Journal articles on the topic 'Microbial electrosynthesis systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 49 journal articles for your research on the topic 'Microbial electrosynthesis systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sharma, Mohita, Yolanda Alvarez-Gallego, Wafa Achouak, Deepak Pant, Priyangshu M. Sarma, and Xochitl Dominguez-Benetton. "Electrode material properties for designing effective microbial electrosynthesis systems." Journal of Materials Chemistry A 7, no. 42 (2019): 24420–36. http://dx.doi.org/10.1039/c9ta04886c.
Full textLi, Xiao-Min, Long-Jun Ding, Dong Zhu, and Yong-Guan Zhu. "Long-Term Fertilization Shapes the Putative Electrotrophic Microbial Community in Paddy Soils Revealed by Microbial Electrosynthesis Systems." Environmental Science & Technology 55, no. 5 (February 18, 2021): 3430–41. http://dx.doi.org/10.1021/acs.est.0c08022.
Full textKong, Fanying, Hong-Yu Ren, Spyros G. Pavlostathis, Jun Nan, Nan-Qi Ren, and Aijie Wang. "Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems." Renewable and Sustainable Energy Reviews 125 (June 2020): 109816. http://dx.doi.org/10.1016/j.rser.2020.109816.
Full textMarshall, Christopher W., Daniel E. Ross, Erin B. Fichot, R. Sean Norman, and Harold D. May. "Long-term Operation of Microbial Electrosynthesis Systems Improves Acetate Production by Autotrophic Microbiomes." Environmental Science & Technology 47, no. 11 (May 16, 2013): 6023–29. http://dx.doi.org/10.1021/es400341b.
Full textWinder, Johanna C., Mark Hewlett, Ping Liu, and John Love. "Conversion of Biomass to Chemicals via Electrofermentation of Lactic Acid Bacteria." Energies 15, no. 22 (November 17, 2022): 8638. http://dx.doi.org/10.3390/en15228638.
Full textLi, Shuwei, Young Eun Song, Jiyun Baek, Hyeon Sung Im, Mutyala Sakuntala, Minsoo Kim, Chulhwan Park, Booki Min, and Jung Rae Kim. "Bioelectrosynthetic Conversion of CO2 Using Different Redox Mediators: Electron and Carbon Balances in a Bioelectrochemical System." Energies 13, no. 10 (May 19, 2020): 2572. http://dx.doi.org/10.3390/en13102572.
Full textIzadi, Paniz, Jean-Marie Fontmorin, Swee Su Lim, Ian M. Head, and Eileen H. Yu. "Enhanced bio-production from CO2 by microbial electrosynthesis (MES) with continuous operational mode." Faraday Discussions 230 (2021): 344–59. http://dx.doi.org/10.1039/d0fd00132e.
Full textHou, Xia, Liping Huang, Peng Zhou, Fuping Tian, Ye Tao, and Gianluca Li Puma. "Electrosynthesis of acetate from inorganic carbon (HCO3−) with simultaneous hydrogen production and Cd(II) removal in multifunctional microbial electrosynthesis systems (MES)." Journal of Hazardous Materials 371 (June 2019): 463–73. http://dx.doi.org/10.1016/j.jhazmat.2019.03.028.
Full textLi, Zhuo, Qian Fu, Hao Chen, Shuai Xiao, Jun Li, Qiang Liao, and Xun Zhu. "A mathematical model for CO2 conversion of CH4-producing biocathodes in microbial electrosynthesis systems." Renewable Energy 183 (January 2022): 719–28. http://dx.doi.org/10.1016/j.renene.2021.11.050.
Full textLi, Zhuo, Qian Fu, Hajime Kobayashi, Shuai Xiao, Jun Li, Liang Zhang, Qiang Liao, and Xun Zhu. "Polarity reversal facilitates the development of biocathodes in microbial electrosynthesis systems for biogas production." International Journal of Hydrogen Energy 44, no. 48 (October 2019): 26226–36. http://dx.doi.org/10.1016/j.ijhydene.2019.08.117.
Full textAnwer, Abdul, Nishat Khan, Mohammad Umar, Mohd Rafatullah, and Mohammad Khan. "Electrodeposited Hybrid Biocathode-Based CO2 Reduction via Microbial Electro-Catalysis to Biofuels." Membranes 11, no. 3 (March 22, 2021): 223. http://dx.doi.org/10.3390/membranes11030223.
Full textMateos, Raúl, Ana Sotres, Raúl M. Alonso, Antonio Morán, and Adrián Escapa. "Enhanced CO2 Conversion to Acetate through Microbial Electrosynthesis (MES) by Continuous Headspace Gas Recirculation." Energies 12, no. 17 (August 27, 2019): 3297. http://dx.doi.org/10.3390/en12173297.
Full textTahir, Khurram, Abdul Samee Ali, Bolam Kim, Youngsu Lim, and Dae Sung Lee. "Spent Tea Leaves and Coffee Grounds as Potential Biocathode for Improved Microbial Electrosynthesis Performance." International Journal of Energy Research 2023 (February 24, 2023): 1–9. http://dx.doi.org/10.1155/2023/1318365.
Full textLeger, Dorian, Silvio Matassa, Elad Noor, Alon Shepon, Ron Milo, and Arren Bar-Even. "Photovoltaic-driven microbial protein production can use land and sunlight more efficiently than conventional crops." Proceedings of the National Academy of Sciences 118, no. 26 (June 21, 2021): e2015025118. http://dx.doi.org/10.1073/pnas.2015025118.
Full textChandrasekhar, K., A. Naresh Kumar, Tirath Raj, Gopalakrishnan Kumar, and Sang-Hyoun Kim. "Bioelectrochemical system-mediated waste valorization." Systems Microbiology and Biomanufacturing 1, no. 4 (July 9, 2021): 432–43. http://dx.doi.org/10.1007/s43393-021-00039-7.
Full textHuang, Liping, Zijing Xu, Yinghong Shi, Yu Zhang, and Gianluca Li Puma. "Cellular electron transfer in anaerobic photo-assisted biocathode microbial electrosynthesis systems for acetate production from inorganic carbon (HCO3–)." Chemical Engineering Journal 431 (March 2022): 134022. http://dx.doi.org/10.1016/j.cej.2021.134022.
Full textTharak, Athmakuri, and S. Venkata Mohan. "Syngas Fermentation to Acetate and Ethanol with Adaptative Electroactive Carboxydotrophs in Single Chambered Microbial Electrochemical System." Micromachines 13, no. 7 (June 21, 2022): 980. http://dx.doi.org/10.3390/mi13070980.
Full textHou, Xia, and Liping Huang. "Synergetic magnetic field and loaded Fe3O4 for simultaneous efficient acetate production and Cr(VI) removal in microbial electrosynthesis systems." Chemical Engineering Journal Advances 2 (October 2020): 100019. http://dx.doi.org/10.1016/j.ceja.2020.100019.
Full textTahir, Khurram, Nagesh Maile, Ahsan Abdul Ghani, Bolam Kim, Jiseon Jang, and Dae Sung Lee. "Development of a three-dimensional macroporous sponge biocathode coated with carbon nanotube–MXene composite for high-performance microbial electrosynthesis systems." Bioelectrochemistry 146 (August 2022): 108140. http://dx.doi.org/10.1016/j.bioelechem.2022.108140.
Full textKong, Weifeng, Liping Huang, Xie Quan, Zongbin Zhao, and Gianluca Li Puma. "Efficient production of acetate from inorganic carbon (HCO3–) in microbial electrosynthesis systems incorporating Ag3PO4/g-C3N4 anaerobic photo-assisted biocathodes." Applied Catalysis B: Environmental 284 (May 2021): 119696. http://dx.doi.org/10.1016/j.apcatb.2020.119696.
Full textStrycharz-Glaven, Sarah M., Richard H. Glaven, Zheng Wang, Jing Zhou, Gary J. Vora, and Leonard M. Tender. "Electrochemical Investigation of a Microbial Solar Cell Reveals a Nonphotosynthetic Biocathode Catalyst." Applied and Environmental Microbiology 79, no. 13 (April 19, 2013): 3933–42. http://dx.doi.org/10.1128/aem.00431-13.
Full textKrige, Adolf, Magnus Sjöblom, Kerstin Ramser, Paul Christakopoulos, and Ulrika Rova. "On-Line Raman Spectroscopic Study of Cytochromes’ Redox State of Biofilms in Microbial Fuel Cells." Molecules 24, no. 3 (February 12, 2019): 646. http://dx.doi.org/10.3390/molecules24030646.
Full textQian, Yitong, Liping Huang, Peng Zhou, Fuping Tian, and Gianluca Li Puma. "Reduction of Cu(II) and simultaneous production of acetate from inorganic carbon by Serratia Marcescens biofilms and plankton cells in microbial electrosynthesis systems." Science of The Total Environment 666 (May 2019): 114–25. http://dx.doi.org/10.1016/j.scitotenv.2019.02.267.
Full textCai, Zhenghong, Liping Huang, Xie Quan, Zongbin Zhao, Yong Shi, and Gianluca Li Puma. "Acetate production from inorganic carbon (HCO3-) in photo-assisted biocathode microbial electrosynthesis systems using WO3/MoO3/g-C3N4 heterojunctions and Serratia marcescens species." Applied Catalysis B: Environmental 267 (June 2020): 118611. http://dx.doi.org/10.1016/j.apcatb.2020.118611.
Full textMorrison, Clifford S., Elena E. Paskaleva, Marvin A. Rios, Thomas R. Beusse, Elaina M. Blair, Lucy Q. Lin, James R. Hu, et al. "Improved soluble expression and use of recombinant human renalase." PLOS ONE 15, no. 11 (November 12, 2020): e0242109. http://dx.doi.org/10.1371/journal.pone.0242109.
Full textLust, Rauno, Jaak Nerut, Kuno Kasak, and Ülo Mander. "Enhancing Nitrate Removal from Waters with Low Organic Carbon Concentration Using a Bioelectrochemical System—A Pilot-Scale Study." Water 12, no. 2 (February 13, 2020): 516. http://dx.doi.org/10.3390/w12020516.
Full textSadhukhan, Jhuma, Jon R. Lloyd, Keith Scott, Giuliano C. Premier, Eileen H. Yu, Tom Curtis, and Ian M. Head. "A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO 2." Renewable and Sustainable Energy Reviews 56 (April 2016): 116–32. http://dx.doi.org/10.1016/j.rser.2015.11.015.
Full textHou, Jiaxin, Liping Huang, Peng Zhou, Yitong Qian, and Ning Li. "Understanding the interdependence of strain of electrotroph, cathode potential and initial Cu(II) concentration for simultaneous Cu(II) removal and acetate production in microbial electrosynthesis systems." Chemosphere 243 (March 2020): 125317. http://dx.doi.org/10.1016/j.chemosphere.2019.125317.
Full textBreuer, Marian, Kevin M. Rosso, Jochen Blumberger, and Julea N. Butt. "Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities." Journal of The Royal Society Interface 12, no. 102 (January 2015): 20141117. http://dx.doi.org/10.1098/rsif.2014.1117.
Full textShumyantseva, V. V., T. V. Bulko, E. V. Suprun, A. V. Kuzikov, L. E. Agafonova, and A. I. Archakov. "Electrochemical methods for biomedical investigations." Biomeditsinskaya Khimiya 61, no. 2 (2015): 188–202. http://dx.doi.org/10.18097/pbmc20156102188.
Full textHuang, Liping, Shiping Song, Zhenghong Cai, Peng Zhou, and Gianluca Li Puma. "Efficient conversion of bicarbonate (HCO3−) to acetate and simultaneous heavy metal Cr(VI) removal in photo-assisted microbial electrosynthesis systems combining WO3/MoO3/g-C3N4 heterojunctions and Serratia marcescens electrotroph." Chemical Engineering Journal 406 (February 2021): 126786. http://dx.doi.org/10.1016/j.cej.2020.126786.
Full textSavcheniuk, M., B. Yarchuk, L. Korniienko, T. Tsarenko, D. Okhrimenko, I. Yanchevskyi, O. Dovhal, S. Bilyk, P. Shulha, and O. Novik. "Use of ozone for dіcrease of microbal load." Naukovij vìsnik veterinarnoï medicini, no. 2(160) (November 24, 2020): 50–55. http://dx.doi.org/10.33245/2310-4902-2020-160-2-50-55.
Full textDeutzmann, Jörg S., Merve Sahin, and Alfred M. Spormann. "Extracellular Enzymes Facilitate Electron Uptake in Biocorrosion and Bioelectrosynthesis." mBio 6, no. 2 (April 21, 2015). http://dx.doi.org/10.1128/mbio.00496-15.
Full textLiang, Qinjun, Yu Gao, Zhigang Li, Jiayi Cai, Na Chu, Wen Hao, Yong Jiang, and Raymond Jianxiong Zeng. "Electricity-driven ammonia oxidation and acetate production in microbial electrosynthesis systems." Frontiers of Environmental Science & Engineering 16, no. 4 (July 15, 2021). http://dx.doi.org/10.1007/s11783-021-1476-5.
Full textRagab, Ala’a, Dario R. Shaw, Krishna P. Katuri, and Pascal E. Saikaly. "Draft Genome Sequence of Methanobacterium sp. Strain 34x, Reconstructed from an Enriched Electromethanogenic Biocathode." Microbiology Resource Announcements 8, no. 45 (November 7, 2019). http://dx.doi.org/10.1128/mra.01138-19.
Full textCabau-Peinado, Oriol, Adrie J. J. Straathof, and Ludovic Jourdin. "A General Model for Biofilm-Driven Microbial Electrosynthesis of Carboxylates From CO2." Frontiers in Microbiology 12 (June 4, 2021). http://dx.doi.org/10.3389/fmicb.2021.669218.
Full textAbdollahi, Maliheh, Sara Al Sbei, Miriam A. Rosenbaum, and Falk Harnisch. "The oxygen dilemma: The challenge of the anode reaction for microbial electrosynthesis from CO2." Frontiers in Microbiology 13 (August 3, 2022). http://dx.doi.org/10.3389/fmicb.2022.947550.
Full textMills, Simon, Paolo Dessì, Deepak Pant, Pau Farràs, William T. Sloan, Gavin Collins, and Umer Zeeshan Ijaz. "A meta-analysis of acetogenic and methanogenic microbiomes in microbial electrosynthesis." npj Biofilms and Microbiomes 8, no. 1 (September 23, 2022). http://dx.doi.org/10.1038/s41522-022-00337-5.
Full textEddie, Brian J., Zheng Wang, W. Judson Hervey, Dagmar H. Leary, Anthony P. Malanoski, Leonard M. Tender, Baochuan Lin, and Sarah M. Strycharz-Glaven. "Metatranscriptomics Supports the Mechanism for Biocathode Electroautotrophy by “Candidatus Tenderia electrophaga”." mSystems 2, no. 2 (March 28, 2017). http://dx.doi.org/10.1128/msystems.00002-17.
Full textBajracharya, Suman, Adolf Krige, Leonidas Matsakas, Ulrika Rova, and Paul Christakopoulos. "Advances in cathode designs and reactor configurations of microbial electrosynthesis systems to facilitate gas electro-fermentation." Bioresource Technology, April 2022, 127178. http://dx.doi.org/10.1016/j.biortech.2022.127178.
Full textKong, Weifeng, Liping Huang, Xie Quan, and Gianluca Li Puma. "A light-management film layer induces dramatically enhanced acetate production in photo-assisted microbial electrosynthesis systems." Applied Catalysis B: Environmental, December 2022, 122247. http://dx.doi.org/10.1016/j.apcatb.2022.122247.
Full textCai, Weiwei, Wenzong Liu, Bo Wang, Hong Yao, Awoke Guadie, and Aijie Wang. "Semiquantitative Detection of Hydrogen-Associated or Hydrogen-Free Electron Transfer within Methanogenic Biofilm of Microbial Electrosynthesis." Applied and Environmental Microbiology 86, no. 17 (June 19, 2020). http://dx.doi.org/10.1128/aem.01056-20.
Full textWinkelhorst, Marijn, Oriol Cabau-Peinado, Adrie J. J. Straathof, and Ludovic Jourdin. "Biomass-specific rates as key performance indicators: A nitrogen balancing method for biofilm-based electrochemical conversion." Frontiers in Bioengineering and Biotechnology 11 (January 19, 2023). http://dx.doi.org/10.3389/fbioe.2023.1096086.
Full textLuo, Jiahao, Qianqian Yuan, Yufeng Mao, Fan Wei, Juntao Zhao, Wentong Yu, Shutian Kong, et al. "Reconstruction of a Genome-Scale Metabolic Network for Shewanella oneidensis MR-1 and Analysis of its Metabolic Potential for Bioelectrochemical Systems." Frontiers in Bioengineering and Biotechnology 10 (May 12, 2022). http://dx.doi.org/10.3389/fbioe.2022.913077.
Full textLopes, Adriana Carla de Oliveira, and Fabiane Caxico de Abreu. "Utilization of carbon nanotubes in hydrogen electrosynthesis from tropical fruit fermentation." Matéria (Rio de Janeiro) 25, no. 3 (2020). http://dx.doi.org/10.1590/s1517-707620200003.1121.
Full textXu, Ning, Tai-Lin Wang, Wen-Jie Li, Yan Wang, Jie-Jie Chen, and Jun Liu. "Tuning Redox Potential of Anthraquinone-2-Sulfonate (AQS) by Chemical Modification to Facilitate Electron Transfer From Electrodes in Shewanella oneidensis." Frontiers in Bioengineering and Biotechnology 9 (August 10, 2021). http://dx.doi.org/10.3389/fbioe.2021.705414.
Full textIzadi, Paniz, Jean-Marie Fontmorin, Alexiane Godain, Eileen H. Yu, and Ian M. Head. "Parameters influencing the development of highly conductive and efficient biofilm during microbial electrosynthesis: the importance of applied potential and inorganic carbon source." npj Biofilms and Microbiomes 6, no. 1 (October 14, 2020). http://dx.doi.org/10.1038/s41522-020-00151-x.
Full textAlqahtani, Manal F., Suman Bajracharya, Krishna P. Katuri, Muhammad Ali, Jiajie Xu, Mohammed S. Alarawi, and Pascal E. Saikaly. "Enrichment of salt-tolerant CO2–fixing communities in microbial electrosynthesis systems using porous ceramic hollow tube wrapped with carbon cloth as cathode and for CO2 supply." Science of The Total Environment, October 2020, 142668. http://dx.doi.org/10.1016/j.scitotenv.2020.142668.
Full textMorgado, Leonor, and Carlos A. Salgueiro. "Elucidation of complex respiratory chains: a straightforward strategy to monitor electron transfer between cytochromes." Metallomics 14, no. 4 (February 28, 2022). http://dx.doi.org/10.1093/mtomcs/mfac012.
Full text