially recovered from the medium culture after performing a fermentative process. These materials are biocompatible and biodegradable, possessing specific and beneficial properties for biomedical drug delivery systems. They can have antitumor activity, they can produce hydrogels with different characteristics due to their molecular structure and functional groups, and they can even produce nanoparticles via a self-assembly phenomenon. This review studies the potential use of exopolysaccharides as carriers for drug delivery systems, covering their versatility and their vast possibilities to produce particles, fibers, scaffolds, hydrogels, and aerogels with different strategies and methodologies. Moreover, the main properties of exopolysaccharides are explained, providing information to achieve an adequate carrier selection depending on the final application.
APA, Harvard, Vancouver, ISO, and other styles
6

Madhuri, K., and K. Prabhakar. "Microbial Exopolysaccharides: Biosynthesis and Potential Applications." Oriental Journal of Chemistry 30, no. 3 (September 26, 2014): 1401–10. http://dx.doi.org/10.13005/ojc/300362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yildiz, Hilal, and Neva Karatas. "Microbial exopolysaccharides: Resources and bioactive properties." Process Biochemistry 72 (September 2018): 41–46. http://dx.doi.org/10.1016/j.procbio.2018.06.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sutherland, Ian W. "Structure-function relationships in microbial exopolysaccharides." Biotechnology Advances 12, no. 2 (January 1994): 393–448. http://dx.doi.org/10.1016/0734-9750(94)90018-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cázares-Vásquez, Martha L., Raúl Rodríguez-Herrera, Cristóbal N. Aguilar-González, Aidé Sáenz-Galindo, José Fernando Solanilla-Duque, Juan Carlos Contreras-Esquivel, and Adriana C. Flores-Gallegos. "Microbial Exopolysaccharides in Traditional Mexican Fermented Beverages." Fermentation 7, no. 4 (October 30, 2021): 249. http://dx.doi.org/10.3390/fermentation7040249.

Full text
Abstract:
Exopolysaccharides (EPS) are biopolymers produced by many microorganisms, including some species of the genus Acetobacter, Bacillus, Fructobacillus, Leuconostoc, Lactobacillus, Lactiplantibacillus, Pediococcus, Pichia, Rhodotorula, Saccharomycodes, Schizosaccharomyces, and Sphingomonas, which have been reported in the microbiota of traditional fermented beverages. Dextran, levan, glucan, gellan, and cellulose, among others, are EPS produced by these genera. Extracellular biopolymers are responsible for contributing to specific characteristics to fermented products, such as modifying their organoleptic properties or contributing to biological activities. However, EPS can be easily found in the dairy industry, where they affect rheological properties in products such as yogurt or cheese, among others. Over the years, LAB has been recognized as good starter strains in spontaneous fermentation, as they can contribute beneficial properties to the final product in conjunction with yeasts. To the best our knowledge, several articles have reported that the EPS produced by LAB and yeasts possess many both biological and technological properties that can be influenced by many factors in which fermentation occurs. Therefore, this review presents traditional Mexican fermented beverages (tavern, tuba, sotol, and aguamiel) and relates them to the microbial EPS, which affect biological and techno-functional activities.
APA, Harvard, Vancouver, ISO, and other styles
10

Jaiswal, Pallavi, Rohit Sharma, Bhagwan Singh Sanodiya, and Prakash Singh Bisen. "Microbial Exopolysaccharides: Natural Modulators of Dairy Products." Journal of Applied Pharmaceutical Science 4, no. 10 (October 30, 2014): 105–9. http://dx.doi.org/10.7324/japs.2014.401019.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Microbial exopolysaccharides"

1

Sukplang, Patamaporn. "Production and Characterization of a Novel Extracellular Polysaccharide Produced by Paenibacillus velaei, Sp. Nov." Thesis, University of North Texas, 2000. https://digital.library.unt.edu/ark:/67531/metadc2551/.

Full text
Abstract:
Paenibacillus velaei, sp. nov. is a soil bacterium capable of producing an unusually large amount of exopolysaccharide (EPS). The EPS contains glucose, mannose, galactose and fucose in a molar ratio of 4:2:1:1. The molecular weight of the EPS is higher than 2x106. The viscosity of 1% EPS is 1300 cP when measured at a shear rate of 1 sec-1. Physiological parameters for optimal production of the EPS were studied and it was found that 1.4 g dry weight per 1 l of medium was produced when the bacteria were grown at 30EC and the pH adjusted at 7± 0.2 in a medium containing glucose as the carbon source. Growing the bacteria on different carbon sources did not alter the quantity or the composition of the EPS produced. No toxicity effects were observed in mice or rats when EPS was administered in amounts ranging from 20 to 200 mg per kg body weight. The data obtained from physical, chemical and biological properties suggest that the EPS may be employed in several industrial and environmental applications. It is an excellent emulsifier, it holds 100 times its own weight in water, it is not toxic, and it can be used to remove mercury, cadmium and lead from aqueous solutions.
APA, Harvard, Vancouver, ISO, and other styles
2

Sengha, S. S. "The physiology and energetics of alginic acid biosynthesis in Pseudomonas mendocina." Thesis, University of Hull, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Livingston, Megan M., and n/a. "Stimulation of immune cells by heat-killed lactobacilli and exopolysaccharide." University of Otago. Department of Microbiology & Immunology, 2008. http://adt.otago.ac.nz./public/adt-NZDU20090108.142107.

Full text
Abstract:
Lactobacilli are intestinal bacteria with known immunomodulatory competence. Numerous strains of this genus have been implicated in both the prevention and treatment of intestinal inflammation as well as in maintenance of immunological homeostasis. The frequent inclusion of lactobacilli in probiotic products attests to this ability. These lactic acid bacteria colonise the murine forestomach and burgeon in other environments similarly rich in carbohydrate-containing substrates. Accordingly, lactobacilli may utilise fermentable carbohydrates to synthesise exopolysaccharides (EPS). These polymers are secreted into the cellular milieu and, while the ecological function of EPS is yet to be defined, evidence points towards a protective role. This function may include bacterial protection from immunological attack, via EPS recognition by immune cells, resulting in modulation of immunological activity. Dendritic cells (DC) are potent antigen presenting cells, providing an essential link between the innate and adaptive arms of the intestinal immune system. DC efficiently sample intestinal antigens and present peptides to cognate naive CD4⁺ T cells in secondary lymphatic tissue. Under the influence of secreted cytokines, DC direct the differentiation of naive CD4⁺ T cells and therefore, instruct the resultant immune response. Anti-inflammatory Th2 and regulatory T cells can down-regulate the destructive Th1 pro-inflammatory effects associated with inflammatory bowel disease (IBD). As such, bioactives with the aptitude to direct DC activity and T cell differentiation have the potential to prevent or reduce intestinal inflammation. Therefore, this study aimed to determine whether heat-killed EPS-producing strains of lactobacilli, and their secreted EPS, exert an immunomodulatory effect on the murine gut which may down-regulate the immune reactions associated with IBD. Lactobacilli were screened for their ability to produce EPS when grown in the presence of glucose, sucrose or lactose. Heat-killed EPS-producing strains were then used to stimulate bone marrow-derived DC (BMDC) and the resultant cytokine profile was analysed. Nine Lactobacillus strains were found to produce EPS when grown in the presence of sucrose. Of these, L. reuteri 100-23 and L. johnsonii 100-33 exhibited potential anti-inflammatory effects. Therefore, these strains, as well as L. johnsonii 100-5 and L. johnsonii #21, with relatively weak BMDC stimulatory effect, were selected for further investigation. EPS of the potentially anti-inflammatory strain L. reuteri 100-23 was analysed. This sample contained approximately 85% carbohydrate and was composed of a (2[to]6)-β-fructofuranan (levan) and a mannan. The fructan, with an estimated molecular weight of 7 kDa, comprised at least 50% of the EPS, while the mannan made up at least 22%. The mannan component was likely linked to a protein and may have originated from the culture medium. The immunostimulatory capacity of heat-killed Lactobacillus bacterial cells and their EPS was determined in vitro. Firstly, the effect of lactobacilli and EPS on BMDC cytokine secretion, particularly levels of anti-inflammatory IL-10 and pro-inflammatory IL-12, as well as the expression of cell surface activation markers, was determined. L. reuteri 100-23 stimulated relatively high IL-10 secretion but low IL-12, while L. johnsonii 100-33-stimulated BMDC produced elevated levels of both IL-10 and IL-12. All bacterial cells up-regulated co-stimulatory molecules CD40 and CD80 on BMDC. The effect of these stimulated BMDC on T cell proliferation and cytokine production was then assessed, employing the ovalbuminDO11.10 T cell model. L. reuteri 100-23-stimulated BMDC down-regulated T cell production of the proliferation-stimulating cytokine, IL-2, up-regulated regulatory TGF-β secretion, but did not affect pro-inflammatory IFN-γ levels. The EPS of all strains did not stimulate significant BMDC cytokine production and failed to alter BMDC activation marker expression. However, BMDC stimulated with L. reuteri 100-23 and L. johnsonii 100-33 EPS significantly enhanced T cell IL-2 secretion, but did not alter TGF-β or IFN-γ levels. The effect of in vivo L. reuteri 100-23 and EPS intestinal stimulation on the reactivity of immune cells was subsequently investigated. Mesenteric lymph node (MLN) cells and splenic T cells from reconstituted Lactobacillus-free mice fed stimulant or PBS on two occasions were co-cultured with stimulated or unstimulated donor CD11c⁺ splenic DC ex vivo. Cellular proliferation as well as TGF-β and IFN-γ secretion was analysed, and IL-10 neutralisation assays were carried out to ascertain the involvement of this cytokine. Primary exposure of MLN cells to L. reuteri 100-23 resulted in suppressed cell proliferation in the presence of enhanced TGF-β levels, which may have also involved IL-10. Primed splenic T cells exhibited increased proliferation in the presence of elevated TGF-β levels following re-exposure to L. reuteri 100-23, and IL-10 may be involved in limiting this proliferation. L. reuteri 100-23 EPS did not alter MLN cell proliferation, possibly due to the suppressive activity of IL-10, but did enhance that of naive and primed splenic T cells. The effect of ingested L. reuteri 100-23 and EPS on intestinal sIgA concentration was assessed by quantifying IgA levels in the faecal supernatant of RLF mice previously ingesting L. reuteri 100-23 and EPS. L. reuteri 100-23 EPS-fed female mice exhibited significantly elevated levels of sIgA, while heat-killed bacteria did not affect antibody levels. The present study demonstrated that oral administration of heat-killed L. reuteri 100-23 and EPS exerts immunomodulatory effects on the murine intestine. These bioactives may promote a suppressive environment by conditioning DC to secrete a cytokine profile conducive to regulatory T cell induction and memory generation. Additionally, mucosal protection may be favoured by the stimulation of elevated sIgA levels. Therefore, a therapeutic composite is possibly obtained to preserve the intestinal barrier by defending against pathogen-induced injury and buffering inflammatory events. In these ways, L. reuteri 100-23 and EPS may confer long-lasting protection against, and down-regulate the immune reactions associated with, IBD.
APA, Harvard, Vancouver, ISO, and other styles
4

Almeida, Jamille Pereira. "Triagem de isolados bacterianos de origem marinha visando a produção de exopolissacarídeos." Instituto de Ciências da Saúde, 2015. http://repositorio.ufba.br/ri/handle/ri/23435.

Full text
Abstract:
Submitted by Programa de Pós-graduação em Biotecnologia (mebiotec.ufba@gmail.com) on 2017-04-06T13:04:01Z No. of bitstreams: 1 Dissertação Final - Jamille Almeida.pdf: 1302682 bytes, checksum: 996b2da859b03a0f196518660811cde6 (MD5)
Approved for entry into archive by Delba Rosa (delba@ufba.br) on 2017-06-29T15:06:56Z (GMT) No. of bitstreams: 1 Dissertação Final - Jamille Almeida.pdf: 1302682 bytes, checksum: 996b2da859b03a0f196518660811cde6 (MD5)
Made available in DSpace on 2017-06-29T15:06:56Z (GMT). No. of bitstreams: 1 Dissertação Final - Jamille Almeida.pdf: 1302682 bytes, checksum: 996b2da859b03a0f196518660811cde6 (MD5)
CAPES
Os polissacarídeos microbianos estão sendo muito utilizados atualmente por causa das vantagens em relação aos provenientes de outras fontes. Muitos são sintetizados por bactérias pertencentes à família Sphingomonadaceae como gelana, ramsana, welana, diutana, entre outras. Apesar da quantidade de polissacarídeos existentes, a descoberta de novos polissacarídeos microbianos é importante, tendo em vista a sua vasta aplicabilidade industrial, como espessantes, emulsificantes, estabilizantes e quelantes. Além disso, há a possibilidade de propriedades mais vantajosas e maior produção bacteriana. Este trabalho teve como objetivo selecionar linhagens bacterianas nativas de ambiente marinho produtoras de exopolissacarídeos e caracterizá-los. Neste contexto, a otimização da composição dos meios de cultivo e condições de processo podem modificar a produção, com possibilidade de aplicação industrial. Quatro bactérias foram selecionadas a partir da Coleção de Cultura Microbiana do Instituto de Ciências da Saúde pela resistência ao meio ágar nutriente contendo o antibiótico estreptomicina nas concentrações 100 e 200 μg.mL-1, sendo posteriormente identificadas por análise molecular como pertencentes aos gêneros Sphingomonas sp., Sphingobium sp. e Bacillus sp. A produção dos polímeros sintetizados por essas bactérias foi realizada em meio de cultivo, com alteração da fonte de carbono (sacarose ou glicerina bruta). A quantidade dos exopolissacarídeos sintetizados pelas bactérias pertencentes aos gêneros Sphingomonas sp. e Bacillus sp foi de 0,2 g.L-1 independente da fonte de carbono utilizada. O polímero produzido por Sphingobium sp. foi de 0,1 g.L-1 no meio contendo sacarose e 0,2 g.L-1 no meio com glicerina bruta. A CCMICS SB 22 não produziu exopolissacarídeo no meio contendo sacarose, enquanto que com a glicerina bruta foi de 0,2 g.L-1. As viscosidades dos exopolissacarídeos produzidos pelas quatro linhagens estudadas não apresentaram diferença entre si. A massa molecular do exopolissacarídeo produzido por Sphingobium sp. foi de 1,13 x 103 Daltons. Os outros polímeros não tiveram a massa molecular determinada por não apresentarem solubilidade em água.
The microbial polysaccharides are currently used being much because of advantages over from other sources. Most of those which are being studied are synthesized by bacteria of Sphingomonadaceae family, like gelan, rhamsan, welan, diutan, among others. Despite the amount of existing polysaccharides, the discovery of new polysaccharides is important, in view of its wide industrial applicability, such as thickeners, emulsifiers, stabilizers, and binders. Furthermore, there is the possibility of further advantageous properties and increased bacterial production. This work aimed to select native bacterial strains of exopolysaccharides-producing marine environment and characterize them. In this context, optimization of the composition of culture media and process conditions may change the production, with the possibility of industrial application. Four bacteria were selected from the Microbial Culture Collection of Sciences Institute of Health the resistance to the nutrient agar containing the antibiotic streptomycin in concentrations 100 and 200 μg.mL-1, subsequently identified by molecular analysis as belonging to the Sphingomonas sp., Sphingobium sp. and Bacillus sp. genres. The production of polymers synthesized by those bacteria was held in the culture medium, by changing the carbon source (sucrose or crude glycerin). The quantity of synthesized exopolysaccharides by the bacteria belonging to the Sphingomonas sp. and Bacillus sp genres was 0,2 g.L-1 regardless of the carbon source used. The polymer produced by Sphingobium sp. was 0,1 g.L-1 in the medium containing sucrose and 0,2 g.L-1 in the medium with crude glycerin. The CCMICS SB 22 produced no exopolysaccharide in the medium containing sucrose, while with crude glycerin was 0,2 g.L-1. The viscosities of exopolysaccharides produced by the four strains studied did not differ among themselves. The molecular mass of the exopolysaccharide produced by Sphingobium sp. was 1,13 x 10³ Daltons. The others polymers did not have the molecular mass determined for not showing solubility in water.
APA, Harvard, Vancouver, ISO, and other styles
5

Purwandari, Umi. "Physical properties of functional fermented milk produced with exopolysaccharide-producing strains of Streptococcus thermophilus." full-text, 2009. http://eprints.vu.edu.au/1965/1/Umi_Purwandari_thesis.pdf.

Full text
Abstract:
This thesis focused on the study of the influence of different exopolysaccharide types produced by two strains of Streptococcus thermophilus on the physical properties of fermented milk. First, the fermentation factors affecting EPS production were studied to ascertain required carbon source and environmental conditions which would support their production. Higher fermentation temperature (42°C) resulted in a greater cell growth and EPS production. EPS production was growth associated in glucose or lactose-containing M17 medium. The examined strains appeared to be able to utilize galactose for the EPS assembly and produced comparable amounts of EPS, albeit restrictive cell growth. The EPS production of the two strains was comparable, ranging from ~100 to ~600 mg/L. Secondly, the EPS were rheologically characterized to show their resistance to deformation. Influence of temperature, pH and concentration on the flow behaviour of these EPS was also assessed. Under acidic conditions, capsularropy EPS was less responsive to temperature with a higher zero shear viscosity ηo (14.36 to 150.82 mPa s) than capsular EPS (93.72 to 9.24 mPa s), and slightly higher relaxation time τ (0.43 to 15.82 s for capsular-ropy EPS and 0.72 to 9.36 s for capsular EPS). The opposite behavior was observed under neutral pH. EPS concentration did not give significant effect (P>0.05) on ηo and τ. The second study examined the effects of types of EPS on yoghurt texture under selected conditions. Fermented milk made using capsular-ropy EPS showed greater resistance to flow with less solid-like behaviour. It also had greater water holding capacity although the milk gel was less compact and brittle compared to fermented milk with capsular EPS. The EPS production in milk during fermentation between the two strains was comparable with maximum concentration was 840 plus/minus 47.5 mg EPS/kg fermented milk. Syneresis was lower in fermented milk incubated in low temperature, was ranging from 4.1-2.4 g/100 g fermented milk with capsular-ropy-EPS, and 10.9-26.6 g/100 g in fermented milk with capsular EPS. G’ was 23.8-365.1 Pa and 57.6-1040 Pa for fermented milk with capsular ropy and capsular EPS, respectively. The third study examined the involvement of EPS in the texture creation of fermented milk supplemented with calcium and/or sucrose, or calcium and whey proteins. Calcium addition to milk base resulted in increased acidity and greater syneresis (~20-30 g/100 g in fermented milk with capsular-ropy EPS and ~30-50 g/100 g in fermented milk with capsular EPS) and thixotropy of fermented milk, as compared to fermented milk without added calcium. Sucrose affected the parameters in opposite manner. EPS production did not differ from that of the control fermented milk. Storage modulus (G’) was 96-230.4 Pa, and 502.8-1143.5 for fermented milk with capsular ropy and capsular EPS, respectively. The effect of heat-untreated whey protein isolate or whey protein concentrate on calcium-fortified fermented milk was studied using capsular ropy EPS producer. Result showed that combined effect of both supplement was detrimental to texture of fermented milk to make it resemble that of drinking yoghurt. Syneresis was up to ~50 g/100 g, while G’ was only around 4 mPa. The next experiment studied the effect of heat-treated whey protein isolate addition on fermented milk texture. Results showed that heat-treatment applied to added whey protein preserved the G’ and syneresis with the values close to those of normal fermented milk. However, at high concentration of added heat-treated whey protein (whey protein:casein 3:1), the texture became very hard with 0 m2 permeability. Gelation was started very early in fermented milk added with heatdenatured whey protein. Whey protein addition induced the beginning of gelation. Supplemented fermented milk made using capsular-ropy EPS producer consistently showed lower G’, lower syneresis, and more shear-resistant compared to that made using capsular EPS. In conclusion, capsular ropy EPS, both in dispersion and in fermented milk with or without different supplementation, exhibited less solid-like properties and more shear-resistant behavior compared to capsular EPS.
APA, Harvard, Vancouver, ISO, and other styles
6

Purwandari, Umi. "Physical properties of functional fermented milk produced with exopolysaccharide-producing strains of Streptococcus thermophilus." Thesis, full-text, 2009. https://vuir.vu.edu.au/1965/.

Full text
Abstract:
This thesis focused on the study of the influence of different exopolysaccharide types produced by two strains of Streptococcus thermophilus on the physical properties of fermented milk. First, the fermentation factors affecting EPS production were studied to ascertain required carbon source and environmental conditions which would support their production. Higher fermentation temperature (42°C) resulted in a greater cell growth and EPS production. EPS production was growth associated in glucose or lactose-containing M17 medium. The examined strains appeared to be able to utilize galactose for the EPS assembly and produced comparable amounts of EPS, albeit restrictive cell growth. The EPS production of the two strains was comparable, ranging from ~100 to ~600 mg/L. Secondly, the EPS were rheologically characterized to show their resistance to deformation. Influence of temperature, pH and concentration on the flow behaviour of these EPS was also assessed. Under acidic conditions, capsularropy EPS was less responsive to temperature with a higher zero shear viscosity ηo (14.36 to 150.82 mPa s) than capsular EPS (93.72 to 9.24 mPa s), and slightly higher relaxation time τ (0.43 to 15.82 s for capsular-ropy EPS and 0.72 to 9.36 s for capsular EPS). The opposite behavior was observed under neutral pH. EPS concentration did not give significant effect (P>0.05) on ηo and τ. The second study examined the effects of types of EPS on yoghurt texture under selected conditions. Fermented milk made using capsular-ropy EPS showed greater resistance to flow with less solid-like behaviour. It also had greater water holding capacity although the milk gel was less compact and brittle compared to fermented milk with capsular EPS. The EPS production in milk during fermentation between the two strains was comparable with maximum concentration was 840 plus/minus 47.5 mg EPS/kg fermented milk. Syneresis was lower in fermented milk incubated in low temperature, was ranging from 4.1-2.4 g/100 g fermented milk with capsular-ropy-EPS, and 10.9-26.6 g/100 g in fermented milk with capsular EPS. G’ was 23.8-365.1 Pa and 57.6-1040 Pa for fermented milk with capsular ropy and capsular EPS, respectively. The third study examined the involvement of EPS in the texture creation of fermented milk supplemented with calcium and/or sucrose, or calcium and whey proteins. Calcium addition to milk base resulted in increased acidity and greater syneresis (~20-30 g/100 g in fermented milk with capsular-ropy EPS and ~30-50 g/100 g in fermented milk with capsular EPS) and thixotropy of fermented milk, as compared to fermented milk without added calcium. Sucrose affected the parameters in opposite manner. EPS production did not differ from that of the control fermented milk. Storage modulus (G’) was 96-230.4 Pa, and 502.8-1143.5 for fermented milk with capsular ropy and capsular EPS, respectively. The effect of heat-untreated whey protein isolate or whey protein concentrate on calcium-fortified fermented milk was studied using capsular ropy EPS producer. Result showed that combined effect of both supplement was detrimental to texture of fermented milk to make it resemble that of drinking yoghurt. Syneresis was up to ~50 g/100 g, while G’ was only around 4 mPa. The next experiment studied the effect of heat-treated whey protein isolate addition on fermented milk texture. Results showed that heat-treatment applied to added whey protein preserved the G’ and syneresis with the values close to those of normal fermented milk. However, at high concentration of added heat-treated whey protein (whey protein:casein 3:1), the texture became very hard with 0 m2 permeability. Gelation was started very early in fermented milk added with heatdenatured whey protein. Whey protein addition induced the beginning of gelation. Supplemented fermented milk made using capsular-ropy EPS producer consistently showed lower G’, lower syneresis, and more shear-resistant compared to that made using capsular EPS. In conclusion, capsular ropy EPS, both in dispersion and in fermented milk with or without different supplementation, exhibited less solid-like properties and more shear-resistant behavior compared to capsular EPS.
APA, Harvard, Vancouver, ISO, and other styles
7

Santos, Sandra Isabel Almeida. "Emulsões estabilizadas pelo polissacárido microbiano FucoPol: produção e caracterização." Master's thesis, ISA, 2014. http://hdl.handle.net/10400.5/6985.

Full text
Abstract:
Mestrado em Engenharia Alimentar - Instituto Superior de Agronomia
The present work is focused on the production and characterization of oil in water emulsions stabilized with a bacterial exopolyssacharide (EPS), named FucoPol, produced by the bacterium Enterobacter A47 using glycerol as carbon source. The stabilizing ability of FucoPol was studied using aqueous biopolymer solutions with concentrations of 0.5%, 1.0% and 1.5% w/w, and sunflower oil, in ratios oil/water (O:W): 20:80, 40:60, 60:40 and 80:20. It was observed that the majority of the emulsions, except the proportions 80:20, showed no phase separation after 24 hours of maturation at 4 ºC. Emulsions had a shear thinning behavior, and it was observed that, for the same oil/water ratio, the apparent viscosity increased with increasing of FucoPol’s concentration in the aqueous phase. It was also found that either the apparent viscosity or viscoelastic properties remained quite similar over 72h, indicating the presence of stable emulsions during this period of time. The effect of FucoPol on the production of low-fat emulsions was also studied using pea protein (3% w/w) as emulsifier. It was studied the effect of FucoPol and oil concentrations on the characteristics of the emulsions obtained, keeping constant the emulsifier concentration. It was observed that for oil concentrations between 20% and 40% w/w, there’s a significant increase in viscosity with increasing of FucoPol’s concentration, but for oil contents between 40% and 60% w/w, no significant influence was observed. Still, for the whole range of oil concentrations tested it was observed that an increase in FucoPol concentration allows to produce emulsions with a stronger internal structure. Therefore, it was concluded that the adding of this biopolymer allows to produce emulsions with a fat content below 60%.
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Han-Chai. "Studies on the role of exopolysaccharides in Rhizobium infection of plants." Phd thesis, 1987. http://hdl.handle.net/1885/143175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gray, James X. "Molecular analysis of exopolysaccharide genes of Rhizobium sp. strain NGR234." Phd thesis, 1990. http://hdl.handle.net/1885/143103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Parveen, Nikhat. "Genetics of exopolysaccharide synthesis in rhizobium species strain TAL1145 that nodulates tree legumes." Thesis, 1995. http://hdl.handle.net/10125/9996.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Microbial exopolysaccharides"

1

Biotechnology of microbial exopolysaccharides. Cambridge: Cambridge University Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nadda, Ashok Kumar, Sajna K. V., and Swati Sharma, eds. Microbial Exopolysaccharides as Novel and Significant Biomaterials. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75289-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sutherland, Ian W. Biotechnology of Microbial Exopolysaccharides. Cambridge University Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sutherland, Ian W. Biotechnology of Microbial Exopolysaccharides. Cambridge University Press, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sutherland, Ian W. Biotechnology of Microbial Exopolysaccharides. Cambridge University Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schmid, Jochen, Julia Julia Fariña, Bernd Rehm, and Volker Sieber, eds. Microbial Exopolysaccharides: From Genes to Applications. Frontiers Media SA, 2016. http://dx.doi.org/10.3389/978-2-88919-843-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Microbial Exopolysaccharides: Current Research and Developments. Caister Academic Press, 2019. http://dx.doi.org/10.21775/9781912530267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sharma, Swati, Ashok Kumar Nadda, and Sajna K. V. Microbial Exopolysaccharides As Novel and Significant Biomaterials. Springer International Publishing AG, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sharma, Swati, Ashok Kumar Nadda, and Sajna K. V. Microbial Exopolysaccharides As Novel and Significant Biomaterials. Springer International Publishing AG, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

A, Grinberg T., and Instytut mikrobiolohiï i virusolohiï im. D.K. Zabolotnoho., eds. Mikrobnyĭ sintez ėkzopolisakharidov na C₁-C₂-soedinenii͡a︡kh. Kiev: Nauk. dumka, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Microbial exopolysaccharides"

1

Mishra, Avinash, and Bhavanath Jha. "Microbial Exopolysaccharides." In The Prokaryotes, 179–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31331-8_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Harrah, Timothy, Bruce Panilaitis, and David Kaplan. "Microbial Exopolysaccharides." In The Prokaryotes, 766–76. New York, NY: Springer New York, 2006. http://dx.doi.org/10.1007/0-387-30741-9_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sutherland, Ian W. "Biofilm Exopolysaccharides." In Microbial Extracellular Polymeric Substances, 73–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60147-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Banerjee, Aparna, and Rajib Bandopadhyay. "Chapter 1 Bacterial Exopolysaccharides." In Microbial Biotechnology, 1–20. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315367880-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Angelina and S. V. N. Vijayendra. "Microbial Biopolymers: The Exopolysaccharides." In Microbial Factories, 113–25. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2595-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

James, Anina, Deepika Yadav, and Mohit Kumar. "Exopolysaccharides for Heavy Metal Remediation." In Microbial Products, 73–84. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003306931-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sajna, Kuttuvan Valappil, Swati Sharma, and Ashok Kumar Nadda. "Microbial Exopolysaccharides: An Introduction." In Microbial Exopolysaccharides as Novel and Significant Biomaterials, 1–18. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75289-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Santra, Hiran Kanti, and Debdulal Banerjee. "Microbial Exopolysaccharides: Structure and Therapeutic Properties." In Microbial Polymers, 375–420. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0045-6_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Debnath, Ashim, Bimal Das, Maimom Soniya Devi, and Ratul Moni Ram. "Fungal Exopolysaccharides: Types, Production and Application." In Microbial Polymers, 45–68. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0045-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Abid, Yousra, and Samia Azabou. "Exopolysaccharides from Lactic Acid Bacteria." In Polysaccharides of Microbial Origin, 1–23. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-35734-4_26-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography