Dissertations / Theses on the topic 'Microbial biomass carbon (MBC)'

To see the other types of publications on this topic, follow the link: Microbial biomass carbon (MBC).

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 38 dissertations / theses for your research on the topic 'Microbial biomass carbon (MBC).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Kolodziej, Scott Michael. "Management effects on labile organic carbon pools." Texas A&M University, 2005. http://hdl.handle.net/1969.1/2424.

Full text
Abstract:
It is well documented that increases in soil organic matter (SOM) improve soil physical properties and increase the overall fertility and sustainability of the soil. Research in SOM storage has recently amplified following the proposal that agricultural soils may provide a significant carbon (C) sink that may aid in the mitigation of increasing atmospheric carbon dioxide. Observed differences in lint yield and nitrogen response from a cotton performance study at the Texas A&M University Experimental Farm near College Station, TX prompted us to examine the effects of tillage and rotation on soil organic C (SOC), soil microbial biomass C (SMBC), 38-day cumulative C mineralization (38-day CMIN), hot-water extractable organic C (hot-WEOC), carbohydrate C, and total glomalin. The treatments examined included conventional-till continuous cotton (CT), reduced-till continuous cotton (RT), and conventional-till cotton after corn rotation (CC) treatments. In pre-plant soil samples, SOC, SMBC, and 38-day CMIN in the top 5 cm were 33, 58, and 79 % greater in RT and 29, 32, and 36 % greater in CC vs. CT. Comparable differences were observed for hot-WEOC and carbohydrate C. Little seasonal variation was observed for labile-C pools throughout the growing season, suggesting minimal C input from cotton roots. Water-stable aggregation was not significantly affected by management, and did not correlate with labile-C pools or total glomalin. Labile-C pools were generally more responsive to management vs. SOC and were strongly correlated with one another. Carbohydrate C of hot-water extracts exhibited the strongest relationships with SMBC and 38-day CMIN, even though it comprised only 3 and 5 % of these pools, respectively. Our data suggest that increasing SOC in Texas cotton-cropping systems through conservation management is possible. Long-term data are still needed to fully address SOC storage potentials in Texas, but increases in labile-C pools resulting from conservation management are attainable and have the potential to positively impact soil fertility.
APA, Harvard, Vancouver, ISO, and other styles
2

Stark, S. (Sari). "Reindeer grazing and soil nutrient cycling in boreal and tundra ecosystems." Doctoral thesis, University of Oulu, 2002. http://urn.fi/urn:isbn:9514266927.

Full text
Abstract:
Abstract In northernmost Fennoscandia, grazing by reindeer (Rangifer tarandus L.) has a substantial impact on the vegetation of boreal forests and arctic-alpine tundra heaths, which are reflected in below-ground processes, such as nutrient mineralization and soil organic matter decomposition. In the present thesis, the effects of reindeer grazing on soil nutrient cycling were studied by comparing grazed situation with an ungrazed control area in ten boreal forests and six arctic-alpine tundra heaths. In boreal forests, reindeer grazing reduced microbial respiration in both the oligotrophic and mesotrophic study areas, indicating a deficiency of labile substrates for the soil microbes due to reindeer grazing. Simultaneously, there was heterogeneity in the impact on nitrogen mineralization rates as at some sites, mineralization was enhanced by grazing. The fertilization effect of urine and faeces can therefore be strong enough a factor to outweigh a reduction in quality of soil organic matter. In the oligotrophic forests, low soil moisture content in the grazed areas could sometimes limit the mineralization rates even when the potential for mineralization was enhanced by grazing. In the tundra ecosystems, there was spatial variation in the impact of grazing on microbial respiration and nitrogen mineralization. Low grazing intensity occurring outside the growing season had a retarding impact on nutrient cycling in both unfertilized, nutrient-poor and fertilized, nutrient-rich conditions. In contrast, a relatively high grazing intensity enhanced the mineralization rates in two nutrient-poor and two nutrient-rich tundra heaths. When three different grazing intensities were compared in one oceanic, nutrient-rich and one continental, nutrient-poor tundra heath, the strongest positive effect of grazing on soil nutrient cycling occurred in the heavily grazed areas. The data do not support the assumption that soil nutrient availability regulates whether herbivores enhance or retard nutrient cycling in the soil. Instead, the net effect of grazing is determined by the balance between the underlying mechanisms that may work at opposite directions. The most important of these mechanisms are the grazer-mediated impact on the decomposability of the dominant vegetation and fertilization by urine and faeces. The duration, intensity and seasonal timing of the grazing seem to be important factors that regulate whether reindeer grazing enhances or retards soil nutrient cycling in each specific area. Due to the high spatial and temporal variation in the effects of grazing observed in this study, it is not possible to generalize the overall impact of grazing. Further study is required in order to determine the exact conditions under which grazing enhances or it retards soil nutrient cycling.
APA, Harvard, Vancouver, ISO, and other styles
3

Wong, Vanessa, and u2514228@anu edu au. "The effects of salinity and sodicity on soil organic carbon stocks and fluxes." The Australian National University. Faculty of Science, 2007. http://thesis.anu.edu.au./public/adt-ANU20080428.223144.

Full text
Abstract:
Soil is the world’s largest terrestrial carbon (C) sink, and is estimated to contain approximately 1600 Pg of carbon to a depth of one metre. The distribution of soil organic C (SOC) largely follows gradients similar to biomass accumulation, increasing with increasing precipitation and decreasing temperature. As a result, SOC levels are a function of inputs, dominated by plant litter contributions and rhizodeposition, and losses such as leaching, erosion and heterotrophic respiration. Therefore, changes in biomass inputs, or organic matter accumulation, will most likely also alter these levels in soils. Although the soil microbial biomass (SMB) only comprises 1-5% of soil organic matter (SOM), it is critical in organic matter decomposition and can provide an early indicator of SOM dynamics as a whole due to its faster turnover time, and hence, can be used to determine soil C dynamics under changing environmental conditions.¶ Approximately 932 million ha of land worldwide are degraded due to salinity and sodicity, usually coinciding with land available for agriculture, with salinity affecting 23% of arable land while saline-sodic soils affect a further 10%. Soils affected by salinity, that is, those soils high in soluble salts, are characterised by rising watertables and waterlogging of lower-lying areas in the landscape. Sodic soils are high in exchangeable sodium, and slake and disperse upon wetting to form massive hardsetting structures. Upon drying, sodic soils suffer from poor soil-water relations largely related to decreased permeability, low infiltration capacity and the formation of surface crusts. In these degraded areas, SOC levels are likely to be affected by declining vegetation health and hence, decreasing biomass inputs and concomitant lower levels of organic matter accumulation. Moreover, potential SOC losses can also be affected from dispersed aggregates due to sodicity and solubilisation of SOM due to salinity. However, few studies are available that unambiguously demonstrate the effect of increasing salinity and sodicity on C dynamics. This thesis describes a range of laboratory and field investigations on the effects of salinity and sodicity on SOC dynamics.¶ In this research, the effects of a range of salinity and sodicity levels on C dynamics were determined by subjecting a vegetated soil from Bevendale, New South Wales (NSW) to one of six treatments. A low, mid or high salinity solution (EC 0.5, 10 or 30 dS/m) combined with a low or high sodicity solution (SAR 1 or 30) in a factorial design was leached through a non-degraded soil in a controlled environment. Soil respiration and the SMB were measured over a 12-week experimental period. The greatest increases in SMB occurred in treatments of high-salinity high-sodicity, and high-salinity low-sodicity. This was attributed to solubilisation of SOM which provided additional substrate for decomposition for the microbial population. Thus, as salinity and sodicity increase in the field, soil C is likely to be rapidly lost as a result of increased mineralisation.¶ Gypsum is the most commonly-used ameliorant in the rehabilitation of sodic and saline-sodic soils affected by adverse soil environmental conditions. When soils were sampled from two sodic profiles in salt-scalded areas at Bevendale and Young, SMB levels and soil respiration rates measured in the laboratory were found to be low in the sodic soil compared to normal non-degraded soils. When the sodic soils were treated with gypsum, there was no change in the SMB and respiration rates. The low levels of SMB and respiration rates were due to low SOC levels as a result of little or no C input into the soils of these highly degraded landscapes, as the high salinity and high sodicity levels have resulted in vegetation death. However, following the addition of organic material to the scalded soils, in the form of coarsely-ground kangaroo grass, SMB levels and respiration rates increased to levels greater than those found in the non-degraded soil. The addition of gypsum (with organic material) gave no additional increases in the SMB.¶ The level of SOC stocks in salt-scalded, vegetated and revegetated profiles was also determined, so that the amount of SOC lost due to salinisation and sodication, and the increase in SOC following revegetation relative to the amount of SOC in a vegetated profile could be ascertained. Results showed up to three times less SOC in salt-scalded profiles compared to vegetated profiles under native pasture, while revegetation of formerly scalded areas with introduced pasture displayed SOC levels comparable to those under native pasture to a depth of 30 cm. However, SOC stocks can be underestimated in saline and sodic landscapes by setting the lower boundary at 30 cm due to the presence of waterlogging, which commonly occurs at a depth greater than 30 cm in saline and sodic landscapes as a result of the presence of high or perched watertables. These results indicate that successful revegetation of scalded areas has the potential to accumulate SOC stocks similar to those found prior to degradation.¶ The experimental results from this project indicate that in salt-affected landscapes, initial increases in salinity and sodicity result in rapid C mineralisation. Biomass inputs also decrease due to declining vegetation health, followed by further losses as a result of leaching and erosion. The remaining native SOM is then mineralised, until very low SOC stocks remain. However, the C sequestration potential in these degraded areas is high, particularly if rehabilitation efforts are successful in reducing salinity and sodicity. Soil ecosystem functions can then be restored if organic material is available as C stock and for decomposition in the form of either added organic material or inputs from vegetation when these salt-affected landscapes are revegetated.
APA, Harvard, Vancouver, ISO, and other styles
4

Allen, Michael Frederick. "The effects of earthworms on carbon and nitrogen flows through the soil microbial biomass in a corn agroecosystem." The Ohio State University, 1999. http://rave.ohiolink.edu/etdc/view?acc_num=osu1299759760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Yujuan. "The Influence of Urban Soil Rehabilitation on Soil Carbon Dynamics, Greenhouse Gas Emission, and Stormwater Mitigation." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/51240.

Full text
Abstract:
Global urbanization has resulted in rapidly increased urban land. Soils are the foundation that supports plant growth and human activities in urban areas. Furthermore, urban soils have potential to provide a carbon sink to mitigate greenhouse gas emission and climate change. However, typical urban land development practices including vegetation clearing, topsoil removal, stockpiling, compaction, grading and building result in degraded soils. In this work, we evaluated an urban soil rehabilitation technique that includes compost incorporation to a 60-cm depth via deep tillage followed by more typical topsoil replacement. Our objectives were to assess the change in soil physical characteristics, soil carbon sequestration, greenhouse gas emissions, and stormwater mitigation after both typical urban land development practices and post-development rehabilitation. We found typical urban land development practices altered soil properties dramatically including increasing bulk density, decreasing aggregation and decreasing soil permeability. In the surface soils, construction activities broke macroaggregates into smaller fractions leading to carbon loss, even in the most stable mineral-bound carbon pool. We evaluated the effects of the soil rehabilitation technique under study, profile rebuilding, on soils exposed to these typical land development practices. Profile rebuilding incorporates compost amendment and deep tillage to address subsoil compaction. In the subsurface soils, profile rebuilding increased carbon storage in available and aggregate-protected carbon pools and microbial biomass which could partially offset soil carbon loss resulting from land development. Yet, urban soil rehabilitation increased greenhouse gas emissions while typical land development resulted in similar greenhouse gas emissions compared to undisturbed soils. Additionally, rehabilitated soils had higher saturated soil hydraulic conductivity in subsurface soils compared to other practices which could help mitigate stormwater runoff in urban areas. In our study, we found urban soil management practices can have a significant impact on urban ecosystem service provision. However, broader study integrating urban soil management practices with other ecosystem elements, such as vegetation, will help further develop effective strategies for sustainable cities.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
6

Heuck, Christine [Verfasser], and Marie [Akademischer Betreuer] Spohn. "Microbial nitrogen and phosphorus mineralization and microbial biomass stoichiometry as dependent on ratios of carbon, nitrogen and phosphorus in soils of temperate forests / Christine Heuck ; Betreuer: Marie Spohn." Bayreuth : Universität Bayreuth, 2018. http://d-nb.info/1177142074/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

SANTOS, Uemeson José dos. "Frações do carbono e indicadores biológicos em solo do semiárido sob diferentes usos e coberturas vegetais." Universidade Federal Rural de Pernambuco, 2016. http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6570.

Full text
Abstract:
Submitted by Mario BC (mario@bc.ufrpe.br) on 2017-03-14T12:34:58Z No. of bitstreams: 1 Uemeson Jose dos Santos.pdf: 2015027 bytes, checksum: 66a434524c6011a6eb2fb5eeb1227e57 (MD5)
Made available in DSpace on 2017-03-14T12:34:58Z (GMT). No. of bitstreams: 1 Uemeson Jose dos Santos.pdf: 2015027 bytes, checksum: 66a434524c6011a6eb2fb5eeb1227e57 (MD5) Previous issue date: 2016-02-22
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The land use in Caatinga has caused changes in their properties, as well as behavior and quality of organic matter. extractive character changes, agro pastoral and agricultural biome has taken this to an unsustainable condition, with profound changes in the dynamics and the stock C and its fractions, linked to changes in the microbial community that plays an important role in nutrient cycling in the soil. The objective of this study was to evaluate changes in soil C, its labile and recalcitrant but the activity and microbial diversity in soils under different vegetation covers and historical uses. seven areas were studied which consisted of native forest (F) without human action, forest with predominance of mimosa (AF) and the other with ipe (IP); three areas converted into farmland irrigated elephant grass (EG), irrigated corn (MI) and corn without irrigation (M); and a farmyard area (NF). They were collected in different areas samples at depths of 0-5, 5-10 and 10-20 cm, respectively. Evaluated the total stocks of C and N, water-soluble carbon (CSA) and the C cumulative mineralized after 32 days of incubation, the carbon oxidizable fractions (F1, F2, F3 and F4) and its fractions humic soil (C-FAH C-FAF and C-HUM), C microbial biomass, microbial quotient (qMIC) and structure the microbial community by phospholipid fatty acid analysis (PFLA). The conversion of the savanna for maize cultivation causes a decrease of 56 and 38% in stocks of C and N in the soil. The larger C stocks were observed in AF coverage, while for N, M stood out with lower stocks of this element and also below at all depths to the CSA. The C mineralizable showed linear behavior, observing a reduction in average C mineralized accumulated up to 21.03% in the intermediate depth. The AF, F and IP coverage had higher carbon content in oxidizable fractions for all depths evaluated. The AF area showed higher C levels in labile forms. The C of humic fractions showed inventories in C-FAF fractions and C-FAH 3.59 and 3.73 t ha-1, respectively for AF area; and 22.64 t ha-1 in C-HUM fraction for EG. The area with MI showed greater efficiency in the use of C for microorganisms at different depths. For CBM, coverage with F had a higher concentration, down to 78.32% in depth. Further total Pflas EG concentrations were observed in the area with a larger population of bacteria and fungi in relation to the predominance of gram positive bacteria over gram negative. F1 fractions, CSA and CHUN contributed most significantly to the increase in the stock of C and N soil. Areas converted agícola production, has the potential to change the fractions of COS and microbial activity, especially when it is making use of irrigation in these environments. The EG coverage was more efficient in the use of C and preservation of MOS, combined with a high microbial community, providing better soil quality.
A utilização do solo sob Caatinga tem ocasionado alterações nas suas propriedades, assim como no comportamento e na qualidade da matéria orgânica. Alterações de caráter extrativista, agropastoril e agrícola tem levado esse bioma a uma condição de insustentabilidade, com profundas alterações na dinâmica e no estoque do C e suas frações, atreladas às modificações na comunidade microbiana que exerce importante função na ciclagem de nutrientes no solo. O objetivo do trabalho foi avaliar as alterações no C do solo, suas frações lábeis e recalcitrantes além da atividade e diversidade microbiana em solos sob diferentes coberturas vegetais e históricos de usos. Foram estudadas sete áreas que consistiram em floresta nativa (F) sem ação antrópica, floresta com predominância de angico (AF) e outra com ipê (IP); três áreas convertidas em cultivos agrícolas de capim elefante irrigado (EG), milho irrigado (MI) e milho sem irrigação (M); e uma área de capoeira (NF). Foram coletadas nas diferentes áreas amostras nas profundidades de 0-5, 5-10 e 10-20 cm, respectivamente. Avaliaram-se os estoques totais de C e N, carbono solúvel em água (CSA) e o C mineralizável acumulado aos 32 dias de incubação, as frações oxidáveis do carbono (F1, F2, F3 e F4) e suas frações nas substâncias húmicas do solo (C-FAH, C-FAF e C-HUM), o C da biomassa microbiana, quociente microbiano (qMIC) e a estrutura da comunidade microbiana através da análise de fosfolipídeos de ácidos graxos (PFLA). A conversão da caatinga para o cultivo de milho ocasionou diminuição de 56 e 38% nos estoques de C e N no solo. Os maiores estoques de C foram observados na cobertura AF, enquanto para o N, o M destacou-se com menores estoques deste elemento, sendo também inferior em todas as profundidades para o CSA. O C mineralizável apresentou comportamento linear, observando-se uma redução na média de C mineralizado acumulado de até 21,03% na profundidade intermediária. As coberturas AF, F e IP obtiveram maiores teores de carbono nas frações oxidáveis para todas as profundidades avaliadas. A área AF apresentou maiores teores de C nas formas lábeis. O C das frações húmicas, apresentaram estoques nas frações C-FAF e C-FAH de 3,59 e 3,73 t ha-1, respectivamente para área AF; e 22,64 t ha-1 na fração C-HUM para EG. A área com MI demonstrou maior eficiência na utilização do C pelos microrganismos nas diferentes profundidades. Para o CBM, a cobertura com F obteve maior concentração, com redução de até 78,32% em profundidade. Maiores concentrações de PFLAs totais foram observadas na área EG, com uma maior população de bactérias em relação aos fungos e maior predominância de bactérias gram positivas em relação as gram negativas. As frações F1, CSA e a C-HUM contribuíram de forma mais expressiva para o aumento do estoque de C e N do solo. Áreas convertidas para produção agícola, tem o potencial de alterar as frações do COS e atividade microbiana, sobretudo quando faz o uso de irrigação nesses ambientes. A cobertura EG foi mais eficiente na utilização do C e preservação da MOS, aliada a uma alta comunidade microbiana, proporcionando melhor qualidade do solo.
APA, Harvard, Vancouver, ISO, and other styles
8

Rigby, Deborah Monique. "Microbial Responses to Coarse Woody Debris in Juniperus and Pinus Woodlands." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3515.

Full text
Abstract:
The ecological significance of coarse woody debris (CWD) is usually highlighted in forests where CWD constitutes much of an ecosystem's carbon (C) source and stores. However, a unique addition of CWD is occurring in semi-deserts for which there is no ecological analog. To stem catastrophic wildfires and create firebreaks, whole Juniperus osteosperma (Torr.) and Pinus edulis (Engelm.) trees are being mechanically shredded into CWD fragments and deposited on soils previously exposed to decades of tree-induced changes that encourage "tree islands of fertility." To investigate consequences of CWD on C and nitrogen (N) cycling, we evaluated microbial metabolic activity and N transformation rates in Juniperus and Pinus surface and subsurface soils that were either shredded or left untreated. We sampled three categories of tree cover on over 40 tree cover encroachment sites. Tree cover categories (LOW = 0-15%, MID ≥ 15-45%, HIGH ≥ 45%) were used to indicate tree island development at time of treatment. In conjunction with our microbial measurements, we evaluated the frequency of three exotic grasses, and thirty-five native perennial grasses to identify links between belowground and aboveground processes. The addition of CWD increased microbial biomass by almost two-fold and increased microbial efficiency, measured as the microbial quotient, at LOW Juniperus cover. C mineralization was enhanced by CWD only in Pinus soils at the edge of tree canopies. The addition of CWD had little impact on microbial activity in subsurface soils. CWD enhanced the availability of dissolved organic C (DOC) and phosphorus (P) but tended to decrease the overall quality of labile DOC, measured as the ratio of soil microbial biomass to DOC. This suggested that the increase in DOC alone or other environmental factors novel to CWD additions lead to the increase in biomass and efficiency. P concentrations were consistently higher following CWD additions for all encroachment levels. The CWD additions decreased N mineralization and nitrification in Juniperus and Pinus soils at LOW and MID tree cover but only in surface soils, suggesting that less inorganic N was available to establishing or residual plants. The frequency of native perennial grasses, especially Elymus elymoides (Raf.), was at least 65% higher under CWD additions for all categories of tree cover, while the frequencies of exotic annual and perennial grasses were not impacted by CWD. The frequency of all perennial grasses ranged from 10-27%. Our results suggest that CWD enhanced microbial activity even when the quality of C substrates declined requiring microbes to immobilize more N. The reduction in inorganic N may promote the establishment and growth of native perennial grasses. Ultimately, the addition of CWD improved soil conditions for microbes in tree islands of fertility.
APA, Harvard, Vancouver, ISO, and other styles
9

Borges, Clovis Daniel [UNESP]. "Alterações microbianas do solo sob sistema de semeadura direta e rotação de culturas." Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/94944.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:27:23Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-02-24Bitstream added on 2014-06-13T20:56:23Z : No. of bitstreams: 1 borges_cd_me_jabo.pdf: 505108 bytes, checksum: 33787dd8b93a99178ecd21571bb71189 (MD5)
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
A rotação de culturas é um processo de cultivo que pode modernizar e aumentar o rendimento da atividade agropecuária de forma sustentável agregando maior qualidade ao solo. Os objetivos deste estudo foram: (I) avaliar o efeito dos sistemas culturais em plantio direto conduzidos em rotação de culturas e monitorar as alterações das propriedades microbiológicas bioindicadoras da qualidade do solo; (II) investigar as mudanças bioquímicas nos solos decorrentes da adição de diferentes tamanhos de resíduos de soja e milho durante o período de incubação. Foram determinados as biomassas microbianas- C, N e P (CBM, NBM e PBM, respectivamente), a atividade respiratória (C-CO2) e das enzimas desidrogenase, fosfatase e urease, conteúdo do carbono orgânico (Corg), carbono solúvel (Csol), fósforo orgânico (Porg), matéria orgânica (MO), potencial de mineralização do N. O quociente metabólico (qCO2) e microbiano (qMIC) do solo foram calculados. Experimento (I): A avaliação foi realizada em amostras de solo coletadas após a colheita das culturas de verão do ano agrícola 2007/2008, na camada de 0-0,15 m de profundidade em um experimento conduzido sob sistema de semeadura direta, por seis anos. O delineamento experimental foi em blocos casualizados com esquema de faixas com três repetições. As sequências utilizadas foram as monoculturas de soja (Glycine max L.) (SS) e de milho (Zea mays L.) (MM) e a rotação de culturas soja/milho (SM). As culturas de inverno foram milho, girassol (Helianthus anuus L.), nabo forrageiro (Raphanus sativus L.), milheto (Pennisetum americanum (L.) Leeke), guandu (Cajanus cajan (L.) Millsp), sorgo (Sorghum bicolor (L.) Moench) e crotalária (Crotalária juncea L.). O conteúdo da biomassa microbiana-C, N e P do solo aumentou significativamente...
Crop rotation is a practice of growing dissimilar plants that can modernize and increase the farm economy in a sustainable form for adding more quality to the soil. The aims of this study were: (I) evaluate the effect of crop sequences under no-tillage systems on changes in the soil microbiological properties; (II) investigate the biochemistries changes during the incubation of the soil added with different sizes particles of soybean and corn. There were determined the contents of microbial biomass-C, N and P, the production of C-CO2, the activities of the enzymes dehydrogenase, urease and phosphatase, the organic carbon (Corg), soluble carbon (Csol), organic phosphorous (Porg) and organic matter (MO) contents and the potential of mineralization N. The soil metabolic (qCO2) and microbial (qMIC) quotients were calculated. Experiment (I): The evaluation was performed in soil samples collected after the summer crops harvest, on 2007/2008 growing season, at 0-0.15 m soil depth layer on an experiment conducted under no-tillage system through six years. The experimental had a completely randomized block design, in strips plots with three replications. The crop sequences were continuous soybean (Glycine max L.) (SS), continuous corn (Zea mays L.) (MM), and crop rotation soybean/corn (SM). Winter crops were corn, sunflower (Helianthus anuus L.), radish (Raphanus sativus L.), pearl millet (Pennisetum americanum (L.) Leeke), pigeon pea (Cajanus cajan (L.) Millsp), grain sorghum (Sorghum bicolor (L.) Moench) and sunn hemp (Crotalária juncea L.). The content of microbial biomass-C, N and P in the soil increased significantly in crop sequence SM compared to continuous crop. The interactions SM-millet and MMsorghum influenced the content of biomass-C, SM-hemp and SM-millet in the biomass-N content... (Summary complete electronic access click below)
APA, Harvard, Vancouver, ISO, and other styles
10

Liao, Julia Den-Yue. "Woodland development and soil carbon and nitrogen dynamics and storage in a subtropical savanna ecosystem." Texas A&M University, 2004. http://hdl.handle.net/1969.1/1560.

Full text
Abstract:
Woody plant invasion of grasslands is prevalent worldwide, but the biogeochemical consequences of this vegetation shift remain largely unquantified. In the Rio Grande Plains, TX, grasslands and savannas dominated by C4 grasses have undergone succession over the past century to subtropical thorn woodlands dominated by C3 trees/shrubs. To elucidate mechanisms of soil organic carbon (SOC) and soil total N (STN) storage and dynamics in this ecosystem, I measured the mass and isotopic composition (δ13C, δ15N) of C and N in whole-soil and soil size/density fractions in chronosequences consisting of remnant grasslands (Time 0) and woody plant stands ranging in age from 10-130 years. Rates of SOC and STN storage averaged 10-30 g C m-2yr-1 and 1-3 g N m-2yr-1, respectively. These accumulation rates increased soil C and N pools 80-200% following woody encroachment. Soil microbial biomass (SMB-C) also increased after woody invasion. Decreasing Cmic/C org and higher qCO2 in woodlands relative to grasslands suggests that woody litter is of poorer quality than grassland litter. Greater SOC and STN following woody invasion may also be due to increased protection of organic matter by stable soil structure. Soil aggregation increased following woody encroachment; however, most of the C and N accumulated in free particulate organic matter (POM) fractions not protected within aggregates. Mean residence times (MRTs) of soil fractions were calculated based on changes in their δ13C with time after woody encroachment. Free POM had the shortest average MRTs (30 years) and silt+clay the longest (360 years). Fine POM had MRTs of about 60 years, reflecting protection by location within aggregates. δ15N values of soil fractions were positively correlated with their MRTs, suggesting that higher δ15N values reflect an increased degree of humification. Increases in SOC and STN are probably being sustained by greater inputs, slower turnover of POM (some biochemical recalcitrance), and protection of organic matter in aggregates and association with silt and clay. Grassland-to-woodland conversion during the past century has been geographically extensive in grassland ecosystems worldwide, suggesting that changes in soil C and N dynamics and storage documented here could have significance for global C and N cycles.
APA, Harvard, Vancouver, ISO, and other styles
11

Davoudabadi, Mohammad Javad. "Bayesian model selection and inference for field studies of soil carbon cycling." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/235037/1/Mohammad%20Javad_Davoudabadi_Thesis.pdf.

Full text
Abstract:
Farmers and land managers can yield financial gains through the sale of carbon credits. They typically rely on computationally complex models fit using sparse datasets to make predictions concerning soil carbon stocks and associated carbon accounts which can lead to over-fitting. We develop new soil carbon models to address the over-fitting issue and evaluate the effect of microbial biomass on modelling soil carbon sequestration. Also, we introduce and evaluate advanced Bayesian methods to improve the speed of computation and accuracy of predictions of soil carbon stocks.
APA, Harvard, Vancouver, ISO, and other styles
12

FERREIRA, Juscélia da Silva. "Estoque de carbono e atividade microbiana em sistemas silvipastoris na zona da mata de Pernambuco." Universidade Federal Rural de Pernambuco, 2015. http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4824.

Full text
Abstract:
Submitted by Mario BC (mario@bc.ufrpe.br) on 2016-06-20T13:01:08Z No. of bitstreams: 1 Juscelia da Silva Ferreira.pdf: 599678 bytes, checksum: b682d9e3e450e33bf0ff2cacb6d70fcd (MD5)
Made available in DSpace on 2016-06-20T13:01:08Z (GMT). No. of bitstreams: 1 Juscelia da Silva Ferreira.pdf: 599678 bytes, checksum: b682d9e3e450e33bf0ff2cacb6d70fcd (MD5) Previous issue date: 2015-03-06
Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The conversion of native vegetation áreas into pastures may contribute to the emission of greenhouse effect gases, due to the soil use change. The use of silvopastoral systems, which integrate legume tree species and grasses, may be a viable option to mitigate these emissions and increase soil carbon and nitrogen stocks. This work aimed to evaluate carbon stock (EC) and microbial activity in silvopastoral systems in the Forest Zone of Pernambuco. To this end, soil samplings were done at the dry and rainy seasons in an experiment evaluating signal grass (Brachiaria decumbens Stapf) with sabiá (Mimosa caesalpiniifolia Benth) or gliricidia (Gliricidia sepium (Jacq.) Steud.). Soil samples were taken up to 100 cm depth at 0, ,4 and 8 m from the legume strip, and up to 20 cm at 0,2,4,6 e 8 m from the legume strip for biological analysis. Total organic carbon (COT), total nitrogen (NT), soil organic matter chemical fractioning (fractions fulvic acid – AF; humic acid – AH and humin –HUM), soil density, microbial biomass carbon (Cmic), soil basal respiration (RBS) were determined and metabolic quocient (qCO2) and carbon stock (EC) were calculated. There was no significant difference (p>0.10) for Cmic for the distances from the legume strip at the rainy season. Significant difference was found for RBS at the rainy season for legume strip distances and soil depth layers. There was no significant difference (p >0.10) for Cmic between legume strips distances for the rainy season, while there was significant differences (p<0.10) for RBS between legume strip distances and soil layers. At the dry season, the highest qCO2 was at the 0-10 cm layer, 2 m away from the legum strip. There was significant difference between systems and legume strip distances for COT at the dry season, with the highest contents at 8 and 4 m for gliricidia and sabiá, respectively. EC had significant differences (p<0.10) between soil layers at the dry season, with higher values at the 20-60 layers, while at the rainy season there was only a significant difference at the 0-10 layer at 8 m from the legume strips, when sabiá values were 33% higher than gliricidia ones. Significant difference (p<0.10) was found for NT between layers on both seasons, with higher values going from the upper to the deeper layers. In general the AF fraction was the smallest, with higher values for all three fractions (AF, AH and HUM) for sabiá. Biological activity, as represented by Cmic and RBS, confirmed the silvopastoral systems capability of maintaining soil microbiota. The the higher C content in more stable fractions in sabiá indicates it to be more efficient in carbon sequestration. The silvopastoral system had EC similar to other cropping systems, but it might increase in a longer term of evaluation.
A conversão de áreas de vegetação nativa em pastagem pode contribuir para a emissão de gases de efeito estufa, ocasionada pela mudança no uso do solo. O uso de sistemas silvipastoris, que integram espécies arbóreas leguminosas e gramíneas, pode ser uma opção viável para mitigar essas emissões com aumento do estoque de carbono e nitrogênio no solo. O objetivo do trabalho foi avaliar o estoque de carbono (EC) e atividade microbiana em sistemas silvipastoris na Zona da Mata de Pernambuco. Para isso foi realizada coleta de solo nos períodos seco e chuvoso em experimento avaliando consórcios de braquiária (Brachiaria decumbens Stapf.) com sabiá (Mimosa caesalpiniifolia Benth) ou com gliricídia (Gliricidia sepium (Jacq.) Steud.). Foram retiradas amostras de solo até 100 cm de profundidade aos 0,4,e 8 m de distância da faixa da leguminosa, e até os 20 cm em pontos com 0,2,4,6 e 8 m de distância da faixa da leguminosa para análises biológicas. Foram determinados carbono orgânico total (COT), nitrogênio total (NT), fracionamento químico da matéria orgânica do solo (fração ácido fúlvico-AF; ácido húmico-AH e humina-HUM), densidade do solo, carbono da biomassa microbiana (Cmic), respiração basal do solo (RBS) e calculado o quociente metabólico (qCO2) e estoque de carbono (EC). Não houve diferença significativa (p>0,10) para Cmic entre distâncias da faixa da leguminosa no período chuvoso. A RBS apresentou diferença significativa (p<0,10) no período chuvoso entre distâncias da faixa da leguminosa e camadas. No período seco, o maior valor de quociente metabólico (qCO2) ocorreu na camada de 0-10 cm, na distância 2. Houve diferença significativa entre sistemas e distâncias da faixa da leguminosa para COT no período seco, com os maiores teores nas distâncias 8 e 4, para gliricídia e sabiá, respectivamente. Houve diferença significativa (p<0,10) entre camadas no EC no período seco, com maior estoque nas camadas de 20-60 cm. No período chuvoso observou-se maior uniformidade do EC, com diferença significativa apenas na camada de 0-10 cm na posição 8 com sabiá 33% superior. Para NT ocorreu diferença significativa (p<0,10) entre camadas com teores que variaram nos dois períodos avaliados, com maior concentração nas camadas superficiais reduzindo em profundidade. Para o fracionamento químico, no geral, a fração AF apresentou os menores teores de C, com os maiores teores das três frações (AF, AH e HUM) no consórcio com sabiá. A atividade biológica refletida pelos valores de Cmic e RBS comprovou a capacidade dos sistemas silvipastoris em sustentar a microbiota do solo. Os maiores teores de C nas frações mais estáveis no consórcio com sabiá o destacou com maior eficiência de reter carbono. O sistema silvipastoril apresentou EC semelhante a outros sistemas de manejo, mas não se descarta possibilidade de maior retenção de C em uma avaliação do experimento a longo prazo.
APA, Harvard, Vancouver, ISO, and other styles
13

Borges, Clovis Daniel. "Alterações microbianas do solo sob sistema de semeadura direta e rotação de culturas /." Jaboticabal : [s.n.], 2010. http://hdl.handle.net/11449/94944.

Full text
Abstract:
Orientador: Ely Nahas
Banca: Lucia Helena Sipauba Tavares
Banca: Elcio Liborio Balota
Resumo: A rotação de culturas é um processo de cultivo que pode modernizar e aumentar o rendimento da atividade agropecuária de forma sustentável agregando maior qualidade ao solo. Os objetivos deste estudo foram: (I) avaliar o efeito dos sistemas culturais em plantio direto conduzidos em rotação de culturas e monitorar as alterações das propriedades microbiológicas bioindicadoras da qualidade do solo; (II) investigar as mudanças bioquímicas nos solos decorrentes da adição de diferentes tamanhos de resíduos de soja e milho durante o período de incubação. Foram determinados as biomassas microbianas- C, N e P (CBM, NBM e PBM, respectivamente), a atividade respiratória (C-CO2) e das enzimas desidrogenase, fosfatase e urease, conteúdo do carbono orgânico (Corg), carbono solúvel (Csol), fósforo orgânico (Porg), matéria orgânica (MO), potencial de mineralização do N. O quociente metabólico (qCO2) e microbiano (qMIC) do solo foram calculados. Experimento (I): A avaliação foi realizada em amostras de solo coletadas após a colheita das culturas de verão do ano agrícola 2007/2008, na camada de 0-0,15 m de profundidade em um experimento conduzido sob sistema de semeadura direta, por seis anos. O delineamento experimental foi em blocos casualizados com esquema de faixas com três repetições. As sequências utilizadas foram as monoculturas de soja (Glycine max L.) (SS) e de milho (Zea mays L.) (MM) e a rotação de culturas soja/milho (SM). As culturas de inverno foram milho, girassol (Helianthus anuus L.), nabo forrageiro (Raphanus sativus L.), milheto (Pennisetum americanum (L.) Leeke), guandu (Cajanus cajan (L.) Millsp), sorgo (Sorghum bicolor (L.) Moench) e crotalária (Crotalária juncea L.). O conteúdo da biomassa microbiana-C, N e P do solo aumentou significativamente... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Crop rotation is a practice of growing dissimilar plants that can modernize and increase the farm economy in a sustainable form for adding more quality to the soil. The aims of this study were: (I) evaluate the effect of crop sequences under no-tillage systems on changes in the soil microbiological properties; (II) investigate the biochemistries changes during the incubation of the soil added with different sizes particles of soybean and corn. There were determined the contents of microbial biomass-C, N and P, the production of C-CO2, the activities of the enzymes dehydrogenase, urease and phosphatase, the organic carbon (Corg), soluble carbon (Csol), organic phosphorous (Porg) and organic matter (MO) contents and the potential of mineralization N. The soil metabolic (qCO2) and microbial (qMIC) quotients were calculated. Experiment (I): The evaluation was performed in soil samples collected after the summer crops harvest, on 2007/2008 growing season, at 0-0.15 m soil depth layer on an experiment conducted under no-tillage system through six years. The experimental had a completely randomized block design, in strips plots with three replications. The crop sequences were continuous soybean (Glycine max L.) (SS), continuous corn (Zea mays L.) (MM), and crop rotation soybean/corn (SM). Winter crops were corn, sunflower (Helianthus anuus L.), radish (Raphanus sativus L.), pearl millet (Pennisetum americanum (L.) Leeke), pigeon pea (Cajanus cajan (L.) Millsp), grain sorghum (Sorghum bicolor (L.) Moench) and sunn hemp (Crotalária juncea L.). The content of microbial biomass-C, N and P in the soil increased significantly in crop sequence SM compared to continuous crop. The interactions SM-millet and MMsorghum influenced the content of biomass-C, SM-hemp and SM-millet in the biomass-N content... (Summary complete electronic access click below)
Mestre
APA, Harvard, Vancouver, ISO, and other styles
14

Barkle, Gregory Francis. "The fate of carbon and nitrogen from an organic effluent irrigated onto soil : process studies, model development and testing." Lincoln University, 2001. http://hdl.handle.net/10182/1959.

Full text
Abstract:
The fate of the carbon and nitrogen in dairy farm effluent (DFE) applied onto soil was investigated through laboratory experiments and field lysimeter studies. They resulted in the development and testing of a complex carbon (C) and nitrogen (N) simulation model (CaNS-Eff) of the soil-plant-microbial system. To minimise the risk of contamination of surface waters, regulatory authorities in New Zealand promote irrigation onto land as the preferred treatment method for DFE. The allowable annual loading rates for DFE, as defined in statutory regional plans are based on annual N balance calculations, comparing N inputs to outputs from the farming system. Little information is available, however, to assess the effects that these loading rates have on the receiving environment. It is this need, to understand the fate of land-applied DFE and develop a tool to describe the process, that is addressed in this research. The microbially mediated net N mineralisation from DFE takes a central role in the turnover of DFE, as the total N in DFE is dominated by organic N. In a laboratory experiment, where DFE was applied at the standard farm loading rate of 68 kg N ha⁻¹, the net C mineralisation from the DFE was finished 13 days after application and represented 30% of the applied C, with no net N mineralisation being measured by Day 113. The soluble fraction of DFE appeared to have a microbial availability similar to that of glucose. The low and gradually changing respiration rate measured from DFE indicated a semi-continuous substrate supply to the microbial biomass, reflecting the complex nature and broad range of C compounds in DFE. The repeated application of DFE will gradually enhance the mineralisable fraction of the total soil organic N and in the long term increase net N mineralisation. To address the lack of data on the fate of faecal-N in DFE, a ¹⁵N-labelled faecal component of DFE was applied under two different water treatments onto intact soil cores with pasture growing on them. At the end of 255 days, approximately 2% of the applied faecal ¹⁵N had been leached, 11 % was in plant material, 11 % was still as effluent on the surface, and 40% remained in the soil (39% as organic N). Unmeasured gaseous losses and physical losses from the soil surface of the cores supposedly account for the remaining ¹⁵N (approximately 36%). Separate analysis of the total and ammonium nitrogen contents and ¹⁵N enrichments of the DFE and filtered sub-samples (0.5 mm, 0.2µm) showed that the faecal-N fraction was not labelled homogeneously. Due to this heterogeneity, which was exacerbated by the filtration of DFE on the soil surface, it was difficult to calculate the turnover of the total faecal-N fraction based on ¹⁵N results. By making a simplifying assumption about the enrichment of the ¹⁵N in the DFE that infiltrated the soil, the contribution from DFE-N to all plant available N fractions including soil inorganic N was estimated to have been approximately 11 % of the applied DFE-N. An initial two-year study investigating the feasibility of manipulating soil water conditions through controlled drainage to enhance denitrification from irrigated DFE was extended a further two years for this thesis project. The resulting four-year data set provided the opportunity to evaluate the sustainability of DFE application onto land, an extended data set against which to test the adequacy of CaNS-Eff, and to identify the key processes in the fate of DFE irrigated onto soil under field conditions. In the final year of DFE irrigation, 1554 kg N ha⁻¹ of DFE-N was applied onto the lysimeters, with the main removal mechanism being pasture uptake (700 kg N ha⁻¹ yr⁻¹ removed). An average of 193 kg N ha⁻¹ yr⁻¹ was leached, with 80% of this being organic N. The nitrate leaching decreased with increasing soil moisture conditions through controlled drainage. At the high DFE loading rate used, the total soil C and N, pH and the microbial biomass increased at different rates over the four years. The long-term sustainability of the application of DFE can only be maintained when the supply of inorganic N is matched by the demand of the pasture. The complex simulation model (CaNS-Eff) of the soil-plant-microbial system was developed to describe the transport and transformations of C and N components in effluents applied onto the soil. The model addresses the shortcomings in existing models and simulates the transport, adsorption and filtration of both dissolved and particulate components of an effluent. The soil matrix is divided into mobile and immobile flow domains with convective flow of solutes occurring in the mobile fraction only. Diffusion is considered to occur between the micropore and mesopore domains both between and within a soil layer, allowing dissolved material to move into the immobile zone. To select an appropriate sub-model to simulate the water fluxes within CaNS-Eff, the measured drainage volumes and water table heights from the lysimeters were compared to simulated values over four years. Two different modelling approaches were compared, a simpler water balance model, DRAINMOD, and a solution to Richards' equation, SWIM. Both models provided excellent estimation of the total amount of drainage and water table height. The greatest errors in drainage volume were associated with rain events over the summer and autumn, when antecedent soil conditions were driest. When soil water and interlayer fluxes are required at small time steps such as during infiltration under DFE-irrigation, SWIM's more mechanistic approach offered more flexibility and consequently was the sub-model selected to use within CaNS-Eff. Measured bromide leaching from the lysimeters showed that on average 18% of the bromide from an irrigation event bypassed the soil matrix and was leached in the initial drainage event. This bypass mechanism accounted for the high amount of organic N leached under DFE-irrigation onto these soils and a description of this bypass process needed to be included in CaNS-Eff. Between 80 and 90% of the N and C leached from the lysimeters was particulate (> 0.2 µm in size), demonstrating the need to describe transport of particulate material in CaNS-Eff. The filtration behaviour of four soil horizons was measured by characterising the size of C material in a DFE, applying this DFE onto intact soil cores, and collecting and analyzing the resulting leachate using the same size characterisation. After two water flushes, an average of 34% of the applied DFE-C was leached through the top 0-50 mm soil cores, with a corresponding amount of 27% being leached from the 50-150 mm soil cores. Most of the C leaching occurred during the initial DFE application onto the soil. To simulate the transport and leaching of particulate C, a sub-model was developed and parameterised that describes the movement of the effluent in terms of filtering and trapping the C within a soil horizon and then washing it out with subsequent flow events. The microbial availability of the various organic fractions within the soil system are described in CaNS-Eff by availability spectra of multiple first-order decay functions. The simulation of microbial dynamics is based on actual consumption of available C for three microbial biomass populations: heterotrophs, nitrifiers and denitrifiers. The respiration level of a population is controlled by the amount of C that is available to that population. This respiration rate can vary between low level maintenance requirements, when very little substrate is available, and higher levels when excess substrate is available to an actively growing population. The plant component is described as both above and below-ground fractions of a rye grass-clover pasture. The parameter set used in CaNS-Eff to simulate the fate of DFE irrigated onto the conventionally drained lysimeter treatments over three years with a subsequent 10 months non-irrigation period was derived from own laboratory studies, field measurements, experimental literature data and published model studies. As no systematic calibration exercise was undertaken to optimise these parameters, the parameter set should be considered as "initial best estimates" and not as a calibrated data set on which a full validation of CaNS-Eff could be based. Over the 42 months of simulation, the cumulative drainage from CaNS-Eff for the conventionally drained DFE lysimeter was always within the 95% CI of the measured value. On the basis of individual drainage bulking periods, CaNS-Eff was able to explain 92% of the variation in the measured drainage volumes. On an event basis the accuracy of the simulated water filled pore space (WFPS) was better than that of the drainage volume, with an average of 70% of the simulated WFPS values being within the 95% CI for the soil layers investigated, compared to 44% for the drainage volumes. Overall the hydrological component of CaNS-Eff, which is based on the SWIM model, could be considered as satisfactory for the purposes of predicting the soil water status and drainage volume from the conventionally drained lysimeter treatment for this study. The simulated cumulative nitrate leaching of 4.7 g NO₃-N m⁻² over the 42 months of lysimeter operation was in good agreement to the measured amount of 3.0 (± 2.7) g NO₃-N m⁻². Similarly, the total simulated ammonium leaching of 2.7g NH₄- N m⁻² was very close to the measured amount of 2.5 (± 1.35) g NH₄- N m⁻² , however the dynamics were not as close to the measured values as with the nitrate leaching. The simulated amount of organic N leached was approximately double that measured, and most of the difference originated from the simulated de-adsorption of the dissolved fraction of organic N during the l0-month period after the final DFE irrigation. The 305 g C m⁻² of simulated particulate C leached was close to the measured amount of 224 g C m⁻² over the 31 months of simulation. The dissolved C fraction was substantially over-predicted. There was good agreement in the non-adsorbed and particulate fractions of the leached C and N in DFE. However, the isothermic behaviour of the adsorbed pools indicated that a non-reversible component needed to be introduced or that the dynamics of the de-adsorption needed to be improved. Taking into account that the parameters were not calibrated but only "initial best estimates", the agreement in the dynamics and the absolute amounts between the measured and simulated values of leached C and N demonstrated that CaNS-Eff contains an adequate description of the leaching processes following DFE irrigation onto the soil. The simulated pasture N production was in reasonable agreement with the measured data. The simulated dynamics and amounts of microbial biomass in the topsoil layers were in good agreement with the measured data. This is an important result as the soil microbial biomass is the key transformation station for organic materials. Excepting the topsoil layer, the simulated total C and N dynamics were close to the measured values. The model predicted an accumulation of C and N in the topsoil layer as expected, but not measured. Although no measurements were available to compare the dynamics and amounts of the soil NO₃-N and NH₄-N, the simulated values appear realistic for an effluent treatment site and are consistent with measured pasture data. Considering the large amount of total N and C applied onto the lysimeters over the 42 months of operation (4 t ha⁻¹ of N and 42 t ha⁻¹0f C), the various forms of C and N in dissolved and particulate DFE as well as in returned pasture, and that the parameters used in the test have not been calibrated, the simulated values from CaNS-Eff compared satisfactorily to the measured data.
APA, Harvard, Vancouver, ISO, and other styles
15

Kemzūra, Paulius. "Žemės dirbimo įtaka dirvožemio organinės anglies ir mikroorganizmų biomasės sankaupoms." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20140616_130929-96499.

Full text
Abstract:
Magistrantūros studijų baigiamajame darbe pateikiami dirvožemio organinės anglies, humuso, C/N santykio, mikroorganizmų biomasės anglies, dirvožemio kvėpavimo tyrimų duomenys, įvertinant skirtingus žemės dirbimo būdus skirtingais dirvožemio gylio sluoksniais. Lyginami 2009 ir 2013 metų atliktų tyrimų duomenys. Darbo objektas – giliau karbonatingas giliau glėjiškas rudžemis, kuriame 2009 ir 2013 metais buvo žirnių (Pisum sativum L.) pasėlis, kur tirta skirtingo žemės dirbimo įtaka dirvožemio organinės anglies ir mikroorganizmų biomasės anglies sankaupoms. Darbo metodai: eksperimentai įrengti keturiais pakartojimais. Pradinių laukelių plotas – 126 m2, apskaitinių – 84 m2. Variantai pakartojimų blokuose išdėstyti rendomizuotai. Dirvožemio kvėpavimas ir mikroorganizmų biomasės sankaupos įvertintos 2009 ir 2013 m. birželio mėn. žirnių pasėliuose. Dirvožemio organinės anglies ir mikroorganizmų biomasės sankaupoms vertinti viršutinio ariamojo Ap (0-10 cm) horizonto jungtiniai ėminiai 3 pakartojimais buvo surinkti su 2-4 cm skersmens dirvožemio grąžtu. Eksperimento variantai: tradicinis žemės dirbimas, supaprastintas žemės dirbimas, tiesioginė sėja, ekologinė žemdirbystės sistema, kur taikytas tradicinis žemės dirbimas. Darbo rezultatai. Skirtingi žemės dirbimo būdai ir ekologinės žemdirbystės sistema, taikant tradicinį žemės dirbimo būdą, turėjo įtakos dirvožemio organinės anglies, humuso, C/N santykio, kvėpavimo ir mikroorganizmų biomasės anglies sankaupoms. Didžiausios org. C... [toliau žr. visą tekstą]
The master work presents the results on soil organic carbon, humus, C/N ration, microbial biomass carbon, soil respiration in soil with different soil tillage systems in two soil depths (0-10; 10-20 cm). Results were obtained in 2009 and 2013 and presented. Object of the research – The Endocalcari-Endohypogleyic Cambisol, where in 2009 and 2013 pea crops (Pisum sativum L.) have been growing. Soil tillage impact on soil organic carbon and microbial biomass carbon pools has been investigated. Method of the research – experiments was installed in four replications. Research area – 126 m2, research plot – 84 m2. Variants in blocks were rendomized. Soil respiration and microbial biomass pools were investigated in 2009 and 2013 in June in pea crops. Experiment variants were as followed: conventional tillage, reduced tillage, no tillage and ecological soil management with conventional tillage. Research results. Different soil tillage systems and ecological soil management system with conventional tillage had impact on soil organic carbon, humus, C/N ration, soil respiration and microbial biomass carbon pools. The highest org. C, humus, microbial biomass carbon concentrations and soil respiration intensity have been found in ecological soil management system. The fertilization with siderate crop may effect it mainly. The lower soil tillage intensity influenced the increase in org. C, humus concentration in 0-10 cm soil depth. In other hand, also along with lower tillage intensity... [to full text]
APA, Harvard, Vancouver, ISO, and other styles
16

Scheuner, Thomas. "Auswirkungen atmogener Stickstoffeinträge auf die Kohlenstoff- und Stickstoffdynamik unterschiedlich stark stickstoffbelasteter Waldböden." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2004. http://nbn-resolving.de/urn:nbn:de:swb:14-1088587281875-60202.

Full text
Abstract:
Das Ziel der Arbeit war die Untersuchung der Kohlenstoff- und Stickstoffdynamik in Waldböden unter dem Einfluß atmogener Stickstoffeinträge. Dabei wurden biotische und abiotische Schlüsselprozesse zweier unterschiedlich stark stickstoffbelasteter Waldböden des Nordwest- und Nordostdeutschen Tieflandes (Kreinitz und Thülsfeld) analysiert und miteinander verglichen. Um detaillierte Informationen über potentielle Kohlenstoff- und Stickstoffumsätze zu erhalten, wurden die untersuchten Böden sowohl horizont- als auch tiefenstufenbezogen stratifiziert. Über einen Zeitraum von 14 Wochen wurden sämtliche Kohlenstoff- und Stickstoffeinträge sowie -austräge zwischen den einzelnen Tiefenstufen beobachtet und analysiert. Nach Beendigung der Versuche wurden die einzelnen Bodenhorizonte mit spezifischen Kohlenstoff- und Stickstoffextraktionsverfahren aufgeschlossen. Mit Hilfe dieser Versuchsanordnung war es möglich, eine vollständige tiefenstufenbezogene Kohlenstoff- und Stickstoffbilanzierung für den Kreinitzer und Thülsfelder Boden zu erstellen. Zur Prüfung der Übertragbarkeit der Laborergebnisse auf aktuelle Standortbedingungen wurde ein Langzeitfeldversuch (ein Jahr) mit einer ähnlichen Versuchsanordnung am Standort Kreinitz durchgeführt. Folgende Ergebnisse wurden in dieser Arbeit erzielt: 1. Der TOC-Gehalt war der Hauptparameter, in dem sich der stark stickstoffbelastete Standort Thülsfeld von dem weniger stark stickstoffbelasteten Standort Kreinitz zu Beginn der Untersuchung deutlich unterschied. 2. Der KCl-extrahierbare mineralische Stickstoff (NminKCl) reagierte an beiden Versuchs-standorten am stärksten auf die Stickstoffdüngung und wurde mit Hilfe der Diskriminanzanalyse als Hauptsensitivitätsparameter für Stickstoffeinträge im Boden ermittelt. 3. Die Kreinitzer organische Auflage reagierte in bezug auf die mittelfristig umsetzbare Kohlenstoff- und Stickstofffraktion (Chwe, Nhwe) deutlich stärker auf die N-Einträge als die Thülsfelder Auflage. Infolgedessen besitzt die Kreinitzer Auflage ein höheres Kohlenstoff- und Stickstoffmobilisierungspotential, die hochkomplexen organischen C- und N-Verbindungen in weniger komplexe Verbindungen abzubauen. 4. Der Thülsfelder Mineralboden 5. besitzt aufgrund der höheren Anteile des Nhwe am TN ein höheres Mobilisierungspotential für den kurz- und mittelfristig umsetzbaren Stickstoff (Nhwe) als der Kreinitzer Mineralboden. 6. Die für die Mikroorganismen verfügbaren Kohlenstoffquellen scheinen sich durch die historischen und die zusätzlich simulierten Stickstoffeinträge vom POC in der Sand-Braunerde zum WSOC und CKCl im Sand-Podsol zu verschieben. 7. Als verfügbare Stickstoffquelle nutzen die Mikroorganismen am Standort Kreinitz den PN, während sich für den Standort Thülsfeld keine eindeutige Stickstofffraktion als Hauptnahrungsquelle ermitteln ließ. 8. Sowohl in den Laborversuchen als auch im Freilandversuch führten die Stickstoffeinträge zur Verengung nahezu aller C/N-Verhältnisse in den untersuchten Extraktionsverfahren.
APA, Harvard, Vancouver, ISO, and other styles
17

Deon, Diana Signor. "Mudança de uso da terra e impacto na matéria orgânica do solo em dois locais no Leste da Amazônia." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/11/11140/tde-03072013-084639/.

Full text
Abstract:
Mudanças de uso da terra afetam a dinâmica da matéria orgânica e o acúmulo de C e N no solo e estão associadas a emissões de gases de efeito estufa (GEEs). A região Amazônica é relevante para as emissões brasileiras de GEEs oriundas das mudanças de uso da terra. O objetivo deste trabalho foi determinar alterações quantitativas e qualitativas nos estoques de C e N no solo em função de mudanças de uso da terra em Santarém-PA e São Luís-MA. Foram coletadas amostras de solo sob diferentes usos da terra: vegetação nativa, vegetação secundária, pastagem degradada, pastagem melhorada e agricultura anual. Adicionalmente, foram avaliadas áreas de mata queimada em Santarém-PA e de fruticultura e horticultura em São Luís-MA. Houve diferenças entre os solos de vegetação nativa nos dois locais, apesar dos estoques de C e N terem sido similares. Em Santarém, fósforo e granulometria relacionaram-se aos estoques de C e N. Em São Luís a acidez potencial ajudou a estimar o estoque de C; granulometria e capacidade total de troca de cátions estimaram o estoque de N. Os estoques de C e N na vegetação secundária foram similares aos da vegetação nativa nos dois locais e relacionaram-se com a acidez potencial do solo. Em Santarém o estoque de C (0-30 cm) na pastagem melhorada foi maior que na vegetação nativa. Em São Luís, o estoque de C foi semelhante ao da vegetação nativa. Os estoques de N tiveram comportamento similar aos estoques de C. Na pastagem melhorada de Santarém a soma de bases foi importante para estimar os estoques de C e N; em São Luís houve efeito negativo da densidade do solo. Estoques de C e N nas pastagens degradadas foram semelhantes à vegetação nativa, mas foram influenciados por parâmetros diferentes. Áreas de agricultura anual apresentaram estoques de C inferiores aos das pastagens melhoradas e da vegetação nativa e a sua manutenção relaciona-se com a redução da acidez potencial e com o aumento das bases trocáveis. A qualidade da matéria orgânica do solo foi avaliada nas amostras de São Luís. A mudança de uso da terra reduziu o C na fração orgânica (75-2000 ?m), mas os usos mais conservacionistas aumentaram o C nas formas estáveis (< 53 ?m). Vegetação secundária e pastagem recuperada apresentaram índice de manejo de C semelhantes aos da vegetação nativa. A conversão de vegetação nativa para agricultura ou pastagem reduziu o C na biomassa microbiana, mas os sistemas com grande aporte de material orgânico e com reduzida mobilização do solo apresentaram teor de C microbiano similar à vegetação nativa. Pastagem e agricultura também apresentaram os menores quocientes microbianos, indicando condição de estresse da biomassa microbiana.
Land use changes affect organic matter dynamics and the accumulation of C and N in the soil and are associated with greenhouse gas emissions (GHGs). Amazon region is relevant to Brazilian GHG emissions from land use changes. The aim of this study was to determine quantitative and qualitative changes in C and N stocks in the soil due to land use changes in Santarém (PA) and São Luís (MA). Soil samples were collected under different land uses: native vegetation, secondary vegetation, degraded pasture, improved pasture and annual agriculture. Additionally, we evaluated burnt forest areas in Santarém (PA) and fruit-growing and horticulture in São Luís MA. There were differences between the soils of native vegetation in both sites, despite the C and N stocks were similar. In Santarém, phosphorus and soil particle size were related to C and N stocks. In São Luís potential acidity was used to estimate C stock; soil particle size and total cation exchange capacity estimated N stock. C and N stocks in secondary vegetation were similar to those of native vegetation in both sites and related with the soil potential acidity. In Santarém C stock (0-30 cm) in improved pasture was greater than in native vegetation. In São Luís, C soil stock was similar to that of native vegetation. N stocks had similar behavior to C stocks. In improved pasture of Santarém sum of bases was important to estimate the C and N stocks; in São Luís there was negative effect of soil density. C and N stocks in degraded pastures were similar to native vegetation, but were influenced by different parameters. Annual agricultural areas had C stocks below those of improved pastures and native vegetation and its maintenance is related to the reduction of soil potential acidity and to the increase of soil exchangeable bases. Quality of soil organic matter was evaluated in samples of São Luís. Land use changes reduced the content of C in organic fraction (75-200 ?m), while more conservationists uses have increased the C in stable shapes (< 53 ?m). Secondary vegetation and improved pasture presented carbon management index similar to native vegetation. Conversion of native forest to agriculture or pasture reduced the C microbial biomass, but systems with large organic material input and with reduced tillage presented microbial C content similar to native vegetation. Pasture and agriculture also presented the smallest ratios of microbial biomass C to total organic C, indicating stress of microbial biomass.
APA, Harvard, Vancouver, ISO, and other styles
18

Silva, Lauris Del Carmen Mejia da. "Reutilização de meios do cultivo de Arthrospira (Spirulina) platensis tratados com carvão ativado em pó e diferentes agentes coagulantes." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/9/9134/tde-18122014-152224/.

Full text
Abstract:
A cianobactéria Arthrospira (Spirulina) platensis, é um dos micro-organismos fotossintetizantes mais estudados e cultivados, e atualmente tem sido utilizado para a produção de biomassa, com elevado conteúdo de proteínas, vitaminas, minerais, aminoácidos essenciais, ácidos graxos poli-insaturados e pigmentos, com potencial uso como complemento alimentar para humanos, bem como em alimentação de animais. No entanto, o cultivo de micro-organismos fotossintetizantes tem uma demanda hídrica bastante alta. Dessa forma, é importante a realização de trabalhos que avaliem a possibilidade de reuso de meio de cultivo de Arthrospira, que, além de reduzir os custos com nutrientes, contemplam o aspecto ambiental, evitando salinização do solo e eutrofização de corpos hídricos. Este trabalho avaliou a reutilização de meios do cultivo de Arthrospira (Spirulina) platensis tratados com carvão ativado em pó e diferentes agentes coagulantes. Os efluentes foram obtidos dos cultivos de A. platensis com nitrato de sódio como fonte de nitrogênio em processo descontínuo, em minitanques. Os efluentes passaram por tratamentos físico-químicos com diferentes concentrações de carvão ativado em pó (30, 40 e 50 mg.L-1) e cloreto férrico (6, 10 e 14 mg.L-1) ou sulfato férrico (15, 25 e 35 mg.L-1) para serem reaproveitados em cultivos desse micro-organismo. O reuso de meio no cultivo de A. platensis mostrou resultados aceitáveis, observando-se que o crescimento desta cianobactéria foi satisfatório, com obtenção de concentração celular máxima (Xm) obtida de 1093 mg.L-1 em frasco Erlenmeyer, correspondente ao ensaio com meio tratado com 30 mg.L-1 de carvão ativado em pó (CAP) e 6 mg.L-1 de cloreto férrico. Esses resultados de crescimento celular foram da mesma ordem de grandeza que os resultados de Xm obtidos com meio novo e maiores que aqueles oriundos de crescimentos em meios tratados com sulfato férrico como agente coagulante, cujos valores de concentração celulares máximas não excederam 806 mg.L-1. Os cultivos em meios provenientes de tratamento com cloreto férrico não alteraram a composição da biomassa, chegando a valores de teor protéico da ordem de 47%. Conclui-se que o reuso de meio pode ser viável para a produção de biomassa de A. platensis, reduzindo o custo de produção pelo reuso dos nutrientes.
The cyanobacterium Arthrospira (Spirulina) platensis, one of the most studied and cultivated photosynthetic microorganisms and, currently has been used for biomass production of biomass, with high contents of protein, vitamins, minerals, amino acids, polyunsaturated fatty acids, and pigments, with potential use as a dietary supplement for human food supplement and animal feed. However, the cultivation of photosynthetic microorganisms have a very high water demand. Thus, is important to carry out studies evaluating the possibility of reuse of Arthrospira culture medium, which, in addition to reducing the costs of nutrients, include the environmental aspect, preventing soil salinization and eutrophication of water bodies. This work has evaluated the reuse of effluent medium from Arthrospira (Spirulina) platensis cultivation treated with powdered activated carbon and different coagulants. The effluent, obtained from A. platensis batch cultivation in bench-scale open ponds, using sodium nitrate as a nitrogen source. The effluent went through physico-chemical treatments employing different concentrations of powdered activated carbon (30, 40, and 50 mg.L-1) and ferric chloride (6, 10, and 14 mg.L-1) or ferric sulphate (15, 25, and 35 mg.L-1) for them to be reused in cultured microorganism. The reuse through the cultivation of A. platensis showed acceptable results, observing that the growth of this cyanobacterium was satisfactory, obtaining maximum cell concentration (Xm) obtained 1093 mg.L-1 in Erlenmeyer flask, corresponding to the assay medium treated with 30 mg.L-1 of powdered activated carbon (PAC) and 6 mg.L-1 ferric chloride. The results of cell growth were the same order of magnitude as the results of Xm obtained with new culture medium and larger than those from growth in media treated with ferric sulfate as a coagulant agent, whose maximum values of cell concentration did not exceed 806 mg.L-1. The cultures in media from treatment with ferric chloride did not alter the composition of the biomass, reaching values of protein content of around 47%. It is concluded that the reuse of cultures medium may be feasible to produce biomass of A. platensis, reducing the production cost by recycling of nutrients.
APA, Harvard, Vancouver, ISO, and other styles
19

Junior, Lauro Rodrigues Nogueira. "Caracterização de solos degradados pela atividade agrícola e alterações biológicas após reflorestamentos com diferentes associações de espécies da Mata Atlântica." Universidade de São Paulo, 2001. http://www.teses.usp.br/teses/disponiveis/11/11142/tde-10082009-162256/.

Full text
Abstract:
No presente estudo perseguimos os seguintes objetivos: a) caracterizar o grau de degradação física e química de solos usados em cultivo agrícola por várias décadas, originalmente cobertos por Mata Atlântica (Floresta Estacional Semidecidual) em Botucatu, SP; b) avaliar as alterações biológicas destes solos ao longo de 16 meses pós-reflorestamento com diferentes modelos de associação de espécies da Mata Atlântica. As áreas experimentais estavam localizadas em duas propriedades (Fazenda Lageado e Edgardia) da Faculdade de Ciências Agronômicas (FCA/UNESP) em Botucatu-SP. O clima da região é do tipo tropical com inverno seco (Cwa, classif. de Köppen). Os solos das áreas experimentais são os seguintes: um Nitossolo Vermelho (NV) de textura argilosa; um Argissolo Vermelho-Amarelo (AVA) álico, de textura areia-franca; e um Latossolo Vermelho-Amarelo (LVA) álico, de textura arenosa. Seis tratamentos (delineamento em blocos casualizados, com três repetições) foram usados: Testemunha; Semeadura Direta; Taungya; Consorciação; Restauração e, por fim, Fragmentos Florestais. Os atributos físicos (textura, densidade e porosidade) foram avaliados nas camadas de 0-10, 10-20 e 20-40cm, os atributos químicos (pH, MO, P, S, K, Ca, Mg, H, Al, CTC, B, Cu, Fe, Mn e Zn) nas camadas de 0-5, 5-10, 10-20 e 20-40cm e os atributos biológicos (C da biomassa microbiana, liberação de CO2 e mineralização de N) nas camadas de 0-5 e 5-20cm. No NV, o teor de argila no solo degradado foi 57% maior do que o obtido no solo sob o Fragmento Florestal (camada 0-10cm), no AVA, 33% maior e, no LVA, 77% menor. Este efeito, no NV e AVA, foi atribuído à remoção de camadas superiores do solo, mais arenosas, pela erosão e exposição das camadas inferiores mais argilosas. No LVA, o menor teor de argila e silte no solo degradado foiatribuído à perda destas frações por eluviação ou em suspensão na enxurrada. O pH, teor de MO, de P e de Ca nos solos NV e LVA foram bem superiores nos Fragmentos Florestais relativamente aos obtidos nas áreas com solos degradados. Diferenças menos acentuadas foram observadas no AVA, como também detectadas para a composição textural, indicando que este solo está menos degradado que os demais. A CTC dos solos mostrou-se altamente correlacionada com os teores de argila e de MO. Isto destaca a importância da preservação da composição granulométrica e elevação dos teores de MO com o intuito de restaurar importantes propriedades físico-químicas do solo, como a CTC. Em áreas com cobertura florestal (Fragmentos Florestais do NV, AVA e LVA), o C da biomassa microbiana apresenta maiores valores na camada superficial e no verão. Fato atribuído a condições mais favoráveis (MO, pH, umidade, temperatura, etc) à manutenção da vida microbiana no solo. O C da biomassa microbiana e, em menor escala, a liberação de CO2 apresentaram-se como bons indicadores das alterações ocorridas após o reflorestamento com as diferentes associações de espécies. No LVA, como o solo desta área se apresenta mais degradado, em relação ao NV e ao AVA, a alta correlação e relação C microbiano/C orgânico indica que a biomassa microbiana é um importante compartimento de reserva do C orgânico do solo. Quanto aos atributos biológicos, as diferenças entre os Fragmentos Florestais e os demais tratamentos continuam a existir nas três áreas e camadas, devendo ser gradativo o retorno desses atributos à condição pré-existente; ademais, o tempo de retorno sofrerá influência das condições edafoclimáticas da área e da associação de espécies presentes.
This study seeks to: a) characterize the degree of physical and chemical degradation of the soils used in agricultural cultivation for several decades, originally covered by the Atlantic Forest (Seasonal Semideciduous Forest) in Botucatu, SP; b) evaluate the biological changes of these soils along a 16-month post-reforestation with different models of species association of the Atlantic Forest. The experimental areas were located in two properties (Fazenda Lageado and Edgardia) of the Agronomic Sciences College (FCA/UNESP) in Botucatu-SP. The climate in that region is the tropical type with dry winter (Cwa, Köppen class.). The soils of the experimental areas are: clayey Red Nitosol (NV), loamy alic Red-Yellow Argisol (AVA), and sandy alic Red-Yellow Latosol (LVA). Six treatments (randomized block design with three replications) were used: Test; Direct Seeding; Taungya; Consortium; Restoration and finally Forestal Fragments. The physical attributes (texture, density and porosity) were evaluated in layers of 0-10, 10-20 and 20-40cm; the chemical attributes (pH, MO, P, S, K, Ca, Mg, H, Al, CTC, B, Cu, Fe, Mn and Zn) in layers of 0-5, 5-10, 10-20 and 20-40cm and the biological attributes (Microbial biomass C, CO2 release and N mineralization) in layers of 0-5 and 5-20cm. The clay content in the degraded soil in NV was 57% higher than that obtained in soil under Forest Fragment (0-10cm layer), 33% higher in AVA, and 77% lower in LVA. This effect in NV and AVA was accredited to the removal of the soil top layers, which are sandier due to the erosion and exposition of the lower layers that are more clayey. In LVA the lowest clay and silt content in the degraded soil was accredited to the loss of these fractions by eluviation or flood suspension. The pH, MO, P and Ca contents in NV and LVA soils were much higher in Forestal iv Fragments regarding those reached in degraded soil areas. The less marking differences were observed in AVA and also detected for the textural composition, thus indicating that this soil is less degraded than the other ones. The CTC of the soils was highly correlated with the clay and MO contents. That highlights the importance of preserving the granulometric composition and elevation of the MO contents in order to restore important physical-chemical soil properties, such as the CTC. In primary forest areas (NV, AVA and LVA Forestal Fragments), the microbial biomass C presents higher values at the top layer and in the summer, a fact accredited to more favorable conditions (MO, pH, moisture, temperature, etc) for the maintenance of the microbial life in the soil. The microbial biomass C and, in a lesser scale, the CO2 release were good indicators of the changes occurred after the reforestation with the different species associations. In the LVA, since the soil of this area is more degraded in relationship to NV and AVA, the high correlation and microbial C/organic C relationship indicate that the microbial biomass is an important reserve compartment of the soil organic C. As to the biological attributes, the differences between the Forestal Fragments and the remaining treatments still exist in the three areas and layers, and the return to the pre-existing attributes is likely to be gradual; moreover, the time of return should undergo influences of the pedoclimatic conditions of the area and of the association of the present species.
APA, Harvard, Vancouver, ISO, and other styles
20

Conner, Lafe G. "Environmental and Adaptive Buffers that Mediate the Response of Subalpine Ecosystems to Environmental Change." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5913.

Full text
Abstract:
This document reports the results of 4 studies of subalpine ecosystem ecology, describing ways that spatial heterogeneity in soils and plant communities mediate ecosystem responses to environmental change. Ecosystem responses to environmental change are also mediated by regional climate patterns and interannual variability in weather. In the first chapter we report the results of an experiment to test for the mediating effects of associational resistance in a forest community that experienced wide-spread beetle kill. We found that Engelmann spruce were more likely to survive a beetle outbreak when growing in low densities (host dilution) and not through other types of associational resistance that relate to higher tree-species richness or greater phylogenetic diversity of the forest community. In the second chapter we report the effects of early snowmelt on soil moisture in subalpine meadow and aspen communities. We found that soil organic matter, soil texture, and forest cover mediated the effects of early snowmelt and were more important drivers of growing-season soil moisture than was snow-free date. In the third chapter we report the effect of early snowmelt on growth and seed production of early-season and midsummer herbaceous species. We found that the primary effect that snowmelt timing had on plant growth was through its effect on species distribution. Changes in the timing of snowmelt had limited effect on the growth, flowering, and seed count of species after they were established. In the final chapter, we report the effect of early snowmelt on soil respiration, microbial biomass, dissolved organic carbon and soil organic carbon. We found that early snowmelt resulted in warmer soil temperatures compared to neighboring snow-cover plots, and that microbial biomass and soil respiration showed no signs of a snowmelt legacy effect during the growing season. Soil organic carbon in rapid and slow-turnover pools was affected more by plant community than by snowmelt timing, and the primary drivers of soil respiration during the snow-free period were first soil organic matter and second soil temperature. Taken together, this dissertation reports our findings that subalpine ecosystems are resilient to environmental change in part because organisms in these systems are adapted to environmental conditions that are highly variable between sites, seasons, and years.
APA, Harvard, Vancouver, ISO, and other styles
21

Langenbruch, Christina. "Effects of nutrient cycling through litter of different broadleaved deciduous tree species on soil biochemical properties and the dynamics of carbon and nitrogen in soil." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2012. http://hdl.handle.net/11858/00-1735-0000-000D-F1C2-F.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Czycza, Rodrigo Vianei. "Quantidade e qualidade da matéria orgânica do solo em sistemas de colheita com e sem queima da cana-de-açúcar." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/11/11140/tde-17032010-111859/.

Full text
Abstract:
Há tendências de expansão da área cultivada com cana-de-açúcar devido ao aumento da demanda mundial por biocombustíveis. Por razões econômicas e legais a colheita da cana-deaçúcar sem queima vem crescendo significativamente. Entretanto, pouco se conhece sobre o efeito desta palhada da cana sobre a dinâmica e estabilidade do carbono no solo. O incremento no teor de carbono no solo pode acarretar benefícios nos âmbitos agronômico, ambiental e até mesmo econômico. Neste contexto, o objetivo deste estudo foi quantificar e comparar os estoques de carbono e nitrogênio do solo e avaliar a qualidade da matéria orgânica por meio da caracterização das substâncias húmicas em área cultivada com cana-de-açúcar com e sem queima da palhada. Foram utilizadas cronossequências de 6 e 12 anos com e sem queima da palhada, além de uma área sob vegetação nativa (usada como referência). As áreas localizam-se na Usina São Martinho, em Pradópolis, estado de São Paulo. O solo é classificado como Latossolo Vermelho distroférico de textura muito argilosa. As áreas com o manejo sem queima da palhada apresentaram maiores estoques de carbono em todas as profundidades avaliadas em comparação as áreas com queima. O incremento obtido entre as áreas de 6 e 12 anos de manejo sem queima foi de 1,77 Mg ha-1 ano-1 de carbono e 0,25 Mg ha-1 ano-1 de nitrogênio para a camada 0-30 cm de profundidade. Quanto aos aspectos químicos relacionados à fertilidade do solo, não ocorreram diferenças significativas em decorrência do manejo da palhada, corroborando aos resultados obtidos pelas análises espectroscópicas de fluorescência. As avaliações espectroscópicas mostraram que entre as áreas de 12 anos de cultivo não ocorreram diferenças no grau de humificação. Já a área de 19 anos sem queima apresentou maior grau de humificação em comparação às demais situações avaliadas nas profundidades de 0-10 e 10-20 cm tanto para os ácidos húmicos como para os ácidos fúlvicos. As análises de Infravermelho com Transformada de Fourier indicaram maiores concentrações de grupos fenólicos e ácidos carboxílicos na área de 19 sem queima e menores valores para a área sob vegetação nativa nas duas profundidades avaliadas para os ácidos húmicos. Para os ácidos fúlvicos não verificou-se diferenças entre as situações avaliadas.
There is a trend for expansion in the area cultivated with sugarcane, mainly due to the increase in global demand for biofuels. Due to economic and legal reasons unburned sugarcane harvesting system is increasing rapidly. However, little is known about the sugarcane trash effect on carbon dynamics and stability in soils. The increase in soil carbon content can promote benefits on agronomic, environmental and also on economic aspects. In this context, the objective of this study was to quantify and compare soil carbon and nitrogen stocks and to evaluate soil organic matter quality through the characterization of humic substances in areas cultivated with sugarcane under burned and unburned harvesting system. Chronosequences with 6 and 12 years under burned and unburned sugarcane and an adjacent area under native vegetation (used as reference) were evaluated. The areas were located at Sao Martinho Mill, in Pradopolis, Sao Paulo State. The soil is classified as clayey Oxisol (Latossolo Vermelho distroférico de textura muito argilosa). Unburned sugarcane soils presented higher carbon stocks in all evaluated layers compared to the burned areas. The increments of 1.77 and 0.25 Mg ha-1 year-1 on soil carbon and soil nitrogen, respectively, were observed between the 6 and 12 years under unburned sugarcane in the 0-30 cm layer. No significant differences were observed for soil chemical attributes neither for the spectroscopic (fluorescence) analyses due to the harvesting system. Spectroscopic results showed no differences on humification degrees between areas with 12 years under sugarcane. The area with 19 years under unburned sugarcane showed higher humification degree for the 0- 10 and 10-20 cm layers in comparison with the other evaluated areas, not only for the humic acid but also for the fulvic acid. Fourier Transformed Infrared analyses on humic acids indicated higher concentrations of phenolic groups and carboxylic acids in the area under 19-year old unburned sugarcane and lower values in the native vegetation for the two evaluated soil layers. For the fulvic acids no differences were observed among the evaluated areas.
APA, Harvard, Vancouver, ISO, and other styles
23

Böhm, Christian. "Dynamik des Stickstoffhaushaltes einer Sand-Braunerde nach vierjähriger Brache in Abhängigkeit von der landwirtschaftlichen Nutzungsintensität." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2005. http://nbn-resolving.de/urn:nbn:de:swb:14-1127215398022-54219.

Full text
Abstract:
Um für ertragsschwache, sandige Böden des mitteldeutschen Agrarraumes Aussagen bzw. Empfehlungen hinsichtlich einer ökologisch vertretbaren Wiederinbetriebnahme brachgefallener Flächen treffen zu können, wurden auf einem leichten Sandstandort Nordsachsens die Gehalte, Vorräte, Bindungsformen und Dynamik des Kohlen- und Stickstoffs im Boden, nach Inkulturnahme stillgelegter Flächen, bestimmt und quantifiziert. Hierfür erfolgte die Einrichtung von zwei Bewirtschaftungssystemen mit unterschiedlicher Nutzungsintensität. Während sich die Versuchsvariante &quot;Extensive Bewirtschaftung&quot; durch typische Merkmale des ökologischen Landbaus auszeichnete, wurde sich bei der Versuchsvariante &quot;Intensive Bewirtschaftung&quot; an den Methoden der konventionellen Ackerbewirtschaftung orientiert. Um diese Bewirtschaftungsformen mit stillgelegten Flächen vergleichen zu können, wurden Teile des Untersuchungsareals erneut der Sukzession überlassen. Diese bildeten die Versuchsvariante &quot;Brache&quot;. Die Erhebung der Daten erstreckte sich über einen dreijährigen Zeitraum. Neben der Ermittlung von Bodenazidität und ausgewählten C- und N Fraktionen erfolgte die Bestimmung wichtiger bodenmikrobiologischer und biochemischer Kenngrößen. Weitere Untersuchungen bezüglich des C- und N Kreislaufes wurden an Probenmaterial der oberirdischen Phytomasse, des mittels Saugkerzen gewonnenen Sickerwassers sowie des Niederschlagswassers durchgeführt. Zur Prognostizierung nutzungsspezifischer mittel- bis langfristiger Veränderungen des im Boden gebundenen Kohlen- und Stickstoffs wurden Teile der erhobenen Parameter in das Simulationsmodell CANDY eingebunden. Auf Grundlage der erhobenen Daten konnten folgende wichtige Schlußfolgerungen getroffen werden: 1.) Der heißwasserextrahierbare Stickstoff (TNhwe) besitzt eine hohe Differenzierungsgüte zur Unterscheidung verschiedener landwirtschaftlicher Nutzungsintensitäten. Er stellt einen geeigneten Sensitivitätsparameter dar, um nutzungsspezifische Einflüsse hinsichtlich des N, aber auch des C Kreislaufes quantitativ beurteilen zu können. 2.) Die untersuchte Sand-Braunerde ist durch ein beachtliches C und N Nachlieferungspotential gekennzeichnet, welches auf hohe Umsetzungsgeschwindigkeiten der organischen Substanz hindeutet. Hierbei scheinen sich Quantität und Schnelligkeit des Stoffumsatzes mit zunehmender Nutzungsintensität zu erhöhen. 3.) Unter Berücksichtigung eines fachgerechten Managements stellt die Begründung von Sukzessionsbracheflächen für einen dreijährigen Zeitraum eine ökologisch tragbare Alternative dar, um landwirtschaftlich genutzte Flächen zeitweilig aus der ackerbaulichen Nutzung herauszunehmen. Während der Brachephase sollten jedoch Schnitt- und Umbruchmaßnahmen unbedingt vermieden werden. 4.) Der Anbau von Leguminosen als integraler Bestandteil des Ökolandbaus erwies sich aus ertragssteigernder Sicht nicht effizient und war bezüglich der Umweltwirkung als nicht nachhaltig zu bewerten. Für leichte Sandböden des mitteldeutschen Trockengebietes ist daher die extensive Bewirtschaftungsweise aus ökologischen und höchstwahrscheinlich auch aus ökonomischen Gesichtspunkten nicht vertretbar. Deshalb ist bei der Wahl zwischen den angewandten Bewirtschaftungssystemen die intensive Bewirtschaftungsform der extensiven Nutzungsart vorzuziehen.
APA, Harvard, Vancouver, ISO, and other styles
24

Cambou, Aurélie. "Evaluation du stock et de la stabilité du carbone organique dans les sols urbains." Thesis, Rennes, Agrocampus Ouest, 2018. http://www.theses.fr/2018NSARD086/document.

Full text
Abstract:
Les sols constituent le premier réservoirterrestre de carbone organique et jouent ainsi un rôleclé pour limiter le réchauffement climatique. Les solsurbains représentent 3% du territoire mondial etl’urbanisation est la première cause de changementd’affectation des sols. L’augmentation rapide dessurfaces artificialisées a entraîné un intérêt croissantquant à la capacité des sols urbains à stocker ducarbone. Les travaux de thèse ont visé à comprendrela contribution des sols urbains au stock global decarbone organique et à proposer une méthodestandardisée pour son suivi. Les recherches ont aussiporté sur l’étude de la stabilité du carbone organiquedes sols urbains et la modélisation de la dynamique dece carbone. Une base de données a été construite àpartir de données disponibles au niveau national, puisde mesures supplémentaires acquises dans trois villes françaises.Le stock de carbone des sols ouverts est similaireentre les villes, et équivalent voire supérieur enprofondeur, à celui des sols forestiers environnants.Ce stock dépend plus particulièrement du mode degestion des espaces verts urbains, et de l’histoire dusite. Ainsi, les sols urbains ouverts sont caractériséspar une forte proportion de matières organiqueslabiles sur 0-44 cm de profondeur. Au contraire, lessols scellés présentent des stocks de carbone trèsfaibles. Ils sont caractérisés par une forte proportionde matières organiques stables dont l’évolution(stockage ou minéralisation) dépend de l’état dedormance microbienne. Un modèle conceptuel de ladynamiq
Soils are the largest terrestrial pool oforganic carbon and thus play a key role in mitigatingclimate change. The urban soils account for 3% of theworld’s territory and urbanization is currently theprimary cause of land use change. The increase ofartificial areas have led to a growing interest in theurban soil ability to store organic carbon. This workaimed to understand the contribution of urban soils tothe global organic carbon stock and to propose astandardized method for its monitoring. The researchalso focused on studying the stability of organic carbonin urban soils and modeling its dynamics. A databasewas built using data available at the French territorylevel as well as using additional measurements acquired in three French cities.The organic carbon stock in urban open soils aresimilar between cities, and equivalent, or even higherin depth, than that of surrounding forest soils. Thestock in open soils is particularly dependent upon themanagement methods of the urban green spaces,and on the specific site history. Thus, open urban soilsare characterized by a high proportion of labileorganic matter at 0-44 cm depth. Conversely, sealedsoils have very low carbon stocks. They arecharacterized by a high proportion of stable organicmatter whose evolution (storage or mineralization)depends on the dormant state of the microbialcommunities. A conceptual model of carbon dynamicsfor these two soil types has been developed. Finally,recommendations for optimizing carbon monitoringand urban soil management have been proposed
APA, Harvard, Vancouver, ISO, and other styles
25

Durigan, Mariana Regina. "Mudanças nos estoques de carbono e nitrogênio do solo em função da conversão do uso da terra no Pará." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/11/11140/tde-03062013-093119/.

Full text
Abstract:
A atividade de mudança do uso da terra na Amazônia vem sendo apontada como principal fonte de CO2 para a atmosfera em função das emissões de C e N provenientes do solo. A prática de manejo adotada pode influenciar significativamente nos estoques de C e N do solo funcionando como dreno ou fonte de C e N para a atmosfera. Além disso, podem ser alterados: a fertilidade e a densidade do solo bem como as frações e a origem da MOS. Com o objetivo de avaliar o impacto das mudanças de uso da terra na região leste da Amazônia foram coletadas amostras de terra nos principais usos da terra na região de Santarém-PA, em três profundidades: 0-10, 10-20 e 20-30 cm. Através das amostras foi realizada a caracterização físico-química das áreas e foram determinados os teores de C e N do solo e os isótopos ? 13C e ? 15N com a finalidade de quantificar os estoques de C e N do solo e avaliar a dinâmica e origem da MOS. Para um subconjunto de amostras foi realizado o fracionamento físico da MOS e a determinação do C da biomassa microbiana para compreender como a mudança de uso da terra interferiu nessas frações. Somado a essas determinações foi realizada a estimativa dos fatores de emissão com base na metodologia descrita pelo IPCC. Através da caracterização físicoquímica as áreas de estudo são caracterizadas por solos argilosos a muito argilosos. Os maiores valores de pH, macronutrientes, CTC, SB e V% foram observados nas áreas de agricultura (AGR) sugerindo que a utilização de práticas como adubação e calagem, são capazes de alterar os padrões de fertilidade do solo na Amazônia, aumentando seus índices de fertilidade. Para os estoques de C e N pode-se dizer que a mudança de uso da terra na região estudada está contribuindo para as perdas de C e N do solo, principalmente quando a conversão é realizada para áreas de agricultura (AGR) e pastagem (PA) sendo que os estoques de C observados na camada de 0-30 cm nessas áreas foram 49,21 Mg C ha-1 (PA) e 48,60 Mg C ha-1 (AGR). O maior valor de ? 13C foi encontrado nas áreas de pastagens, -25,08?, sugerindo que para as áreas de PA existe diluição isotópica e que parte do C do solo ainda é remanescente da floresta. As frações da MOS apresentaram alterações na quantidade de C e na proporção das frações leve e oclusa, principalmente nos usos AGR e PA. A fração lábil da MOS (C da biomassa microbiana) também apresentou grande diferença entre os usos FLO e AGR (526,21 e 296,78 ?g g-1de solo seco), indicando que a AGR foi o uso que mais alterou os estoques de C e N do solo e também as frações da MOS. Os fatores de emissão calculados confirmam todos os resultados observados em relação a conversão de FLO para AGR, sendo que para esse uso o fator de emissão foi de 0,93 ± 0,033, sendo então o uso que mais emitiu C. Com base nos resultados conclui-se que a introdução de áreas agrícolas na região de Santarém, é a principal causa de perda de C e N do solo e consequentemente é o uso que mais contribui com as emissões de gases do efeito estufa.
The land use change in the Brazilian Amazon has been identified as the main source of CO2 to the atmosphere due to emissions of soil carbon and nitrogenl. The management practice adopted can strongly influence the soil C and N stocks and may works like a sink or source of C and N to the atmosphere. Furthermore, can be changed: the soil fertility and bulk density as well as the SOM fractions and C source of the SOM. With the objective of evaluate the impact of the land use change in eastern Amazonia soil samples were collected in the main land uses in Santarém region, Para State of Brazil, at three depths: 0-10, 10-20 and 20-30 cm. Through the samples was performed the physicochemical characterization of the areas and were determined the soil C and N contents as well the isotopes ? 13C and ? 15N in order to quantify the soil C and N stocks and understand the SOM dynamics and evaluate the SOM origin. For a subset of samples were performed the physical fractionation of SOM and the determination of microbial biomass C to understand how the land use change may interfere in these fractions. Added to these determinations were estimated the emission factors based on the methodology described by the IPCC. Through the physicochemical characterization study areas can be characterized as a clayey loamy soils. The highest values of pH, macronutrients, CEC , sum of bases and base saturation were observed in croplands (CP), suggesting that the use of practices such as fertilization and liming are able to change the soil fertility patterns in the Amazon, increasing their fertility. For C and N stocks can be said that the land use change in the study area is contributing to the loss of soil C and N, especially when the conversion is done for croplands (CP) and grasslands (GS) areas and the value observed for soil C stocks in the 0-30 cm layer in these areas were 49.21 Mg C ha-1 (GS) and 48.60 Mg C ha-1 (CP). The highest ? 13C value was found in GS, -25.08 ?, suggesting that for these areas is occurring an isotope dilution and that part of the soil C is still remaining from forest. The SOM fractions showed changes in the amount of C and in the proportion of light and occluded fractions, especially in the uses CP and GS. The labile SOM fractions (microbial biomass) also showed a large difference between the UF and CP uses (526.21 and 296.78 mg g-1 of dry soil), indicating that CP affects the soil C and N stocks and also the SOM fractions. The emission factors calculated confirm all results observed for the conversion of UF for CP, and for this use the emission factor was 0.93 ± 0.033, and then this was the use that emitted more C. Based on the results we conclude that the introduction of croplands in Santarem region is the main cause of soil C and N loss and consequently contributes more to the greenhouse gases emission.
APA, Harvard, Vancouver, ISO, and other styles
26

Jiang, Jian. "Impact of Roundup and Clearfield herbicides on soil nutrients, and the biomass, activity and diversity of soil microorganisms." Thesis, 2016. http://hdl.handle.net/2440/114124.

Full text
Abstract:
Front matter only available electronically. The complete thesis in print form is available from the University of Adelaide Library.
Roundup and Clearfield are herbicides that have been widely used globally and their use is expected to increase in the coming years. However, these herbicides may affect soil microbes that are important for soil health because of their roles in cycling carbon and soil nutrients. There have been no studies to explore the effect of Clearfield on microorganisms. In this study, the effect of Roundup and Clearfield GM resistant herbicides on microorganisms was investigated. The experiments were designed to measure soil nutrients (available phosphorus and nitrogen), microbial biomass carbon (MBC), and microbial activity (respiration and enzymes) in the soil every 7 days over a 28 day period. Soil microbial diversity was also measured at 28 days using an amplicon sequencing based approach. The results revealed no positive or negative effects of either herbicide at their recommended and five times recommended rates. This study was conducted on soil samples in the lab, but a larger scale studies on the agronomic effects of the two herbicides on microbes in field environments are recommended.
Thesis (M.Bio.(PB)) -- University of Adelaide, Masters of Biotechnology (Plant Biotechnology), School of Agriculture, Food and Wine, 2016.
APA, Harvard, Vancouver, ISO, and other styles
27

Elmajdoub, Bannur Mohamed Ahmed. "Microbial activity and biomass in saline soils as affected by carbon availability." Thesis, 2014. http://hdl.handle.net/2440/86830.

Full text
Abstract:
Soil salinity is a serious land degradation problem which reduces plant growth and microbial activity due to (1) low osmotic potential which causes plant water stress, and (2) ion toxicity and ion imbalances (nutrient deficiencies) as result of high salt concentrations in the soil solution. Therefore, salinity affects organic matter turnover by influencing the amount of organic matter input in the soil and decomposition rate. Microbial activity and biomass in saline soils have been extensively studied, but a little is known about the effect of organic carbon (OC) addition on adaptation of soil microbes to salinity. The objective of this thesis was to determine the effect of OC availability on adaptation of soil microbial activity and biomass to salinity. In most experiments described in this thesis, one non-saline and four saline soils from the field with similar texture (sandy clay loam) and electrical conductivities in a 1:5 soil: water extract (EC₁﹕₅) of 0.1, 1.1, 3.1 and 5.2 dS m⁻¹ or electrical conductivity of the saturation extract (ECₑ) of 1, 11, 24 and 43 dS m⁻¹ were used. In other experiments a non-saline loamy sand was amended with NaCl to achieve a range of EC levels. The optimum water content for respiration was determined by incubating the soils amended with glucose at different water contents and measuring the respiration for 10 days at 25ºC. Glucose, cellulose or pea residue was used as OC sources. Inorganic nitrogen (N) and phosphorus (P) were added in experiments with glucose and cellulose to ensure that N and P availability did not limit microbial growth. Respiration (CO₂ release) was measured throughout the experiments; microbial biomass C (MBC) at selected sampling dates. Available N and P were measured in the first and second experiment. Microbial community structure was measured in the fifth experiment. The aim of the first experiment was to study the effect of increasing salinity on soil microbial biomass and activity at different addition rates of soluble organic C (glucose). One non-saline and three saline soils with EC₁﹕₅ of 0.1, 1.1, 3.1 and 5.2 dS m⁻¹ were amended with glucose to achieve five carbon concentrations (0, 0.5, 1, 2.5, 5 g C kg⁻¹). N and P were added to achieve a C/N ratio of 20 and a C/P ratio of 200. Soil respiration was measured continuously over 21 days; MBC and available N and P were determined on days 2, 5, 14 and 21. Cumulative respiration was significantly increased with addition of ≥ 0.5 g C kg⁻¹ compared to unamended soils. Cumulative respiration decreased with increasing salinity with smaller relative decrease when C was added than in the soil without C addition. Cumulative respiration decreased with increasing salinity with the strongest decrease in the soils without C addition where, compared to EC 0.1, it was 64% lower at EC 1.1 and 80% lower at EC 5.2. Addition of glucose reduced the negative impact of salinity; with 5 g C kg⁻¹ cumulative respiration decreased by 2% at EC 1.1 and 21% at EC 5.2. MBC concentration was negatively correlated with EC at all C rates and at each sampling date. Addition of C resulted in N and P immobilisation in the first 5 days. Biomass turnover released N and P after day 14, especially in the soils with low EC. It can be concluded that microbes are less affected by increasing EC when they are provided with easily available C. The second experiment was conducted to determine the response of soil microbes to salinity when supplied with different OC forms. One non-saline and three saline soils were amended with 2.5 and 5 g C kg⁻¹ as glucose or cellulose, soluble N and P were added to achieve a C/N=20 and C/P=200. Microbial biomass C and available N and P were determined on days 2, 7, 14 and 21. Cumulative respiration decreased gradually with increasing EC when supplied with glucose, whereas with cellulose it decreased sharply from non-saline to saline soils but differed little among saline soils. Microbial biomass C and available N and P concentrations were highest in the non-saline soil but did not differ among the saline soils. Microbial biomass C concentration was higher and available N was lower with 5 g C kg⁻¹ than with 2.5 g C kg⁻¹. With glucose, microbial biomass was highest on day 2 and then decreased, whereas available N was lowest on day 2 and then increased. With cellulose, microbial biomass C increased gradually over time and available N decreased gradually. It is concluded that salinity decreased the ability of microbes to utilise cellulose more than glucose utilisation. Two incubation experiments (Experiments 3 and 4) were conducted to investigate the effect of increasing EC on microbial biomass and activity when OC was added once in different proportions of glucose and cellulose or when the carbon form is changed over time. Experiment 3 was carried out using three sandy clay loam soils: a non-saline soil and two saline soils (ECe 11 and 43 dS m⁻¹) amended with 5 g C kg⁻¹ as different percentages of glucose and cellulose. The percentages of glucose (G) were 100% and 0-20% and those of cellulose (Ce) were 0-100%. The fourth experiment was conducted with a non-saline loamy sandy soil which was adjusted to ECe 12.5 and 37.4 dS m⁻¹ by addition of NaCl. The form of organic C was maintained or changed over time by adding 1.5 g C kg⁻¹ every two weeks (on days 0, 15 and 29) as glucose (G) or cellulose (Ce): (Ce+Ce+Ce, G+G+G, Ce+Ce+G, G+Ce+Ce, G+Ce+G, Ce+G+Ce). Experiment 3 showed that compared to 100% cellulose, cumulative respiration was increased by mixing small amounts of glucose with cellulose, but the impact of glucose proportion differed with soil EC. Cumulative respiration increased with increasing glucose proportion in the combined treatments when the proportion of glucose was >2.5%. With 100% G cumulative respiration was greater in the non-saline soil than in the soil EC43, however with 100% Ce and all combined treatments, cumulative respiration was significantly higher in the non-saline than in soils EC11 and EC43. There was no further decrease in cumulative respiration from EC11 to EC43 when amended by 100% Ce but it decreased significantly from EC11 to EC43 in the combined treatments except with 10% G. The MBC concentration was lower in saline soils than in the non- saline soil. In Experiment 4, the impact of salinity on cumulative respiration in the two weeks following OC addition depended on C form, treatment and period. Regardless of C form added, the effect of salinity was reduced when C was added repeatedly compared to the first addition indicating that high C availability increases microbial tolerance to salinity. Cumulative respiration increased when glucose was added after cellulose addition. Addition of glucose after cellulose alleviated the adverse effect of high salinity on cumulative respiration compared to the previous period with cellulose or when cellulose was added after glucose. It can be concluded that, mixing small amounts of glucose with cellulose increases activity and growth of soil microbes, but may make microbes more susceptible to salinity compared to cellulose alone. The study also indicated that irrespective of C form added, microbial activity and biomass were less influenced by salinity when C was added frequently compared to the first addition showing that high C availability decreases the negative impact of salinity on soil microbes. To investigate the effect of increasing EC on microbial biomass and activity with repeated addition of plant residues, the fifth experiment was carried out with a non-saline soil (loamy sand, ECe 1 dS m⁻¹) amended with different amounts of NaCl to achieve ECe 12.5, 25 and 50 dS m⁻¹. Two rates of pea residue equivalent to 3.9 and 7.8 g C kg⁻¹ (3.9C and 7.8C) were added on days 0, 15 and 29. In the saline soils compared to the first addition, cumulative respiration per g C added was higher after the second and third addition except with 3.9C at EC50. Compared to the first addition, the relative increase in cumulative respiration in the saline soils was greater with 7.8C than with 3.9C. At the end of experiment, the percentage of added C remaining was lowest at non-saline soil and increased with increasing salinity levels. The MBC concentration at the end of experiment was significantly lower than in the nonsaline soil at EC25 and EC50 with 3.9C, but only at EC50 with 7.8C. Salinity changed the microbial community composition on day 42 assessed by phospholipid fatty acids, but only in the amended soils. It can be concluded that repeated residue addition reduced the adverse effect of salinity on cumulative respiration which indicates that limiting periods of low substrate availability can enhance the adaptation of soil microbes to salinity. This positive effect of residue addition was observed although salinity changed microbial community composition, suggesting that OC addition enables the development of a microbial community that can better adapt to salinity. The aim of the sixth experiment was to assess the response of soil microbes to increasing salinity in rhizosphere compared to non-rhizosphere (bulk) soil using the nonsaline soil (ECe 1 dS m⁻¹). The soil was adjusted to ECe 13 and 19 dS m⁻¹ by adding NaCl and placed in pots. Barley was planted in half of the pots to obtain rhizosphere soil whereas unplanted pots were used for generation of bulk soil. The pots were placed in a greenhouse and soil moisture was maintained throughout by weight. After 5 weeks the planted and unplanted pots were harvested to collect rhizosphere and bulk soils to be used for the following incubation experiment. The EC levels (EC1, EC13 and EC19) from the pot experiment (referred to as original) were either maintained or adjusted to ECe 13, 19, 31 and 44 dS m⁻¹ by adding different amounts of NaCl. Cumulative respiration and microbial biomass C in rhizosphere and bulk soil decreased with increasing adjusted EC. Across the whole range of adjusted ECs, the decrease in cumulative respiration with increasing EC did not differ between rhizosphere and bulk soil. However, compared to the treatments where the EC was maintained, the percentage decrease in cumulative respiration when the EC was increased to EC44 was smaller in rhizosphere than in bulk soil. The smaller decrease in microbial activity at the highest EC level in rhizosphere compared to bulk soil suggests that rhizosphere microbes may be less affected by high salinity than bulk soil microbes. Experiment 7 aimed to determine the response of soil microbial activity and biomass to drying and rewetting of non-saline and saline soils when the salinity levels were maintained or increased upon rewetting. A non- saline loamy sand (EC₁﹕₅ 0.1 dS m⁻¹) was salinized with NaCl to achieve EC₁﹕₅ of 1.5 and 3.5 dS m⁻¹ (initial EC). The soils were amended pea straw at 20 g kg⁻¹ before the moisture treatments began. The soils were divided into two portions, one portion was dried for four days and the second portion was maintained at 40 % of water holding capacity (WHC). The soils were then wetted to 75% WHC with either water to maintain the EC (EC0.1, EC1.5 or EC3.5) or amended with NaCl to achieve the following EC levels: EC0.1 was increased to 1.5, 2.5 and 3.5 dS m⁻¹. EC1.5 was adjusted to 2.5 and 3.5 dS m⁻¹ and EC3.5 was increased to 4.5 dS m⁻¹. A respiration flush upon rewetting only occurred in the initially non-saline soil when the EC was maintained, but not when the EC was increased. At the end of the experiment (day 25), cumulative respiration was higher in the dried and rewet (DRW) treatment compared to the treatment that was maintained moist (CM) only in the initially non-saline soil when the EC was not increased. Cumulative respiration decreased with increasing EC compared to the treatments where the EC was maintained only in treatments with initially EC0.1 where the reduction was greater in DRW compared to CM. The MBC concentration was higher in the treatments in which the EC was maintained compared to the treatments where the EC was increased in both moisture treatments. When the EC was increased, the MBC concentration at the end of the experiment was greater in DRW compared to CM only in soil with initial EC0.1. However, in the saline soils (EC1.5 and EC3.5) when the EC was maintained or increased; the MBC concentration did not differ between moisture treatments. The experiment showed that in the initial nonsaline soil, increasing the EC upon rewetting inhibits the ability of microbes to decompose substrates released after rewetting. Drying and rewetting did not consistently increase the sensitivity of soil microbes to salinity compared to constantly moist soil.
Thesis (Ph.D.) -- University of Adelaide, School of Agriculture, Food and Wine, 2014
APA, Harvard, Vancouver, ISO, and other styles
28

Wong, Vanessa. "The effects of salinity and sodicity on soil organic carbon stocks and fluxes." Phd thesis, 2007. http://hdl.handle.net/1885/49369.

Full text
Abstract:
...¶ This thesis describes a range of laboratory and field investigations on the effects of salinity and sodicity on SOC dynamics.¶ In this research, the effects of a range of salinity and sodicity levels on C dynamics were determined by subjecting a vegetated soil from Bevendale, New South Wales (NSW) to one of six treatments. A low, mid or high salinity solution (EC 0.5, 10 or 30 dS/m) combined with a low or high sodicity solution (SAR 1 or 30) in a factorial design was leached through a non-degraded soil in a controlled environment. Soil respiration and the SMB were measured over a 12-week experimental period. The greatest increases in SMB occurred in treatments of high-salinity high-sodicity, and high-salinity low-sodicity. This was attributed to solubilisation of SOM which provided additional substrate for decomposition for the microbial population. Thus, as salinity and sodicity increase in the field, soil C is likely to be rapidly lost as a result of increased mineralisation.¶...
APA, Harvard, Vancouver, ISO, and other styles
29

"Soil Microbial Responses to Different Precipitation Regimes Across a Southwestern United States Elevation Gradient." Master's thesis, 2019. http://hdl.handle.net/2286/R.I.55561.

Full text
Abstract:
abstract: Soil organic carbon (SOC) is a critical component of the global carbon (C) cycle, accounting for more C than the biotic and atmospheric pools combined. Microbes play an important role in soil C cycling, with abiotic conditions such as soil moisture and temperature governing microbial activity and subsequent soil C processes. Predictions for future climate include warmer temperatures and altered precipitation regimes, suggesting impacts on future soil C cycling. However, it is uncertain how soil microbial communities and subsequent soil organic carbon pools will respond to these changes, particularly in dryland ecosystems. A knowledge gap exists in soil microbial community responses to short- versus long-term precipitation alteration in dryland systems. Assessing soil C cycle processes and microbial community responses under current and altered precipitation patterns will aid in understanding how C pools and cycling might be altered by climate change. This study investigates how soil microbial communities are influenced by established climate regimes and extreme changes in short-term precipitation patterns across a 1000 m elevation gradient in northern Arizona, where precipitation increases with elevation. Precipitation was manipulated (50% addition and 50% exclusion of ambient rainfall) for two summer rainy seasons at five sites across the elevation gradient. In situ and ex situ soil CO2 flux, microbial biomass C, extracellular enzyme activity, and SOC were measured in precipitation treatments in all sites. Soil CO2 flux, microbial biomass C, extracellular enzyme activity, and SOC were highest at the three highest elevation sites compared to the two lowest elevation sites. Within sites, precipitation treatments did not change microbial biomass C, extracellular enzyme activity, and SOC. Soil CO2 flux was greater under precipitation addition treatments than exclusion treatments at both the highest elevation site and second lowest elevation site. Ex situ respiration differed among the precipitation treatments only at the lowest elevation site, where respiration was enhanced in the precipitation addition plots. These results suggest soil C cycling will respond to long-term changes in precipitation, but pools and fluxes of carbon will likely show site-specific sensitivities to short-term precipitation patterns that are also expected with climate change.
Dissertation/Thesis
Masters Thesis Biology 2019
APA, Harvard, Vancouver, ISO, and other styles
30

Braman, Sarah. "Soil health after 19 years under organic and conventional agriculture and restored prairie grassland." 2012. http://hdl.handle.net/1993/8918.

Full text
Abstract:
The Glenlea long-term study, located in Manitoba was established in 1992 to compare organic, conventional, no-input and restored prairie grass land management practices. Microbial biomass carbon (MBC), microbial metabolic quotient (qCO2), microbial biomass phosphorus, and microbial nitrous oxide quotient (qN2O) were measured to evaluate soil health. MBC and activity were higher in the forage-grain (MBC= 1613 µg-MBC/g-dry soil; qCO2= 0.75 mg CO2-C/g-dry soil/hr) rotation compared to the annual (MBC= 1124 µg-MBC/g-dry soil; qCO2= 0.60 mg CO2-C/g-dry soil/hr). The forage-grain organic system (1718 µg-MBC/g-dry soil) had the highest MBC compared to its conventional (1476 µg-MBC/g-dry soil) counterpart and behaved similarly to the restored grassland prairie (MBC= 1668 µg-MBC/g-dry soil; qCO2= 1.46 mg CO2-C/g-dry soil/hr). Rotation was significant (P<0.0001) for most variables, suggesting rotation has a strong influence on soil microbial characteristics. Agricultural management practices like perennial organic systems, mimic natural prairies and have the greatest capacity to sustain soil microbial life.
APA, Harvard, Vancouver, ISO, and other styles
31

Butterly, Clayton Robert. "Drying/rewetting cycles in southern Australian agricultural soils: effects on turnover of soil phosphorus, carbon and the microbial biomass." 2008. http://hdl.handle.net/2440/48167.

Full text
Abstract:
Phosphorus (P) limitations to agricultural productivity commonly occur in Australian soils and have largely been overcome by the use of inorganic fertilisers. However, studies have shown that most of the P taken up by plants is from native P pools. The turnover of P and native soil organic matter may be strongly affected by drying and rewetting (DRW). Rewetting dry soil results in a pulse of respiration activity and available nutrients. In Mediterranean-type climates surface soils naturally undergo recurrent DRW cycles. In southern Australia, soils experience DRW due to erratic rainfall within the growing season, and short, high intensity thunderstorms also during summer periods. The principal objective of this thesis was to determine the significance of dry-rewet events, for altering P availability and cycling in agricultural soils in Australia. Soils representing a wide range of soil types and climatic zones of southern Australia, showed large flushes in carbon (C) mineralisation after a single DRW event. For some soils these were comparable with reported values, however large variability in flush size between soils was observed. Soils that commonly experience DRW did not appear to be more resilient to DRW than soils from areas with fewer DRW events. Even when soils had relatively small respiration flushes, as a result of low soil organic matter, a high proportion of the soil C was mineralised after rewetting. Soil physiochemical properties (total C, total N, organic C, humus, microbial biomass P, organic P, sand and silt) were correlated to the size of the flush, hence nutrient availability and soil texture appear to primarily determine flush size. Therefore, the influence of climate on DRW may relate to determining the quantity of organic matter and microbial biomass that is available for turnover. Different size and composition of the microbial biomass within the same soil matrix were achieved by adding three different C substrates (glucose, starch and cellulose at 2.5 g kg-¹) at 5 times over 25 weeks. The treatments showed disparate responses to DRW, due to greater biomass (larger flushes) and effects of community composition, highlighting the central role of the soil microbes in DRW processes. When subjected to multiple DRW events these soils showed smaller rewetting respiration flushes with subsequent rewetting events. In contrast, the amount of P released after rewetting was the same. This study showed that increases in P after rewetting were transient and rapid immobilisation of P by microbes occurred, which may limit the availability to plants. The composition of the microbial community was changed by DRW with a reduction in fungi and gram negative bacteria, showing that certain species are more susceptible to DRW than others. Closer investigation at 2 hourly intervals after rewetting confirmed the transient nature of P flushes. The response in microbial respiration after rewetting was immediate, with the highest activity occurring within the first 2 h. Phosphorus availability was increased by DRW but remained stable over the following 48 h incubation period. The study highlights the rapid nature of changes in available nutrients after rewetting. Furthermore, while potentially only a small component of the P flush that occurred, the DRW soil had higher levels of P than most incubated soil at 48 h, this would be potentially available for plant uptake or movement with the soil solution. Long-term water regimes (continuously moist or air-dry, or DRW occurring at different times during incubation) that were imposed on two soils from different climatic regions over a 14 wk period, did not alter available nutrient (P and C) pools or the size of the microbial biomass. However, these long-term water regimes determined the respiration response of the soils to experimental DRW. The largest flushes occurred in the treatment with the longest dry period, and confirm findings of reported studies that the response of a soil at rewetting is determined by the length of the period that it is dried. Microbial biomass was little affected by experimental DRW, but showed large changes in C:P ratio. Thus, changes in physiological state or community composition may be more affected by DRW than the size of the microbial biomass. Microbial communities were altered by DRW irrespective of climatic history (warm wet summer and temperate Mediterranean), however these changes were not related to specific groups of organisms. In addition, the disparate respiration responses and inhibition of phosphatase by DRW, indicate that functional changes may be induced by DRW but can not be sufficiently explained by quantifying available nutrient pools or the microbial biomass. The use of wheat seedlings bio-indicators of P availability after the long-term water regimes, confirmed that plant available P was altered by DRW, indicated by differences in growth, although the large variability in seedling growth made it difficult to quantify these differences. However, the distribution of labile P, available at planting, in soil and plant pools at harvest, showed that long-term water regimes increased P allocation in plant tissue in one soil and decreased it in another. Furthermore, only a small fraction of the labile P present at planting was taken up by plants, which confirms the superior ability of soil microbes to immobilise P that is released by DRW. Nevertheless, since the long-term water regimes increased P availability, this may be transported via surface water or leaching. DRW is important for C and P turnover in soils of southern Australia. However, P flushes occur rapidly after rewetting and are transient. Therefore, DRW appears to have only minor consequences for P availability to plants.
http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1321018
Thesis (Ph.D.) -- University of Adelaide, School of Earth and Environmental Sciences, 2008
APA, Harvard, Vancouver, ISO, and other styles
32

Frederick, Kurt R. "Productivity and carbon accumulation potential of transferred biofilms in reclaimed oil sands-affected wetlands." Master's thesis, 2010. http://hdl.handle.net/10048/1667.

Full text
Abstract:
Biofilms are significant contributors to primary production, nutrient cycling, bio-stabilization and the food web of wetland ecosystems. Photoautotrophic biomass (PB) and primary production (PP) were determined for biofilms exposed to various treatments and materials in wetlands near Fort McMurray. Biofilm additions and oil sands process-affected materials were expected to increase the microbial colonization rates on treated substrates and subsequently PB and PP of biofilms over time as compared to controls and unaffected materials. Biofilms survived the transfers and colonized new substrates immediately. Oil sands process affected materials were found to increase PB and PP throughout the first year. A strong decreasing trend for both PB and PP in treatment microcosms occurred in year two, eventually coalescing with control conditions at a lower equilibrium. Transferred biofilms and treatment materials, therefore, increased overall wetland productivity during the initial stages of wetland development when growing conditions are most limiting.
Land Reclamation and Remediation
APA, Harvard, Vancouver, ISO, and other styles
33

Vicena, Jakub. "Vliv diversity mikrobiálního společenstva na dekomposici organické hmoty." Master's thesis, 2016. http://www.nusl.cz/ntk/nusl-344019.

Full text
Abstract:
Microbial diversity plays an important role in the decomposition of soil organic matter. However, the drivers of this dependence still remain unclear. The work is based on long-term monitoring of soils of different successional stages of different diversity. Soil sampling was conducted on two dumps after brown coal mining in the Sokolov. Soils were X ray sterilized and inoculated by inoculum from both soils in two inoculation density which create gradient of microbial diversity. Then microbial respiration was measured in either supplied or not supplied by litter of Calamagrostis epigejos. Results showed a strong positive correlation between the microbial diversity and decomposition of organic matter if the microbial community is limited by available carbon. If there isn't carbon limit available, the decomposition rate is controlled by the amount of microbial biomass. Results demonstrated positive correlation between the rate of decomposition and the amount of fungal biomass. The soils with the addition of leaf litter showed priming effect in the initial stage of decomposition. In the control samples without addition of litter priming effect wasn't observed. Increasing humidity led to increase of decomposition rate. We can conclude with a clear conscience that similarly conclusive results associated...
APA, Harvard, Vancouver, ISO, and other styles
34

Lemanski, Kathleen. "Structure of and carbon flux through soil food webs of temperate grassland as affected by land use management." Doctoral thesis, 2014. http://hdl.handle.net/11858/00-1735-0000-0023-992E-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

STAŇKOVÁ, Pavla. "The effect of forest management and plant dominant on nitrogen transformation in soils of acidified mountain spruce forests in the Bohemian Forest National Park." Master's thesis, 2013. http://www.nusl.cz/ntk/nusl-166251.

Full text
Abstract:
The aim of this study was to compare and contrast mineral and microbial nitrogen concentrations in soils of semi-natural and natural mountain spruce forests in the Březník area, the Bohemian Forest National Park, under dead wood and four plant dominants with respect to different forest management after windstorm and bark beetle events applied in 1997.
APA, Harvard, Vancouver, ISO, and other styles
36

Bagherzadeh, Chaharjouee Ali. "Mechanisms of Carbon and Nitrogen transformations in Forest floors of Beech-, Spruce- and Mixed Beech-Spruce Stands." Doctoral thesis, 2004. http://hdl.handle.net/11858/00-1735-0000-0006-B108-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

John, Bettina Maria. "Kohlenstoffumsatz in aggregierten Böden bestimmt mit Hilfe der natürlichen 13C Abundanz." Doctoral thesis, 2003. http://hdl.handle.net/11858/00-1735-0000-0006-AB54-F.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Horváth, Balázs. "Auswirkungen von Ökosystemmanipulationen auf Vorratsänderung und Freisetzung von C- und N- Verbindungen." Doctoral thesis, 2006. http://hdl.handle.net/11858/00-1735-0000-0006-B0ED-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography