Academic literature on the topic 'Microbial community of soil, surface and groundwater'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Microbial community of soil, surface and groundwater.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Microbial community of soil, surface and groundwater"

1

Turky, Azza Sh. "Microbial community in rural shallow groundwater affected by surface contaminated soil." International Journal of Academic Research 4, no. 4 (August 7, 2012): 188–97. http://dx.doi.org/10.7813/2075-4124.2012/4-4/a.26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vargha, M., Z. Somlai, Z. Takáts, and K. Márialigeti. "Microbiological impact of atrazine pollution in river sediment and soil." Acta Agronomica Hungarica 52, no. 3 (November 1, 2004): 297–308. http://dx.doi.org/10.1556/aagr.52.2004.3.11.

Full text
Abstract:
Atrazine is a frequently detected pollutant in agricultural soils, groundwater and surface waters. Microbial degradation was confirmed in soils, and recently several atrazine-degrading bacteria have been isolated. Degradation in aquifers, however, is not well understood, and to date, atrazine degraders have not been isolated from water. In the present study, the impact of atrazine was assessed in agricultural soil and river sediment and the composition of the atrazine-degrading bacterial community in the soil and sediment was compared. Atrazine pollution increased the number and diversity of the endogenous atrazine degraders in both environments. Proteobacteria were predominant atrazine degraders in soils, whereas the community of atrazine-degrading bacteria in sediment consisted mostly of coryneforms.
APA, Harvard, Vancouver, ISO, and other styles
3

Aislabie, J., J. Ryburn, and A. Sarmah. "Culturable microbes in shallow groundwater underlying ornithogenic soil of Cape Hallett, AntarcticaThis article is one of a selection of papers in the Special Issue on Polar and Alpine Microbiology." Canadian Journal of Microbiology 55, no. 1 (January 2009): 12–20. http://dx.doi.org/10.1139/w08-118.

Full text
Abstract:
The objective of this study was to investigate the culturable psychrotolerant microbial community in groundwater from Seabee Hook, Antarctica. Shallow groundwater can be present in coastal regions at higher latitudes during the Antarctic summer. Perched groundwater atop ice-cemented permafrost occurs on Seabee Hook, Cape Hallett, at depths from 5 to 80 cm below the soil surface. Compared with terrestrial water from other sites in Antarctica, the groundwater was high in salt and nutrients, reflecting proximity to the sea and ornithogenic soil. Microbial communities in groundwater samples from Seabee Hook exhibited aerobic metabolism of14C-acetate at 5 °C. Numbers of culturable aerobic heterotrophs in the samples ranged from <10 to ca. 1 × 106 colony-forming units·mL–1, and similar numbers of microaerophiles and nitrate reducers were detected. In contrast, numbers of nitrifiers, sulfate reducers, and iron reducers were up to 1000-fold lower. All cultures were incubated at 5 °C. Aerobic heterotrophic bacteria isolated from the groundwater were assigned to Actinobacteria, Proteobacteria, or Bacteroidetes. The isolates were most similar to cultured bacteria from Antarctic soil or sediment and were cold, salt, and alkaline pH tolerant, indicating they are adapted to in situ conditions.
APA, Harvard, Vancouver, ISO, and other styles
4

Wakelin, Steven A., Paul N. Nelson, John D. Armour, Velupillai Rasiah, and Matthew J. Colloff. "Bacterial community structure and denitrifier (nir-gene) abundance in soil water and groundwater beneath agricultural land in tropical North Queensland, Australia." Soil Research 49, no. 1 (2011): 65. http://dx.doi.org/10.1071/sr10055.

Full text
Abstract:
We explored the microbial ecology of water draining through the soil (lysimeter samples) and in the shallow aquifers (bore samples) underlying sugarcane and banana fields near the Great Barrier Reef (GBR), Australia. Lysimeter and bore water samples were collected and analysed chemically and with DNA fingerprinting methods (PCR-DGGE and clone library sequencing) to characterise the structure of the bacterial community. Bacterial communities in soil water and bore water were distinct (P < 0.05), and a primary factor linked with bacterial community structure was water pH (P < 0.05), particularly in water sampled from lysimeters. Irrespective of treatment, >80% of all rRNA gene sequences originated from proteobacteria. However, groundwater communities differed from those in soil water by greater occurrence of Neisseriales and Comamonadaceae (P < 0.01). qPCR was used to measure copy numbers of the nirK and nirS genes encoding NO-forming nitrite reductases. Copy numbers of both genes were greater in soil water samples than groundwater (P = 0.05), with the difference in nirK being greater under sugarcane than banana. These differences in nirK-gene abundance show that there is greater potential for denitrification in soil water under sugarcane, leading to low concentrations of nitrate in the underlying groundwater. This knowledge can be used towards development of soil and land-use management practices promoting bacterial denitrification in groundwater to lessen the undesirable ecological consequences where groundwater discharges lower in the GBR catchment zones.
APA, Harvard, Vancouver, ISO, and other styles
5

Moore-Kucera, Jennifer, Anita Nina Azarenko, Lisa Brutcher, Annie Chozinski, David D. Myrold, and Russell Ingham. "In Search of Key Soil Functions to Assess Soil Community Management for Sustainable Sweet Cherry Orchards." HortScience 43, no. 1 (February 2008): 38–44. http://dx.doi.org/10.21273/hortsci.43.1.38.

Full text
Abstract:
Organic growers are required to maintain or improve soil chemical, biological, and physical properties and thus need to integrate biological processes into fertility management. However, few guidelines exist for satisfying tree nutrient demands ecologically. Sound nitrogen (N) management is a key component for overall orchard productivity whereas poor N management may result in multiple environmental impacts, including runoff to surface or leaching to groundwater sources. Many growers substitute synthetic inputs with rapid-release, approved N fertilizers that have little effect on long-term soil health and fertility. The authors seek an alternative approach for synchronizing nutrient availability with tree demand that relies on managing soil biological communities to attain their maximum potential functionality and thus meet tree nutrient demand. This paper outlines a new conceptual framework with which to evaluate a variety of soil functions that are quantified using biological, microbial, and biochemical properties in relation to overall orchard performance. By combining information gathered from soil faunal indices (nematode community structure and diversity analyses) with data obtained by biochemical and microbial analyses of the soil samples, a new, in-depth view of soil communities and their response to management practices will be obtained. As a result, a better understanding of the effects of differing management practices on soil fertility and community structure will be gained. This approach is currently being investigated by our group in organic and integrative sweet cherry orchards. Our goal is to determine which soil parameters may be used to help orchardists optimize soil health while maintaining orchard productivity. Furthermore, we wish to validate a number of assumptions that are commonly made regarding each soil parameter tested across multiple management, soil, and climate types.
APA, Harvard, Vancouver, ISO, and other styles
6

Mubeen, Bismillah, Ammarah Hasnain, Jie Wang, Hanxian Zheng, Syed Atif Hasan Naqvi, Ram Prasad, Ateeq ur Rehman, et al. "Current Progress and Open Challenges for Combined Toxic Effects of Manufactured Nano-Sized Objects (MNO’s) on Soil Biota and Microbial Community." Coatings 13, no. 1 (January 16, 2023): 212. http://dx.doi.org/10.3390/coatings13010212.

Full text
Abstract:
Soil is a porous matrix containing organic matter and minerals as well as living organisms that vary physically, geographically, and temporally. Plants choose a particular microbiome from a pool of soil microorganisms which helps them grow and stay healthy. Many ecosystem functions in agrosystems are provided by soil microbes just like the ecosystem of soil, the completion of cyclic activity of vital nutrients like C, N, S, and P is carried out by soil microorganisms. Soil microorganisms affect carbon nanotubes (CNTs), nanoparticles (NPs), and a nanopesticide; these are called manufactured nano-objects (MNOs), that are added to the environment intentionally or reach the soil in the form of contaminants of nanomaterials. It is critical to assess the influence of MNOs on important plant-microbe symbiosis including mycorrhiza, which are critical for the health, function, and sustainability of both natural and agricultural ecosystems. Toxic compounds are released into rural and urban ecosystems as a result of anthropogenic contamination from industrial processes, agricultural practices, and consumer products. Once discharged, these pollutants travel through the atmosphere and water, settling in matrices like sediments and groundwater, potentially rendering broad areas uninhabitable. With the rapid growth of nanotechnology, the application of manufactured nano-objects in the form of nano-agrochemicals has expanded for their greater potential or their appearance in products of users, raising worries about possible eco-toxicological impacts. MNOs are added throughout the life cycle and are accumulated not only in the soils but also in other components of the environment causing mostly negative impacts on soil biota and processes. MNOs interfere with soil physicochemical qualities as well as microbial metabolic activity in rhizospheric soils. This review examines the harmful effect of MNOs on soil, as well as the pathways used by microbes to deal with MNOs and the fate and behavior of NPs inside the soils.
APA, Harvard, Vancouver, ISO, and other styles
7

Schütz, Kirsten, Ellen Kandeler, Peter Nagel, Stefan Scheu, and Liliane Ruess. "Functional microbial community response to nutrient pulses by artificial groundwater recharge practice in surface soils and subsoils." FEMS Microbiology Ecology 72, no. 3 (February 20, 2010): 445–55. http://dx.doi.org/10.1111/j.1574-6941.2010.00855.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sonthiphand, Prinpida, Supeerapat Kraidech, Saowarod Polart, Srilert Chotpantarat, Kanthida Kusonmano, Pichahpuk Uthaipaisanwong, Chalida Rangsiwutisak, and Ekawan Luepromchai. "Arsenic speciation, the abundance of arsenite-oxidizing bacteria and microbial community structures in groundwater, surface water, and soil from a gold mine." Journal of Environmental Science and Health, Part A 56, no. 7 (May 26, 2021): 769–85. http://dx.doi.org/10.1080/10934529.2021.1927421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Herrmann, Martina, Anna Rusznyák, Denise M. Akob, Isabel Schulze, Sebastian Opitz, Kai Uwe Totsche, and Kirsten Küsel. "Large Fractions of CO2-Fixing Microorganisms in Pristine Limestone Aquifers Appear To Be Involved in the Oxidation of Reduced Sulfur and Nitrogen Compounds." Applied and Environmental Microbiology 81, no. 7 (January 23, 2015): 2384–94. http://dx.doi.org/10.1128/aem.03269-14.

Full text
Abstract:
ABSTRACTThe traditional view of the dependency of subsurface environments on surface-derived allochthonous carbon inputs is challenged by increasing evidence for the role of lithoautotrophy in aquifer carbon flow. We linked information on autotrophy (Calvin-Benson-Bassham cycle) with that from total microbial community analysis in groundwater at two superimposed—upper and lower—limestone groundwater reservoirs (aquifers). Quantitative PCR revealed that up to 17% of the microbial population had the genetic potential to fix CO2via the Calvin cycle, with abundances ofcbbMandcbbLgenes, encoding RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) forms I and II, ranging from 1.14 × 103to 6 × 106genes liter−1over a 2-year period. The structure of the active microbial communities based on 16S rRNA transcripts differed between the two aquifers, with a larger fraction of heterotrophic, facultative anaerobic, soil-related groups in the oxygen-deficient upper aquifer. Most identified CO2-assimilating phylogenetic groups appeared to be involved in the oxidation of sulfur or nitrogen compounds and harbored both RubisCO forms I and II, allowing efficient CO2fixation in environments with strong oxygen and CO2fluctuations. The generaSulfuricellaandNitrosomonaswere represented by read fractions of up to 78 and 33%, respectively, within thecbbMandcbbLtranscript pool and accounted for 5.6 and 3.8% of 16S rRNA sequence reads, respectively, in the lower aquifer. Our results indicate that a large fraction of bacteria in pristine limestone aquifers has the genetic potential for autotrophic CO2fixation, with energy most likely provided by the oxidation of reduced sulfur and nitrogen compounds.
APA, Harvard, Vancouver, ISO, and other styles
10

Balcom, Ian N., Heather Driscoll, James Vincent, and Meagan Leduc. "Metagenomic analysis of an ecological wastewater treatment plant’s microbial communities and their potential to metabolize pharmaceuticals." F1000Research 5 (July 28, 2016): 1881. http://dx.doi.org/10.12688/f1000research.9157.1.

Full text
Abstract:
Pharmaceuticals and other micropollutants have been detected in drinking water, groundwater, surface water, and soil around the world. Even in locations where wastewater treatment is required, they can be found in drinking water wells, municipal water supplies, and agricultural soils. It is clear conventional wastewater treatment technologies are not meeting the challenge of the mounting pressures on global freshwater supplies. Cost-effective ecological wastewater treatment technologies have been developed in response. To determine whether the removal of micropollutants in ecological wastewater treatment plants (WWTPs) is promoted by the plant-microbe interactions, as has been reported for other recalcitrant xenobiotics, biofilm microbial communities growing on the surfaces of plant roots were profiled by whole metagenome sequencing and compared to the microbial communities residing in the wastewater. In this study, the concentrations of pharmaceuticals and personal care products (PPCPs) were quantified in each treatment tank of the ecological WWTP treating human wastewater at a highway rest stop and visitor center in Vermont. The concentrations of detected PPCPs were substantially greater than values reported for conventional WWTPs likely due to onsite recirculation of wastewater. The greatest reductions in PPCPs concentrations were observed in the anoxic treatment tank where Bacilli dominated the biofilm community. Benzoate degradation was the most abundant xenobiotic metabolic category identified throughout the system. Collectively, the microbial communities residing in the wastewater were taxonomically and metabolically more diverse than the immersed plant root biofilm. However, greater heterogeneity and higher relative abundances of xenobiotic metabolism genes was observed for the root biofilm.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Microbial community of soil, surface and groundwater"

1

GRENNI, PAOLA. "Effects of pesticides and pharmaceuticals on soil and water bacterial communities." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/19697.

Full text
Abstract:
Studying soil and water ecosystems using a microbial ecology approach, which analyses the diversity and functioning of microbial communities, can help in evaluating the impact of environmental stressors, such as xenobiotics. In fact, soil and water microorganisms play an important role in maintaining ecosystem environmental quality. For instance, the ability of soil and water to recover from chemical contamination is primarily dependent on the presence of a microbial community with the ability to remove it. Furthermore the microbial community characteristics of an ecosystem can indicate changes in resource availability and the presence of pollution. In this way, the microbial community represents an important key to understanding the impacts of environmental and anthropogenic factors on ecosystems. This thesis focuses on two groups of xenobiotics frequently detected in soil and water: pesticides and pharmaceuticals. The effects of s-triazine and phenylurea herbicides (terbuthylazine, simazine and linuron) and pharmaceuticals (such as the antiviral drug Tamiflu and two macrolide antibiotics, erythromycin and josamycin) on microbial communities in soil, surface and groundwater were studied. The researches was carried out utilizing innovative molecular techniques in order to identify the natural microbial populations involved in the chemical degradation and evaluate the direct and indirect effects of the herbicides and pharmaceuticals on the microbial community structure and functioning. For this purpose several investigations involving the selected chemicals in soil and water ecosystems were carried out: - Research activity regarding s-triazine groundwater contamination caused by diffuse sources. Although the groundwater was considered to have been without life for a long period and unable to recover from herbicide contamination, the experiments performed showed the presence of an autochthonous bacterial community able to degrade the herbicide terbuthylazine. Moreover some bacterial strains such as Janthinobacterium lividum, Advenella incenata and Rhodococcus wratislaviensis, with the capability of growing on various s-triazines were isolated. Among the three isolates, Rhodococcus wratislaviensis was also capable of mineralising the triazine-ring. Finally, an oligonucleotide probe was designed to detect this strain in soil and water samples by applying the in situ fluorescence hybridization technique. This probe can be very useful for monitoring the presence of active R. wratislaviensis populations with the potential to degrade s-triazines in contaminated aquifers and agricultural soils. The research activity was accomplished thanks to active cooperation between IRSA-CNR in Rome and Madrid Complutense University. - Research activity regarding soil herbicide contamination caused by point sources. The experiments aimed at evaluating the effects of the co-presence of herbicides (linuron and terbuthylazine) and wood amendments on soil bacterial communities. These amendments have recently been proposed for their adsorption capacity, which prevents the mobility of pesticides caused by point sources of contamination. The herbicide degradation and the microbial activity in the presence/absence of pine and oak amendments were assessed and compared. The amendments did not negatively affect bacterial community functioning in terms of dehydrogenase activity. The use of wood amendments can thus be effective in limiting the mobility of herbicides in soils. However the capacity of pine-amended soils to adsorb linuron and terbuthylazine was so high that it hampered herbicide degradation and this should be taken into account since it can modify the persistence of these herbicides. This research was performed by IRSA-CNR together with Spanish CSIC. - Research on the assessment of the effects of pharmaceutical waste disposal on bacterial communities in soil and groundwater. The research regarded an open quarry contaminated by pharmaceutical residuals (erythromycin and josamycin) owing to its previous improper use for disposal of pharmaceutical waste by a factory producing macrolide antibiotics. The microbiological community characteristics (bacterial abundance, diversity, viability and activity), proposed as microbial indicators, together with chemical investigations of soil and groundwater samples, made it possible to evaluate the quality state of the site. - Research on the effects of the antiviral drug Tamiflu (recommended for the treatment of cases of avian and swine influenza) on the bacterial community of a surface ecosystem. The role of the bacterial community in the antiviral degradation was demonstrated in microcosm experiments and some bacterial groups, analyzed by fluorescence in situ hybridization, were found to increase in number when there was a halving of the pharmaceutical. This research was performed by IRSA-CNR together with Bologna University. - Research on variations in bacterial community structure in soil, surface water and groundwater in the presence of herbicides (terbuthylazine, simazine and linuron) or pharmaceuticals (Tamiflu). The research shows that fluorescence in situ hybridization was a useful tool for following the dynamics of individual microbial populations in the ecosystems considered and highlighted the presence of particular groups presumably involved in chemical degradation.
APA, Harvard, Vancouver, ISO, and other styles
2

Martin, Teri L. "Groundwater nitrate removal and soil microbial community structure in a riparian zone." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0011/MQ33250.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Day, Mark C. J. "The influence of non-UV light on soil surface microbial community development and the fate of crop protection products." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/73961/.

Full text
Abstract:
Crop protection products (CPPs) are an essential component of modern agriculture, necessary to improve crop yield to feed the ever-increasing world population. Regulation and safety testing of CPPs entering the environment is mandatory to ensure that their use is not at the detriment of environmental or human health. Regulatory laboratory studies typically over-estimate the persistence of CPPs within the environment as they are not representative of environmental conditions. This study investigated the role of non-UV light on CPP degradation and the development of soil surface communities. The inclusion of non-UV light in laboratory studies impacted the degradation of fludioxonil and cinosulfuron, increasing and decreasing the rate of transformation relative to dark conditions, respectively. Further, the inclusion of light increased non-extractable residues (NER) formation in fludioxonil, paclobutrazol and benzovindiflupyr. In a field based degradation experiment, the availability of photosynthetically active radiation (PAR) increased the transformation of benzovindiflupyr relative to when PAR was restricted. Further, the formation of paclobutrazol and benzovindiflupyr NERs was increased when PAR was not restricted, and the proportion of CPP remaining at the soil surface (0-5 mm) was higher when PAR was restricted. Targeted amplicon sequencing (Illumina MiSeq) revealed that bacterial and phototrophic communities at the soil surface changed with time, and that communities formed when PAR was available were structurally distinct relative to communities when PAR was restricted. In a further experiment, analysis of bacterial and phototrophic communities under crops with differing canopy characteristics showed that distinct communities formed at the soil surface relative to bulk soil, and that phototrophic communities of bare soil and under low-density canopies were structurally distinct to those that formed under high-density canopies. This work has potential implications for regulatory CPP degradation studies, and furthers the understanding of soil surface community development in temperate environments.
APA, Harvard, Vancouver, ISO, and other styles
4

Bailey, Jennifer Diane. "Vertical Distribution of Wetland Plant Roots and Their Associated Bacteria in Groundwater-fed Wetlands." Wright State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=wright1452708738.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gualandi, Giovanni <1973&gt. "Chlorinated aliphatic and aromatic hydrocarbons biodegradation: bioaugmentation tests in slurry microcosmos and study of the catabolic potential of microbial community in the interface between groundwater and surface water." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2007. http://amsdottorato.unibo.it/382/1/giovanni_gualandi.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gualandi, Giovanni <1973&gt. "Chlorinated aliphatic and aromatic hydrocarbons biodegradation: bioaugmentation tests in slurry microcosmos and study of the catabolic potential of microbial community in the interface between groundwater and surface water." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2007. http://amsdottorato.unibo.it/382/.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Microbial community of soil, surface and groundwater"

1

Kirchman, David L. Degradation of organic matter. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789406.003.0007.

Full text
Abstract:
The aerobic oxidation of organic material by microbes is the focus of this chapter. Microbes account for about 50% of primary production in the biosphere, but they probably account for more than 50% of organic material oxidization and respiration (oxygen use). The traditional role of microbes is to degrade organic material and to release plant nutrients such as phosphate and ammonium as well as carbon dioxide. Microbes are responsible for more than half of soil respiration, while size fractionation experiments show that bacteria are also responsible for about half of respiration in aquatic habitats. In soils, both fungi and bacteria are important, with relative abundances and activity varying with soil type. In contrast, fungi are not common in the oceans and lakes, where they are out-competed by bacteria with their small cell size. Dead organic material, detritus, used by microbes, comes from dead plants and waste products from herbivores. It and associated microbes can be eaten by many eukaryotic organisms, forming a detritus food web. These large organisms also break up detritus into small pieces, creating more surface area on which microbes can act. Microbes in turn need to use extracellular enzymes to hydrolyze large molecular weight compounds, which releases small compounds that can be transported into cells. Fungi and bacteria use a different mechanism, “oxidative decomposition,” to degrade lignin. Organic compounds that are otherwise easily degraded (“labile”) may resist decomposition if absorbed to surfaces or surrounded by refractory organic material. Addition of labile compounds can stimulate or “prime” the degradation of other organic material. Microbes also produce organic compounds, some eventually resisting degradation for thousands of years, and contributing substantially to soil organic material in terrestrial environments and dissolved organic material in aquatic ones. The relationship between community diversity and a biochemical process depends on the metabolic redundancy among members of the microbial community. This redundancy may provide “ecological insurance” and ensure the continuation of key biogeochemical processes when environmental conditions change.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Microbial community of soil, surface and groundwater"

1

Doupe, J. T., and W. R. Livingstone. "Response, Remediation and Risk Management of a Crude Oil Pipeline Spill." In 1998 2nd International Pipeline Conference. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/ipc1998-2117.

Full text
Abstract:
In December 1995, an oil spill was discovered along a section of pipeline located near the bank of a major river, less than 1 km upstream of the water supply intake of a southern Alberta community. The spill, which involved light crude oil, was observed at ground surface over an area of approximately 3 000 m2 at the top of the river slope and had also migrated downslope through the subgrade soils and along the groundwater table toward the river. The initial emergency response activities consisted of removing and disposing of oil-stained vegetation and snow, and the containment and recovery of free oil pooled on ground surface. Subsequent subsurface assessments involved the drilling of test holes and boreholes, and installation of groundwater monitoring/recovery wells. Based on the results of these assessments, a remedial action plan was developed. As part of this plan, some of the impacted soils were excavated and placed in lined treatment cells for bioremediation. The limits of the excavation were based on field screening measurements and on soil clean-up criteria developed through an assessment of the human health risk and ecological impacts. Investigations conducted at the site also indicated that phase-separated crude oil had migrated further downslope and had accumulated at the water table within the flood plain sediments adjacent to the river. Therefore, remediation systems were installed to recover the oil, recover and treat the impacted groundwater, and prevent further migration of the impacted groundwater and oil toward the river. Impacted groundwater recovered from the flood plain deposits was treated onsite and was then injected back into the flood plain deposits via an infiltration gallery. The performance of the pumping and remediation systems was monitored regularly and water samples were recovered from the treatment system, selected monitoring wells and the river. Based on the results of these analyses, the quality of local groundwater steadily improved and the zone of impacted water was effectively contained.
APA, Harvard, Vancouver, ISO, and other styles
2

van Velzen, Leo, L. Teunckens, V. Daniska, M. Vasko, E. Hajkova, and I. Matejovic. "European Radiation Survey and Site Execution Manual (EURSSEM)." In ASME 2009 12th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2009. http://dx.doi.org/10.1115/icem2009-16176.

Full text
Abstract:
Within the framework of the “Co-ordination Network on Decommissioning of Nuclear Installations Project (2005–2008)” funded by the European Community a first edition of EURSSEM has been developed to promote common understanding of key issues in the development of a strategy, implementation and execution of a programme to remediate radioactively contaminated sites. The objective of EURSSEM is to describe and provide a consistent consensus information and guidance on strategy, planning, implementation and execution of stakeholder involvement, performing, and assessing radiological soil surface and groundwater (final) status surveys to meet established dose- or risk-based release criteria, and/or remediation, restoration, reuse and stewardship objectives, while at the same time encouraging effective use of human, raw material and financial resources. To be able to provide a consistent guidance and leading practices to involved participants (stakeholders) in a remediation programme for radioactively contaminated sites, an extensive literature study has been performed to collect important documents that have been produced in this field by the International Atomic Energy Agency (IAEA), the SAFEGROUNDS Learning Network, Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) and other national and international institutes. EURSSEM incorporates information provided in those and other documents to conduct all actions at radioactively contaminated and potentially radioactively contaminated sites and/or groundwater up to their release for restricted or unrestricted (re)use. Brief descriptions are provided about the background and the need for a document like EURSSEM, about key issues like stakeholder involvement and archiving for future referencing including the follow-up of the further development of EURSSEM.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Microbial community of soil, surface and groundwater"

1

Ringelberg, David B., Charles M. Reynolds, Karen L. Foley, and Lawrence B. Perry. Microbial Community Shifts Associated with RDX Loss in a Saturated and Well-Drained Surface Soil. Fort Belvoir, VA: Defense Technical Information Center, March 2005. http://dx.doi.org/10.21236/ada430688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schlossnagle, Trevor H., Janae Wallace,, and Nathan Payne. Analysis of Septic-Tank Density for Four Communities in Iron County, Utah - Newcastle, Kanarraville, Summit, and Paragonah. Utah Geological Survey, December 2022. http://dx.doi.org/10.34191/ri-284.

Full text
Abstract:
Iron County is a semi-rural area in southwestern Utah that is experiencing an increase in residential development. Although much of the development is on community sewer systems, many subdivisions use septic tank soil-absorption systems for wastewater disposal. Many of these septic-tank systems overlie the basin-fill deposits that compose the principal aquifer for the area. The purpose of our study is to provide tools for waterresource management and land-use planning. In this study we (1) characterize the water quality of four areas in Iron County (Newcastle, Kanarraville, Summit, and Paragonah) with emphasis on nutrients, and (2) provide a mass-balance analysis based on numbers of septic-tank systems, groundwater flow available for mixing, and baseline nitrate concentrations, and thereby recommend appropriate septic-system density requirements to limit water-quality degradation. We collected 57 groundwater samples and three surface water samples across the four study areas to establish baseline nitrate concentrations. The baseline nitrate concentrations for Newcastle, Kanarraville, Summit, and Paragonah are 1.51 mg/L, 1.42 mg/L, 2.2 mg/L, and 1.76 mg/L, respectively. We employed a mass-balance approach to determine septic-tank densities using existing septic systems and baseline nitrate concentrations for each region. Nitrogen in the form of nitrate is one of the principal indicators of pollution from septic tank soil-absorption systems. To provide recommended septic-system densities, we used a mass-balance approach in which the nitrogen mass from projected additional septic tanks is added to the current nitrogen mass and then diluted with groundwater flow available for mixing plus the water added by the septic-tank systems themselves. We used an allowable degradation of 1 mg/L with respect to nitrate. Groundwater flow volume available for mixing was calculated from existing hydrogeologic data. We used data from aquifer tests compiled from drinking water source protection documents to derive hydraulic conductivity from reported transmissivities. Potentiometric surface maps from existing publications and datasets were used to determine groundwater flow directions and hydraulic gradients. Our results using the mass balance approach indicate that the most appropriate recommended maximum septic-tank densities in Newcastle, Kanarraville, Summit, and Paragonah are 23 acres per system, 7 acres per system, 5 acres per system, and 11 acres per system, respectively. These recommendations are based on hydrogeologic parameters used to estimate groundwater flow volume. Public valley-wide sewer systems may be a better alternative to septic-tank systems where feasible.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography