Academic literature on the topic 'Microbial decontamination'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Microbial decontamination.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Microbial decontamination":

1

S, Murukesan. "Microbial Contamination of Toothbrush and Methods to Overcome - A Review." TEXILA INTERNATIONAL JOURNAL OF PUBLIC HEALTH 11, no. 3 (September 29, 2023): 372–80. http://dx.doi.org/10.21522/tijph.2013.11.03.art030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Numerous microbes found in household toothbrushes can lead to contamination of the oral cavity. These microorganisms can survive on the toothbrush for several days or weeks. Several studies have found a link between tooth decay and toothbrush bacterial residues. As a result, toothbrush disinfection is critical for toothbrush and oral hygiene maintenance. Furthermore, brush disinfection is required to prevent disease transmission, especially in children, the elderly, and high-risk patients, such as those with immunodeficiency or undergoing organ transplants or chemotherapy. This paper aims to analyse various methods of decontaminating toothbrushes. Numerous techniques have been discussed in the literature regarding decontamination of toothbrushes between uses. However, no single completely efficacious technique has been found to the said effect. Therefore, the search is still on for a rapidly effective, cost-effective, nontoxic, and easily implementable suitable alternative. Keywords: Chemical, Contamination, Decontamination, Physical, Toothbrush.
2

Bernuzzi, Maria Luisa. "Decontamination and Validation of Isolators for Sterility Testing." Biomedical Instrumentation & Technology 50, s3 (April 1, 2016): 27–33. http://dx.doi.org/10.2345/0899-8205-50.s3.27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract Decontamination with hydrogen peroxide is a technology widely used to reduce microbial contamination. A typical application of this technology is in the decontamination of sterility test isolators. This article describes how to decontaminate sterility test isolators and validate the process in order to demonstrate that the microbiological target has been achieved and that the risk of false negatives due to residuals of hydrogen peroxide is excluded. Hydrogen peroxide can adversely affect some materials, resulting in inhibition of microbial growth. A package integrity verification, focused on the risk of penetration of decontaminating agent into different product containers and through different materials, is one of the main topics. Several case studies let readers understand the most critical items, choose their materials correctly, and validate the process itself. Hydrogen peroxide measurements on the surface of several materials, inside the primary packaging container, and inside aqueous solutions are part of this article. Validation of the decontamination cycle as well as validation of the operative procedure are key elements for a good laboratory practices approach.
3

Nair, Ashrit, Amanpreet Behl, Pooja Yadav, Paresh Meel, Navneet Sharma, and Bhupendra Singh Butola. "Dynamic Mechanism-Based Portable Anti-Microbial Green Decontamination Station." Indian Journal Of Science And Technology 16, no. 45 (December 13, 2023): 4280–90. http://dx.doi.org/10.17485/ijst/v16i45.266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lavoie, Jacques, and Paul Comtois. "Microbial Decontamination of Ventilation Systems." Indoor and Built Environment 2, no. 5-6 (1993): 291–300. http://dx.doi.org/10.1159/000463273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lavoie, Jacques, and Paul Comtois. "Microbial Decontamination of Ventilation Systems." Indoor Environment 2, no. 5-6 (September 1993): 291–300. http://dx.doi.org/10.1177/1420326x9300200506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Carvalho, Clairde, Moara Pinto, Samuel Batista, Patrick Quelemes, Carlos Falcão, and Maria Ferraz. "Decontamination of Gutta-percha Cones employed in Endodontics." Acta Odontológica Latinoamericana 33, no. 1 (June 2020): 45–49. http://dx.doi.org/10.54589/aol.33/1/045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The gutta-percha cones used in endodontic treatment are produced in aseptic conditions and their composition includes zinc oxide, which is responsible for antibacterial activity. However, there is the possibility of microbial contamination by manipulation, aerosol or during storage. Although several chemical agents have been tested for their decontamination, there is no consensus on the best disinfection protocol to be used. The aim of this study was to evaluate the decontamination of gutta-percha cones contaminated with the bacteria Enterococcus faecalis, by using chlorhexidine digluconate (CHX) and sodium hypochlorite (NaClO) at different concentrations for short exposure times. For this purpose, gutta-percha cones (size 40) were selected at random from a sealed box and immersed for 1 min in a microbial suspension. Then they were immersed in specific Petri dishes for different groups containing: CHX 2%, NaClO 1% or NaClO 2.5% for 30 s or 1 min, and subsequently placed in tubes containing BHI broth. After incubating the tubes for 48 h, it was observed that 1% and 2.5% NaClO and 2% CHX were effective for decontaminating the cones at those exposure time intervals. Microbial growth was detected in one of the replicates of the group with CHX applied for 30 s. To prevent the possibility of failures at this stage, the
7

Zuaretz‐Peled, S., Y. Tchorsh, A. M. Nasser, and B. Fattal. "Active microbial decontamination of tilapia fish." International Journal of Environmental Health Research 6, no. 1 (March 1996): 63–66. http://dx.doi.org/10.1080/09603129609356874.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Feroz, F., K. K. Das, and T. Islam. "Comparison of commercially available food decontaminants with established methods of decontamination for household practices which are used to keep foods safe." Food Research 4, no. 5 (May 30, 2020): 1688–92. http://dx.doi.org/10.26656/fr.2017.4(5).175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The microbiological safety of food has been a major concern in Bangladesh following several reports of food borne outbreaks associated with contaminated food and vegetables. To minimize the outbreak, several studies suggested that decontamination is necessary before cooking. Washing with water is the most common technique for decontamination in Bangladesh. In order to ensure food safety, the use of different food washing agents is also becoming popular day by day. For this reason, this study was conducted to evaluate the efficacy of various sanitizers and treatment method for decontamination. In this study, several decontamination methods including washing with hot water, cold water, salt water, vinegar and commercially available food sanitizer to evaluate for their efficacy against different microorganisms. Here, salad vegetables were washed with various sanitizers and then microbiological analysis was done to reveal the bacterial and fungal load. This study revealed that most of the sanitizing methods were able to reduce microbial load minimum by 2 log CFU/g. Vinegar and hot water wash were the most effective method of decontamination compare to others with the former showing a 3 log CFU/g reduction. This can be concluded that common items like the use of vinegar and hot water were more effective than the commercial decontaminating agents available.
9

Alfred, Myrtede, Ken Catchpole, Emily Huffer, Larry Fredendall, and Kevin M. Taaffe. "Work systems analysis of sterile processing: decontamination." BMJ Quality & Safety 29, no. 4 (November 13, 2019): 320–28. http://dx.doi.org/10.1136/bmjqs-2019-009422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
BackgroundFew studies have explored the work of sterile processing departments (SPD) from a systems perspective. Effective decontamination is critical for removing organic matter and reducing microbial levels from used surgical instruments prior to disinfection or sterilisation and is delivered through a combination of human work and supporting technologies and processes.ObjectiveIn this paper we report the results of a work systems analysis that sought to identify the complex multilevel interdependencies that create performance variation in decontamination and identify potential improvement interventions.MethodsThe research was conducted at a 700-bed academic hospital with two reprocessing facilities decontaminating approximately 23 000 units each month. Mixed methods, including 56 hours of observations of work as done, formal and informal interviews with relevant stakeholders and analysis of data collected about the system, were used to iteratively develop a process map, task analysis, abstraction hierarchy and a variance matrix.ResultsWe identified 21 different performance shaping factors, 30 potential failures, 16 types of process variance, and 10 outcome variances in decontamination. Approximately 2% of trays were returned to decontamination from assembly, while decontamination problems were found in about 1% of surgical cases. Staff knowledge, production pressures, instrument design, tray composition and workstation design contributed to outcomes such as reduced throughput, tray defects, staff injuries, increased inventory and equipment costs, and patient injuries.ConclusionsEnsuring patients and technicians’ safety and efficient SPD operation requires improved design of instruments and the decontamination area, skilled staff, proper equipment maintenance and effective coordination of reprocessing tasks.
10

Chong, Joaquín A., and José A. Dumas. "WOODCHIP PATHOGEN DECONTAMINATION WITH A BENEFICIAL MICROBIAL MIXTURE." Journal of Agriculture of the University of Puerto Rico 106, no. 1 (January 1, 2022): 109–17. http://dx.doi.org/10.46429/jaupr.v106i1.21058.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Microbial decontamination":

1

Maktabi, Siavash. "Combination methods for microbial decontamination." Thesis, University of Glasgow, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.433618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Son, Ahjeong. "Microbial reduction of perchlorate with elemental iron." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 1.83 Mb., 152 p, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3200522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Collazo, Cordero Cyrelys. "Novel preservation strategies for microbial decontamination of fresh-cut fruit and vegetables." Doctoral thesis, Universitat de Lleida, 2018. http://hdl.handle.net/10803/663375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La bioconservació, així com els mètodes químics i físics, es van avaluar per controlar patògens de transmissió alimentària en productes vegetals mínimament processats. La investigació dels mecanismes d'acció de Pseudomonas graminis CPA-7 va revelar que la seva activitat bioconservadora s'exerceix a través de la combinació de la competència, el deteriorament de les capacitats de colonització dels patògens i l'activació de la resposta defensiva de l'hoste vegetal. Com enfocament físic, es va avaluar la llum ultraviolada C acoblada a immersió (WUV), en aigua i en àcid peroxiacètic (PAA), per descontaminar vegetals mínimament processats. WUV va reduir la microbiota nativa i els patògens inoculats del bròquil i de verdures de fulla, així com va millorar les propietats bioactives del bròquil. Una altra tecnologia física avaluada per a la descontaminació del bròquil va ser la llum polsada, sense mostrar idoneïtat. Finalment, es va avaluar la combinació de WUV, PAA i CPA-7 per a la descontaminació de verdures de fulla, millorant sinergísticament l'efecte inhibidor sobre el creixement de Salmonella enterica depenent de la matriu. En resum, la biopreservació i l’aplicació de WUV són tecnologies prometedores, alternatives al clor, que actuen a través de múltiples mecanismes i es poden implementar per millorar la qualitat microbiològica i les propietats bioactives dels productes mínimament processats.
La bioconservación, así como métodos químicos y físicos, se evaluaron para controlar patógenos transmitidos por los alimentos en productos vegetales mínimamente procesados. La investigación de los mecanismos de acción de Pseudomonas graminis (CPA-7) reveló que su actividad bioconservadora se ejerce a través de la combinación de la competencia, del deterioro de las capacidades de colonización de los patógenos y de la activación de la respuesta defensiva del hospedante vegetal. Como enfoque físico, se evaluó la luz ultravioleta C acoplada a inmersión (WUV), en agua y en ácido peroxiacético (PAA), para descontaminar vegetales mínimamente procesados. WUV redujo la microbiota nativa y los patógenos inoculados en brócoli y verduras de hoja, y además mejoró las propiedades bioactivas del brócoli. Otra tecnología física: la luz pulsada, se ensayó para la descontaminación del brócoli sin mostrar idoneidad. Finalmente, se evaluó la combinación de WUV, PAA y CPA-7 para la descontaminación de verduras de hoja. Esta estrategia mejoró sinergísticamente el efecto inhibidor de CPA-7 sobre el crecimiento de Salmonella enterica dependiendo de la matriz. En resumen, la biopreservación y la aplicación de WUV son tecnologías prometedoras, alternativas al cloro, que actúan a través de múltiples mecanismos y que pueden implementarse para mejorar la calidad microbiológica y bioactiva de los vegetales mínimamente procesados.
Biopreservation as well as chemical and physical methods were essayed to control foodborne pathogens in fresh-cut fruit and vegetables. The investigation of the action mechanisms of Pseudomonas graminis (CPA-7) revealed that its biopreservative activity is exerted through the combination of competition, the impairment of pathogen’s colonization abilities and the activation of the plant-host's defense response. As a physical approach, water-assisted UV-C (WUV) was evaluated, alone and combined with peroxyacetic acid (PAA), for the decontamination of fresh-cut vegetables. It was effective for reducing native microbiota and inoculated pathogens in fresh-cut broccoli and leafy greens, as well as for enhancing the bioactive content in broccoli. Another physical technology: pulsed light was essayed for decontamination of broccoli, showing no suitability. Finally, the combination of WUV, PAA and CPA-7 was evaluated for decontamination of leafy greens, showing a synergistic enhancement of the inhibitory effect of CPA-7 on S. enterica growth depending on the matrix. In summary, biopreservation and WUV are promising alternative-to-chlorine technologies, which act via multiple mechanisms, and can be implemented to improve the microbiological and nutritional quality of fresh-cut produce.
4

Arthur, Mickey Francis. "Soils containing 2,3,7,8-tetrachlorodibenzo-p-dioxin : aspects of their microbial activity and the potential for their microbially-mediated decontamination /." The Ohio State University, 1987. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487330761218489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Qin, Chao. "Mineral Surface Catalyzed Polymerization Of Estrogen And Microbial Deactivation By Fe3+-Saturated Montmorillonite: A Potentially Low Cost Material For Water Decontamination." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/84467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
With advantages of high cation exchange capacity, swelling-shrinking property and large specific surface area, monmtorillonite is chosen as a carrier and modified with Fe3+ saturation for estrogen decontamination. 17β-Estradiol (βE2) has highest estrogenic activity among estrogens and is selected as representative compound. Rapid βE2 transformation in the presence of Fe3+ - saturated montmorillonite in aqueous system was observed and βE2 oligomers were the major βE2 transformation products. About 98% of βE2 were transformed into oligomers which are >107 times less water-soluble than βE2 and therefore are much less bioavailable and mobile. Fe3+ -saturated montmorillonite catalysis achieved highest βE2 removal efficiency at neutral solution pH and higher temperature. Common cations did not have impact on the reaction efficiency. Dissolved organic matter slightly reduced βE2 removal efficiency. Regardless of wastewater source, ~40% βE2 removal efficiency was achieved for wastewater effluents when they were exposed to same dosage of Fe3+ -saturated montmorillonite as that for simple water systems which achieved ~83% removal efficiency. For real wastewater that contained higher organic matter, higher dosage of Fe3+ -saturated montmorillonite would be needed to create available reaction sites for βE2. This thesis also reports that Fe3+ -saturated montmorillonite effectively deactivate wastewater microorganisms. Microbial deactivation rate was 92±0.6% when secondary wastewater effluent was mixed with Fe3+ -saturated montmorillonite at 35 mg/mL for 30 min, and further increased to 97±0.6% after 4-h exposure. Freeze-drying Fe3+ -saturated montmorillonite iii after each usage resulted in 82±0.5% microbial deactivation efficiency even after fourth consecutive use. For convenient application, Fe3+ -saturated montmorillonite was further impregnated into filter paper through wet-end addition and formed uniformly impregnated paper. Scanning electron microscopy (SEM) imaging showed Fe3+ -saturated montmorillonite was evenly dispersed over cellulose fiber surface. When filtering 50 mL and 200 mL water spiked with live Escherichia coli (E. coli) cells at 3.67×108 CFU/mL, Fe3+ -saturated montmorillonite impregnated paper with 50% mineral weight loading deactivated E. coli with 99% and 77%, respectively. Dielectrophoresis and impedance analysis of filtrate confirmed that the deactivated E. coli passing through Fe3+ -saturated montmorillonite paper did not have trapping response due to higher membrane permeability and conductivity. The results demonstrate feasibility of using Fe3+ -saturated montmorillonite impregnated paper for convenient point-of-use drinking water disinfection.
Ph. D.
6

Tauler, Ferrer Margalida. "Bacterial populations and functions driving the decontamination of PAC polluted soils = Poblacions i funcions bacterianes implicades en la descontaminació de sòls contaminats amb CAPs." Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/334163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment due to accidental spills during use, transport and storage of petroleum and coal derivatives. Their high chemical stability and hydrophobicity confers them recalcitrance. Because of their great persistence in the environment, toxicity and carcinogenicity, these compounds are on the list of priority pollutants. The most sustainable way to remove these compounds from soil without damaging its ecological structure and function is bioremediation. This technology uses the metabolic capabilities of microorganisms to decontaminate (degrade) polluted sites. Microorganisms act on the environment interconnected by metabolic networks, in which the byproducts generated by certain populations are utilized for others as a carbon source. Until recently, the PAH biodegradation studies were conducted by exposing individual compounds to pure strains. However, to improve the technology of bioremediation is necessary to unravel how these metabolic networks function in situ. The main objective of this Thesis was to contribute to the elucidation of microbial processes occurring in situ during PAH biodegradation in soils. Thus, two main approaches were used. First, the high molecular weight (HMW) PAH-degrading community of a creosote polluted soil was selected and characterized by new enrichment method using a biphasic system consisting of mineral medium and sand coated with a creosote NAPL previously biodegraded. Once the community became stable, its degrading potential was determined. In 12 weeks, consortium UBHP was able to significantly remove the compounds from 2 to 6 rings (90% fluoranthene, pyrene 90%, 66% benz(a)anthracene and chrysene 59%) and their alkylated derivatives. Key populations of this consortium were identified, based on their responses to specific substrates, phylogenetic, functional and metabolomic profiles, and recovery in pure culture. The phylotypes who played a key role in the degradation of HMW PAHs corresponded to Sphingobium, Sphingomonas, Achromobacter, Pseudomonas and Mycobacterium. Furthermore, the microbial processes driving the PAH removal in situ during the laboratory bioestimulation of a real creosote polluted soil were investigated. The degradation kinetics of PAHs, oxy-PAHs and N-PACs, together with the formation and/or accumulation of possible acidic products were correlated with key phylotypes and community shifts. A real-time insight into the community dynamics was obtained from the combined analysis of changes in global (genes) and active (transcripts) microbial communities, both at the phylogenetic (16S rRNA) and functional (genes RHD) level. The addition of nutrients resulted in a significant and substantial biodegradation of PAHs with 2, 3, 4 and 5 aromatic rings (93%) and the N-PACs (85%) at 150 days of incubation. During the highest degradation rates there was a transient peak of accumulation of both oxy-PAH and acid metabolites, which were later removed by the microbial populations present in the soil. The nutrient addition also resulted in a higher expression levels in both functional and structural genes, and the genera involved in the disappearance of such compounds were identified as Pseudomonas, Pseudoxanthomons, Achromobacter, Sphingobium, Olivibacter and Mycobacterium.
Los hidrocarburos aromáticos policíclicos (HAPs) predominan en numerosos emplazamientos contaminados en Europa. Debido a su alta persistencia en el medio y elevada toxicidad y carcinogenicidad, están en las listas de contaminantes prioritarios. La única manera de eliminar estos compuestos del suelo sin dañar la estructura y las funciones ecológicas es la bioremediación, que utiliza las capacidades metabólicas de los microorganismos para la degradación o detoxificación de los contaminantes. Los microorganismos actúan en el suelo mediante redes metabólicas en las que los subproductos de degradación de unas poblaciones sirven de fuente de carbono para otras. Hasta hace pocos años los estudios de biodegradación de HAPs se basaban en cultivos puros y sustratos individuales. Para optimizar las técnicas de bioremediación es necesario saber cómo funcionan esas redes metabólicas in situ. El objetivo principal de esta Tesis es contribuir a la elucidación de los procesos microbianos que tienen lugar in situ durante la biodegradación de los HAPs en suelos. Se seleccionó la comunidad degradadora de HAPs de elevado peso molecular (EPM) de un suelo contaminado mediante un nuevo método de enriquecimiento utilizando un sistema con medio mineral y arena contaminada con creosota previamente degradada. Una vez la comunidad se mantuvo estable, se determinó su potencial degradador. El consorcio UBHP fue capaz de eliminar significativamente los compuestos de 2-6 anillos (90% fluoranteno, 90% pireno, 66% benz(a)antraceno y 59% criseno). Las poblaciones clave de este consorcio fueron identificadas, en base a sus respuestas a sustratos específicos, perfiles filogenéticos, funcionales y de metabolómica, y su recuperación en cultivo puro. Los filotipos clave en la degradación de los HAPs EPM pertenecían a Sphingobium, Sphingomonas, Achromobacter, Pseudomonas y Mycobacterium. Se investigaron los procesos microbianos para la eliminación de HAP in situ durante la bioestimulación del suelo. Las cinéticas de degradación de los HAPs, oxi-HAPs y N-CAPs, junto con la formación y/o acumulación de posibles productos de oxidación, se correlacionaron con filotipos clave y cambios en la comunidad. A partir del análisis de los cambios en las poblaciones globales (genes) y activas (transcritos), tanto desde el punto de vista filogenético (16S ARNr) como funcional (RHD), se obtuvo una visión real de la dinámica de la comunidad. La adición de nutrientes promovió la biodegradación significativa de los HAPs de 2-5 anillos (93%) y de N-CAPs (85%). Se produjo la acumulación transitoria de oxi-HAPs y de metabolitos ácidos, que posteriormente fueron degradados. La adición de nutrientes también resultó en un aumento en la expresión de genes estructurales y funcionales. Los géneros principales fueron Pseudomonas, Pseudoxanthomons, Achromobacter, Sphingobium, Olivibacter y Mycobacterium.
7

Muhammad, Omid H. "Élaboration d’un biofilm polybactérien artificiel comme modèle pour la décontamination endodontique." Thesis, Nice, 2016. http://www.theses.fr/2016NICE4022/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La gestion de l'infection endodontique est la clé de la réussite de tout traitement endodontique. La reproduction in vitro du biofilm endocanalaire sauvage, qui se compose d'environ 500 espèces bactériennes différentes est à ce jour impossible. Cependant, tester un protocole de désinfection dans des conditions de laboratoire et ce avant toute application clinique reste indispensable. Il ressort que le développement d'un modèle qui ressemblerait structurellement à son type homologue sauvage se montre crucial. Dans le laboratoire MICORALIS (EA 7354) nous nous sommes intéressés à la conception et à la réalisation d'un biofilm polybactérien artificiel. La recherche bibliographique a permis de sélectionner S. salivarius, E. faecalis, F. nucleatum et P. gingivalis qui sont des représentants de différents groupes colonisateurs de l’espace endodontique et qui coexistent. Après une série d'analyse au MEB puis des examens à l'aide de la technique FISH-confocale (sondes ARNr 16S), nous avons pu démontrer que ces bactéries sont présentes dans la composition d’un biofilm mature après 21 jours sur la dentine péricanalaire. Ces investigations nous ont permis de géo-localiser des bactéries dans les tubuli dentinaires jusqu’à 500µm et parmi elles, P. gingivalis était statistiquement prédominante. Afin de répondre aux exigences des objectifs de notre étude, six groupes de 12 échantillons contaminés par le biofilm expérimental ont servi à tester 6 techniques de décontamination endodontique
Management of infection is the key to a successful root canal treatment and development of a study model of endodontic biofilm which resemble structurally to its wild type counterpart seems crucial before any clinical application of different protocols. However, the in vitro reproduction of the root canal biofilm which consists of about 500 different bacterial species is very difficult. In laboratory MICORALIS (EA 7354) we were interested in conception of an artificial polybacterial. The bibliographical research allowed to choose S. salivarius, E. faecalis, F. nucleatum and P. gingivalis which are representatives of different groups of root canal biofilm colonizers. Following a series of periodic Scanning Electron Microscopies of samples and furthermore by help of FISH-Confocal imaging of 16S rRNA, we could prove the presence of these bacteria inside the biofilm structure and illustrate their distribution over the root canal system. In addition, it was possible also to confirm the maturation time needed to obtain the biofilm model, which is resistant enough to be used in vitro for endodontic disinfection investigation. After being characterized, we treated the model biofilm with different endodontic decontamination protocols
8

Dragan, Antić. "Antimikrobni tretman kože goveda u cilju unapređenja mikrobiološke bezbednosti goveđeg mesa." Phd thesis, Univerzitet u Novom Sadu, Poljoprivredni fakultet u Novom Sadu, 2011. http://dx.doi.org/10.2298/NS20110623ANTIC.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
U radu je ispitan i razvijen novi pristup tretmanu kože goveda prirodnom smolom šelak, koja je dozvoljena za korišćenje u hrani, u cilju redukcije unakrsne mikrobiološke kontaminacije sa kože na goveđe meso. Mehanizam ovog tretmana je baziran na imobilizaciji mikroorganizama na dlaci tretirane kože i prevenciji njihovog fizičkog prenosa sa dlake na meso trupova tokom procesa obrade zaklanih goveda.U in vitro uslovima, tretman uzoraka vizuelno čiste i suve kože 23% rastvorom šelaka u etanolu je redukovao prenos sa kože na sunđere kojima je koža uzorkovana brisevima: ukupne mikroflore (TVC) za 6,6 log (>1000 puta više u odnosu na 2,9 log redukcije kod tretmana samo etanolom), generičke Escherichia coli za najmanje 2,9 i Enterobacteriaceae za najmanje 4,8 log. Ove redukcije sve tri grupe mikroorganizama su bile značajno više u odnosu na redukcije postignute tretmanom kože kombinacijom ispiranja sanitajzerom i vakumiranja. Značajno više redukcije prenosa TVC sa kože na sunđerske briseve su postignute korišćenjem viših koncentracija šelaka (23% i 30%) u odnosu na niže (4,8-16,7%) i u slučajevima kada je temperatura rastvora šelaka bila 20, 30 ili 40oC u odnosu na 50oC i 60oC. Takođe, tretman kože šelakom je značajno (3,7 puta) redukovao prevalencu E. coli O157 na prirodno kontaminiranoj, neinokulisanoj koži, kao i broj E. coli O157 na veštački inokulisanim kožama (redukcija od 2,1 log), u odnosu na odgovarajuće netretirane kontrole.U uslovima laboratorijskog modela direktnog kontakta kože i mesa, tretman kože (različitih kategorija čistoće) 23% rastvorom šelaka je značajno smanjio prenos mikroorganizama sa tretirane kože na sterilno goveđe meso: do 3,6 log cfu/cm2 redukcije ukupnog broja bakterija (TVC), do 2,5 log cfu/cm2 Enterobacteriaceae (EC) i do 1,7 log cfu/cm2 generičke E. coli (GEC). Redukcija prenosa TVC je bila značajno viša, a redukcije EC i GEC slične, u odnosu na redukcije nakon tretiranja kože kombinacijom ispiranja-vakumiranja sanitajzerom.U uslovima male komercijalne klanice sa nezadovoljavajućom procesnom praksom (klanje prljavih goveda i neadekvatna higijena procesa klanja i obrade), tretman koža zaklanih goveda 23% rastvorom šelaka je rezultirao značajnom mikrobnom redukcijom na mesu trupova goveda nakon skidanja kože: 1,7 log cfu/cm2 TVC, 1,4 log cfu/cm2 EC i 1,3 log cfu/cm2 GEC. Redukcija TVC na mesu trupova je bila značajno viša, a redukcije EC i GEC slične, u odnosu na redukcije nakon tretiranja kože ispiranjem-vakumiranjem sanitajzerom.Ova istraživanja su po prvi put pružila naučne dokaze da se tretman kože goveda u cilju imobilizacije mikroflore na dlaci može uspešno koristiti u cilju smanjenja kontaminacije mesa trupova tokom procesa skidanja kože, unapređenja finalnog mikrobiološkog statusa mesa i bezbednosti goveđeg mesa uopšte. Da bi se ostvario puni potencijal ovog novog tretmana u praksi, neophodna su dalja istraživanja u cilju njegove tehničke optimizacije u uslovima industrije mesa.
In this research, a new approach to cattle hide treatments, based on using a natural, food-grade resin, Shellac, to reduce microbial cross-contamination from the hides onto carcass meat, was developed and evaluated. The basis of this treatment is immobilisation of microorganisms on cattle hide’s hair and subsequent reduction of their transmissibility from the hair onto carcass meat during dressing of slaughtered cattle. Under in vitro conditions, treatment of samples of visually clean and dry hides with 23% Shellac-in-ethanol solution reduced sponge-swabbing recoveries of general microflora (TVC) by a factor of 6.6 logs (>1000-fold greater than the 2.9 log reduction observed by ethanol alone), and of generic E. coli (GEC) and Enterobacteriaceae (EC) by factors of at least 2.9 and 4.8 logs, respectively. The reductions of these three groups of microorganisms were superior to those achieved by a sanitizer rinse-vacuum hide treatment. Significantly greater reductions of TVC recoveries from hides were achieved when using higher Shellac concentrations (23.0% and 30.0% rather than 4.8-16.7%) and when Shellac solution temperatures were 20-40°C rather than 50-60°C. Furthermore, the Shellac-based treatment also markedly reduced the E. coli O157 prevalence (3.7-fold reduction) on natural, uninoculated hides, as well as the counts of E. coli O157 on artificially inoculated hides (2.1 log reduction) when compared to corresponding untreated controls. Under the conditions of a hide-to-meat direct contact laboratory-based model, treatment of hides (of varying visual cleanliness) with the 23% Shellac solution produced significant reductions of microbial transfer from treated hide onto sterile beef: up to 3.6 log10 CFU/cm2 of TVC, up to 2.5 log10 CFU/cm2 of EC and up to 1.7 log10 CFU/cm2 of GEC. TVC reductions of microbial transfer from treated hide onto beef achieved by the Shellac hide treatment were superior to those achieved by the comparative sanitizer rinse-vacuum hide treatment, but reductions of EC and GEC did not differ between the two hide treatments. In a small commercial abattoir with unsatisfactory process practices (slaughtering dirty cattle, inadequate process hygiene), treatment of hides with Shellac produced significant microbial reductions on skinned beef carcasses: 1.7 log10 CFU/cm2, 1.4 log10 CFU/cm2 and 1.3 log10 CFU/cm2 of TVC, EC and GEC, respectively. TVC reductions on skinned beef carcasses achieved by the Shellac hide treatment were superior to those achieved by the comparative sanitizer rinse-vacuum hide treatment, but reductions of EC and GEC did not differ significantly between the two hide treatments. These investigations produced the first scientific evidence that treatment of cattle hides with aim of immobilising microflora on the hair can be very successfully used to reduce carcass meat contamination during the skinning operation, thus improving the microbiological status of the final beef carcasses as well as the beef safety in general. To achieve the full potential of this new treatment in practice, further research aimed at its further technical optimization under real-life meat industry conditions is necessary.
9

HUANG, YU-YA, and 黃郁雅. "Study for Microbial Decontamination Using Low Temperature Atmospheric Pressure Plasma." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/3yrfwf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ding, Zih-An, and 丁子安. "The Effects of Gamma-ray Radiation Microbial Decontamination on the Properties of Calcium Sulfate Bone Cement." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/42480324974402824768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
碩士
龍華科技大學
化工與材料工程系碩士班
103
Calcium sulfate cement has been used in bone repaired for many years. The bone cement has good biocompatibility, and the pore size can promote vessels and new bone growth after crystallization. In the mixing process, slurry has good mobility when adding some water, and bone cement slurry can be injected into the irregular shape of the affected area, but it absorbs so rapid in human’s body that it must rely on other chemical compound to extend absorption time. This study investigated that whether calcium sulfate pass through γ-ray sterilization will affect its nature or not. We use non-sterilization powder as the control group, and also use different doses of radiation to sterilize. Then analyzing the powder properties and material properties. According to the result of the experiment, after calcium sulfate powder passed through γ-ray sterilization by FTIR, TGA, XRD and pH value, we can determine that the chemical nature had the little effect. But we could find the result in mechanical property, at 20kGy, it has the best compressive strength which can get up to 44.23Mpa, and at 40kGy, it also get up to 41.84Mpa. At 70kGy, it has a more average compressive and flexural strength, which can withstand higher stresses.

Books on the topic "Microbial decontamination":

1

Shah, Manzoor Ahmad, and Shabir Ahmad Mir, eds. Microbial Decontamination of Food. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5114-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

1960-, Manivannan Gurusamy, ed. Disinfection and decontamination: Principles, applications, and related issues. Boca Raton: Taylor & Francis, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

J, Boss Martha, and Day Dennis W, eds. Biological risk engineering handbook: Infection control and decontamination. Boca Raton, FL: Lewis Pub., 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fraise, Adam P. Principles and practice of disinfection, preservation, and sterilization. 5th ed. Chichester, West Sussex: John Wiley & Sons, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mars, Sample Handling Protocol Workshop Series (2001 San Diego Calif ). Mars sample handling protocol workshop series: Interim report of the workshop series, Workshop 3 proceedings and final report, San Diego, California, March 19-21, 2001. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

S, Race Margaret, Rummel J. D, and Ames Research Center, eds. Mars sample handling protocol workshop series: Interim report of the workshop series Workshop 1 proceedings and final report, Bethesda, Maryland, March 20-22, 2000. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shah, Manzoor Ahmad, and Shabir Ahmad Mir. Microbial Decontamination of Food. Springer, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Demirci, Ali, and Michael O. Ngadi. Microbial decontamination in the food industry. Woodhead Publishing Limited, 2012. http://dx.doi.org/10.1533/9780857095756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Microbial Decontamination In The Food Industry. Woodhead Publishing, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Microbial Consortium and Biotransformation for Pollution Decontamination. Elsevier, 2022. http://dx.doi.org/10.1016/c2021-0-00208-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Microbial decontamination":

1

Yildiz, Hilal, and Bahar Tuba Findik. "Decontamination of Nuts." In Microbial Decontamination of Food, 165–92. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5114-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Aradhana, S. Kirti, Karuna Ashok Appugol, Sumit Kumar, C. K. Sunil, and Ashish Rawson. "Decontamination of Spices." In Microbial Decontamination of Food, 193–208. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5114-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

de São José, Jackline Freitas Brilhante, Leonardo Faria-Silva, and Bárbara Morandi Lepaus. "Decontamination of Vegetables." In Microbial Decontamination of Food, 71–92. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5114-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ranjitha, K., and J. Ranjitha. "Decontamination of Sprouts." In Microbial Decontamination of Food, 109–24. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5114-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ali, Sajid, Aamir Nawaz, Safina Naz, Shaghef Ejaz, Sajjad Hussain, and Raheel Anwar. "Decontamination of Microgreens." In Microbial Decontamination of Food, 125–43. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5114-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Khanashyam, Anandu Chandra, M. Anjaly Shanker, Anjineyulu Kothakota, and R. Pandiselvam. "Decontamination of Fruits." In Microbial Decontamination of Food, 47–70. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5114-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mahnot, Nikhil Kumar, Sayantan Chakraborty, Bhaskar Jyoti Das, Pallab Kumar Borah, and Sangeeta Saikia. "Decontamination of Fruit Beverages." In Microbial Decontamination of Food, 277–97. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5114-5_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kumar, Sanjeev, and Satyendra Gautam. "Decontamination of Food Powders." In Microbial Decontamination of Food, 299–316. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5114-5_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mir, Mudasir Bashir, Saqib Farooq, Reshu Rajput, Manzoor Ahmad Shah, and Shabir Ahmad Mir. "Correction to: Decontamination of Cereal and Cereal Products." In Microbial Decontamination of Food, C1. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5114-5_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mallhi, Iftikhar Younis, Muhammad Sohaib, and Rida Tariq. "Decontamination of Meat and Meat Products." In Microbial Decontamination of Food, 209–29. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5114-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Microbial decontamination":

1

Rene, Eldon, Mi-Seon Jo, Soo-Hong Kim, and Hung-Suck Park. "Microbial Decontamination of BTEX Compounds in Batch Experimental Studies." In 2006 International Forum on Strategic Technology. IEEE, 2006. http://dx.doi.org/10.1109/ifost.2006.312292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Snyder, Gordon, and Jarrad O'Leary. "INSTRUMENTATION FOR MICROBIAL MONITORING OF DECONTAMINATION OR BIOCIDE SYSTEM EFFECTIVENESS." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/921233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hubchyk, Kiryl, Alena Hlushen, and R. Birukou. "Promising microorganisms for treatment of poultry processing wastewater." In 5th International Scientific Conference on Microbial Biotechnology. Institute of Microbiology and Biotechnology, Republic of Moldova, 2022. http://dx.doi.org/10.52757/imb22.20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Massive volumes of effluents discharged by the poultry-processing plants contain elevated levels of pollutants (dissolved keratins, blood, lipids and proteins), and are distinguished by high BOD and COD values, as well as by large concentrations of suspended particles [1]. Therefore, there is an urgent need to develop effective and eco-safe methods protecting the environment from contamination. Among such methods the application of efficient microbial degraders of toxicants, possessing enhanced flocculating and decomposing activity, that can be introduced into the decontamination units to supplement the microbiota of the activated sludge at various stages of treatment, seems to be especially promising. Currently, biopreparations of microbial consortia intended for remediation of the environments exposed to organic pollutants are widely spread. The most common constituents of such consortia represent such genera as Rhodococcus, Bacillus, Pseudomonas, Arthrobacter, etc. [2]. Our study was focused on the microorganisms of the Rhodococcus and Bacillus genera, which are able to utilize the organic compounds in the poultry processing wastewater. There were selected 14 variants out of 145 screened strains that were either deposited in the laboratory of environmental biotechnologies, Institute of Microbiology, NAS of Belarus, or isolated from effluents of poultry-processing plants. They were tested for the COD degradation activity in poultry-processing wastewater, assayed for the proteolytic and lipolytic activities [3], and estimated for the biosurfactant forming potential [4]. The degradation activity of the selected microbial cultures was investigated using poultry-processing effluents with initial COD value of 1144 O2/dm3. It was found that the top COD reduction was by B. subtilis 6/2-APF1, B. coagulans 1710, Bacillus sp. FL-9MV, Bacillus sp. FL X-5, Bacillus sp. PF1, R. ruber 30P, R. ruber 200N, R. ruber 1NG – 52,3-71,6%. The maximum proteolytic activity toward milk proteins was observed for B. coagulans 1710, B. subtilis 6/2-APF1, Bacillus sp. FL-9MV, Bacillus sp. FL X-5. The lipolytic activity on the tributyrin-containing medium was detected in all 14 tested strains – B. coagulans 1710, B. subtilis 6/2-APF1, Bacillus sp. FL-9MV, Bacillus sp. FL X-5, Bacillus sp. PF1, R. erythropolis 7D, R. erythropolis 23F, R. erythropolis 70F, R. ruber 2B, R. ruber 1NG, R. ruber 30P, Rhodococcus sp. P1, Rhodococcus sp. G13, R. ruber 200N with the last two being especially active. The highest capacity to produce biosurfactants in the specific nutrient medium with methylene blue was displayed by B. coagulans 1710, B. subtilis 6/2-APF1, Bacillus sp. FL-9MV, Bacillus sp. FL X-5. In addition, the ability to produce surface active agents was observed for the bacterial cultures of Bacillus sp. PF1, R. ruber 2B, Rhodococcus sp. R1-3FN, Rhodococcus sp. G13 and R. erythropolis 7D. Among the tested bacterial strains, the following cultures proved to be the most effective in decontamination of the poultry-processing wastewater: B. coagulans 1710, B. subtilis 6/2-APF1, Bacillus sp. FL-9MV, Bacillus sp. FL X-5, Bacillus sp. PF1. The above-listed microorganisms may act as promising components of the biopreparations promoting decontamination of the poultry-processing effluents.
4

Perni, Stefano, Gilbert Shama, and M. G. Kong. "Microbial Decontamination of Mango and Melon Surface Using a Cold Atmospheric Plasma Treatment." In 2007 IEEE Pulsed Power Plasma Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/ppps.2007.4345641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Development of Radiant Heating System and Methods for Drying and Microbial Decontamination of Corn." In 2015 ASABE International Meeting. American Society of Agricultural and Biological Engineers, 2015. http://dx.doi.org/10.13031/aim.20152188205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Setyopratomo, Puguh, Akbarningrum Fatmawati, Emma Savitri, Putu Doddy Sutrisna, and Karim Allaf. "Impact of instant-controlled pressure drop treatment on thermal properties and microbial decontamination of banana flour." In EXPLORING RESOURCES, PROCESS AND DESIGN FOR SUSTAINABLE URBAN DEVELOPMENT: Proceedings of the 5th International Conference on Engineering, Technology, and Industrial Application (ICETIA) 2018. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5112458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kredl, Jana, Kai Ptach, Jie Zhuang, and Juergen F. Kolb. "Operation of a cold DC operated air plasma jet for microbiol decontamination." In 2013 IEEE 40th International Conference on Plasma Sciences (ICOPS). IEEE, 2013. http://dx.doi.org/10.1109/plasma.2013.6633403.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Microbial decontamination":

1

Poverenov, E., Philip Demokritou, Yaguang Luo, and V. Rodov. Green nature inspired nano-sanitizers for enhancing safety of ready-to-eat fruits and vegetables. Israel: United States-Israel Binational Agricultural Research and Development Fund, 2022. http://dx.doi.org/10.32747/2022.8134145.bard.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In this proposal, we suggest novel ways to address food safety problems in the expanding sector of fresh, ready-to-eat, fresh-cut, minimally processed fruits and vegetables. These products are becoming increasingly popular with consumers because they provide an easy way to increase consumption of phytonutrient-rich fresh foods, as recommended by health experts. However, ready-to-eat fresh fruits and vegetables may be associated with two serious health hazards. The first hazard is microbiological; human pathogens, potentially present on raw fruits and vegetables, may survive the mild interventions of minimal processing and could be further spread by cross-contamination. The second hazard is chemical; typical decontamination techniques use chlorine derivatives and strong oxidizers, which can taint food products with potentially harmful and carcinogenic byproducts. The overall goal of this work is to provide consumers with healthy and safe ready-to-eat produce that is free of microbial and chemical hazards

To the bibliography