Journal articles on the topic 'Microbe-mineral Interaction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Microbe-mineral Interaction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
OLSSON-FRANCIS, K., R. VAN HOUDT, M. MERGEAY, N. LEYS, and C. S. COCKELL. "Microarray analysis of a microbe-mineral interaction." Geobiology 8, no. 5 (August 15, 2010): 446–56. http://dx.doi.org/10.1111/j.1472-4669.2010.00253.x.
Full textCuadros, Javier. "Clay minerals interaction with microorganisms: a review." Clay Minerals 52, no. 2 (June 2017): 235–61. http://dx.doi.org/10.1180/claymin.2017.052.2.05.
Full textXia, Jin Lan, Hong Chang Liu, Zhen Yuan Nie, Hong Rui Zhu, Yun Yang, Lei Wang, Jian Jun Song, et al. "Characterization of Microbe-Mineral Interfacial Interaction Based on Synchrotron Radiation Techniques." Advanced Materials Research 1130 (November 2015): 123–26. http://dx.doi.org/10.4028/www.scientific.net/amr.1130.123.
Full textMhonde, Ngoni, Mariette Smart, Kirsten Corin, and Nora Schreithofer. "Investigating the Electrochemical Interaction of a Thiol Collector with Chalcopyrite and Galena in the Presence of a Mixed Microbial Community." Minerals 10, no. 6 (June 19, 2020): 553. http://dx.doi.org/10.3390/min10060553.
Full textBreier, J. A., S. N. White, and C. R. German. "Mineral–microbe interactions in deep-sea hydrothermal systems: a challenge for Raman spectroscopy." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, no. 1922 (July 13, 2010): 3067–86. http://dx.doi.org/10.1098/rsta.2010.0024.
Full textHochella, M. F. "Sustaining Earth: Thoughts on the present and future roles of mineralogy in environmental science." Mineralogical Magazine 66, no. 5 (October 2002): 627–52. http://dx.doi.org/10.1180/0026461026650053.
Full textYang, Kiho, Hanbeom Park, and Jinwook Kim. "Application of Electron Energy Loss Spectroscopy - Spectrum Imaging (EELS-SI) for Microbe-mineral Interaction." Journal of the mineralogical society of korea 32, no. 1 (March 31, 2019): 63–69. http://dx.doi.org/10.9727/jmsk.2019.32.1.63.
Full textSanyal, Santonu Kumar, and Jeremiah Shuster. "Gold particle geomicrobiology: Using viable bacteria as a model for understanding microbe–mineral interactions." Mineralogical Magazine 85, no. 1 (February 2021): 117–24. http://dx.doi.org/10.1180/mgm.2021.19.
Full textXia, Jinlan, Hongchang Liu, Zhenyuan Nie, Xiaolu Fan, Duorui Zhang, Xingfu Zheng, Lizhu Liu, Xuan Pan, and Yuhang Zhou. "Taking insights into phenomics of microbe-mineral interaction in bioleaching and acid mine drainage: Concepts and methodology." Science of The Total Environment 729 (August 2020): 139005. http://dx.doi.org/10.1016/j.scitotenv.2020.139005.
Full textSusilawati, Dr Rita. "Bioremediation Experiment Using Hydrocarbon Degrading Bacteria." Jurnal Geologi dan Sumberdaya Mineral 20, no. 1 (February 4, 2019): 1. http://dx.doi.org/10.33332/jgsm.2019.v20.1.1-7.
Full textSusilawati, Rita. "Bioremediation Experiment Using Hydrocarbon Degrading Bacteria." Jurnal Geologi dan Sumberdaya Mineral 20, no. 1 (February 4, 2019): 1. http://dx.doi.org/10.33332/jgsm.geologi.20.1.1-7.
Full textSusilawati, Rita. "Bioremediation Experiment Using Hydrocarbon Degrading Bacteria." Jurnal Geologi dan Sumberdaya Mineral 20, no. 1 (February 4, 2019): 1. http://dx.doi.org/10.33332/jgsm.geologi.v20i1.335.
Full textSusilawati, Dr Rita. "Bioremediation Experiment Using Hydrocarbon Degrading Bacteria." Jurnal Geologi dan Sumberdaya Mineral 20, no. 1 (February 4, 2019): 1. http://dx.doi.org/10.33332/jgsm.v20i1.335.
Full textThormann, Kai M., Renée M. Saville, Soni Shukla, Dale A. Pelletier, and Alfred M. Spormann. "Initial Phases of Biofilm Formation in Shewanella oneidensis MR-1." Journal of Bacteriology 186, no. 23 (December 1, 2004): 8096–104. http://dx.doi.org/10.1128/jb.186.23.8096-8104.2004.
Full textVu, Minh Thiet, Almando Geraldi, Hoang Dang Khoa Do, Arif Luqman, Hoang Danh Nguyen, Faiza Nur Fauzia, Fahmi Ikhlasul Amalludin, et al. "Soil Mineral Composition and Salinity Are the Main Factors Regulating the Bacterial Community Associated with the Roots of Coastal Sand Dune Halophytes." Biology 11, no. 5 (April 30, 2022): 695. http://dx.doi.org/10.3390/biology11050695.
Full textDasgupta, Shamik, Xiaotong Peng, and Kaiwen Ta. "Interaction between Microbes, Minerals, and Fluids in Deep-Sea Hydrothermal Systems." Minerals 11, no. 12 (November 26, 2021): 1324. http://dx.doi.org/10.3390/min11121324.
Full textZheng, Xingfu, Xuan Pan, Zhenyuan Nie, Yi Yang, Lizhu Liu, Hongying Yang, and Jinlan Xia. "Combined DFT and XPS Investigation of Cysteine Adsorption on the Pyrite (1 0 0) Surface." Minerals 8, no. 9 (August 23, 2018): 366. http://dx.doi.org/10.3390/min8090366.
Full textRasmann, Sergio, and Ivan Hiltpold. "Root Exudation of Specialized Molecules for Plant-Environment Interaction." CHIMIA 76, no. 11 (November 30, 2022): 922. http://dx.doi.org/10.2533/chimia.2022.922.
Full textLee, M. R., D. J. Brown, M. E. Hodson, M. Mackenzie, and C. L. Smith. "Weathering microenvironments on feldspar surfaces: implications for understanding fluid-mineral reactions in soils." Mineralogical Magazine 72, no. 6 (December 2008): 1319–28. http://dx.doi.org/10.1180/minmag.2008.072.6.1319.
Full textZiolkowski, L. A., N. C. S. Mykytczuk, C. R. Omelon, H. Johnson, L. G. Whyte, and G. F. Slater. "Arctic gypsum endoliths: a biogeochemical characterization of a viable and active microbial community." Biogeosciences 10, no. 11 (November 27, 2013): 7661–75. http://dx.doi.org/10.5194/bg-10-7661-2013.
Full textYuliatin, Ervinda. "The Ecological Significance of Plant Growth Promoting Rhizobacteria in Tropical Soil Kalimantan: A Narrative Review." Journal of Tropical Life Science 13, no. 2 (May 25, 2023): 407–20. http://dx.doi.org/10.11594/jtls.13.02.20.
Full textDong, H., D. P. Jaisi, J. Kim, and G. Zhang. "Microbe-clay mineral interactions." American Mineralogist 94, no. 11-12 (November 1, 2009): 1505–19. http://dx.doi.org/10.2138/am.2009.3246.
Full textEl-Sawah, Ahmed M., Ali El-Keblawy, Dina Fathi Ismail Ali, Heba M. Ibrahim, Mohamed A. El-Sheikh, Anket Sharma, Yousef Alhaj Hamoud, et al. "Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Enhance Soil Key Enzymes, Plant Growth, Seed Yield, and Qualitative Attributes of Guar." Agriculture 11, no. 3 (February 27, 2021): 194. http://dx.doi.org/10.3390/agriculture11030194.
Full textRamirez-Villacis, Dario X., Andrea Pinos-Leon, Pamela Vega-Polo, Isai Salas-González, Corbin D. Jones, and Maria de Lourdes Torres. "Untangling the Effects of Plant Genotype and Soil Conditions on the Assembly of Bacterial and Fungal Communities in the Rhizosphere of the Wild Andean Blueberry (Vaccinium floribundum Kunth)." Microorganisms 11, no. 2 (February 4, 2023): 399. http://dx.doi.org/10.3390/microorganisms11020399.
Full textDong, Hailiang. "Mineral-microbe interactions: a review." Frontiers of Earth Science in China 4, no. 2 (March 27, 2010): 127–47. http://dx.doi.org/10.1007/s11707-010-0022-8.
Full textZiolkowski, L. A., N. C. S. Mykytczuk, C. R. Omelon, H. Johnson, L. G. Whyte, and G. F. Slater. "Arctic Gypsum Endoliths: a biogeochemical characterization of a viable and active microbial community." Biogeosciences Discussions 10, no. 2 (February 8, 2013): 2269–304. http://dx.doi.org/10.5194/bgd-10-2269-2013.
Full textJohnston, Vanessa, Andrea Martín-Pérez, Sara Skok, and Janez Mulec. "Microbially-mediated carbonate dissolution and precipitation; towards a protocol for ex-situ, cave-analogue cultivation experiments." International Journal of Speleology 50, no. 2 (April 2021): 137–55. http://dx.doi.org/10.5038/1827-806x.50.2.2372.
Full textAsadi, Mohammad, Farzad Rasouli, Trifa Amini, Mohammad Bagher Hassanpouraghdam, Somaye Souri, Sona Skrovankova, Jiri Mlcek, and Sezai Ercisli. "Improvement of Photosynthetic Pigment Characteristics, Mineral Content, and Antioxidant Activity of Lettuce (Lactuca sativa L.) by Arbuscular Mycorrhizal Fungus and Seaweed Extract Foliar Application." Agronomy 12, no. 8 (August 18, 2022): 1943. http://dx.doi.org/10.3390/agronomy12081943.
Full textNie, Zhen Yuan, Hong Chang Liu, Jin Lan Xia, Huan Liu, Yun Lu Cui, and Guan Zhou Qiu. "Evolution of Compositions and Contents of Capsule and Slime EPSs for Adaptation to and Action on Energy Substrates and Heavy Metals by Typical Bioleaching Microorganisms." Solid State Phenomena 262 (August 2017): 466–70. http://dx.doi.org/10.4028/www.scientific.net/ssp.262.466.
Full textDong, Hailiang, and Anhuai Lu. "Geomicrobiology Research in China: Mineral-Microbe Interactions." Geomicrobiology Journal 29, no. 3 (April 2012): 197–98. http://dx.doi.org/10.1080/01490451.2012.640602.
Full textDong, Hailiang. "Electron Microscopic Characterization of Mineral-Microbe Interactions." Microscopy and Microanalysis 25, S2 (August 2019): 2350–51. http://dx.doi.org/10.1017/s1431927619012480.
Full textMapelli, Francesca, Ramona Marasco, Annalisa Balloi, Eleonora Rolli, Francesca Cappitelli, Daniele Daffonchio, and Sara Borin. "Mineral–microbe interactions: Biotechnological potential of bioweathering." Journal of Biotechnology 157, no. 4 (February 2012): 473–81. http://dx.doi.org/10.1016/j.jbiotec.2011.11.013.
Full textGates, Will P. "Methods for Study of Microbe-Mineral Interactions." Clays and Clay Minerals 56, no. 1 (February 2008): 128–29. http://dx.doi.org/10.1007/bf03406036.
Full textDong, H., and A. Lu. "Mineral-Microbe Interactions and Implications for Remediation." Elements 8, no. 2 (April 1, 2012): 95–100. http://dx.doi.org/10.2113/gselements.8.2.95.
Full textSaunders, Scott H., and Dianne K. Newman. "Extracellular Electron Transfer Transcends Microbe-Mineral Interactions." Cell Host & Microbe 24, no. 5 (November 2018): 611–13. http://dx.doi.org/10.1016/j.chom.2018.10.018.
Full textHudson-Edwards, Karen, and Joanne Santini. "Arsenic-Microbe-Mineral Interactions in Mining-Affected Environments." Minerals 3, no. 4 (October 9, 2013): 337–51. http://dx.doi.org/10.3390/min3040337.
Full textHU, R., S. LI, F. LI, M. YANG, Z. JIN, X. LI, and F. ZHANG. "MINERAL-MICROBE INTERACTIONS: BACTERIALLY INDUCED HYDRATION OF BIOTITE." Applied Ecology and Environmental Research 19, no. 3 (2021): 2037–47. http://dx.doi.org/10.15666/aeer/1903_20372047.
Full textSiradje, Andi Lindhemuthianingrum, Irfan D. Prijambada, and Endah Retnaningrum. "Biofilm Formation of Pseudomonas geniculata (Wright, 1895) Chester, 1901 on Three Fungals Species: Relationship with Incubation Time and Fungal Diameter Size." KnE Life Sciences 3, no. 4 (March 27, 2017): 28. http://dx.doi.org/10.18502/kls.v3i4.684.
Full textScott, Jill R., Beizhan Yan, and Daphne L. Stoner. "Spatially-correlated mass spectrometric analysis of microbe–mineral interactions." Journal of Microbiological Methods 67, no. 2 (November 2006): 381–84. http://dx.doi.org/10.1016/j.mimet.2006.04.020.
Full textKemner, K. M., E. J. O'Loughlin, S. D. Kelly, and M. I. Boyanov. "Synchrotron X-ray Investigations of Mineral-Microbe-Metal Interactions." Elements 1, no. 4 (September 1, 2005): 217–21. http://dx.doi.org/10.2113/gselements.1.4.217.
Full textMishra, Bhoopesh. "Towards a mechanistic understanding of mercury–microbe/mineral interactions." Acta Crystallographica Section A Foundations and Advances 73, a2 (December 1, 2017): C333. http://dx.doi.org/10.1107/s2053273317092403.
Full textBrown, G. E., Y. Wang, A. Gélabert, J. Ha, C. Cismasu, G. Ona-Nguema, K. Benzerara, et al. "Synchrotron X-ray studies of heavy metal mineral-microbe interactions." Mineralogical Magazine 72, no. 1 (February 2008): 169–73. http://dx.doi.org/10.1180/minmag.2008.072.1.169.
Full textPett-Ridge, Jennifer, and Mary K. Firestone. "Using stable isotopes to explore root-microbe-mineral interactions in soil." Rhizosphere 3 (June 2017): 244–53. http://dx.doi.org/10.1016/j.rhisph.2017.04.016.
Full textCockell, Charles S. "Geomicrobiology beyond Earth: microbe–mineral interactions in space exploration and settlement." Trends in Microbiology 18, no. 7 (July 2010): 308–14. http://dx.doi.org/10.1016/j.tim.2010.03.005.
Full textCockell, Charles S. "Synthetic geomicrobiology: engineering microbe–mineral interactions for space exploration and settlement." International Journal of Astrobiology 10, no. 4 (May 27, 2011): 315–24. http://dx.doi.org/10.1017/s1473550411000164.
Full textEdwards, Katrina J., Wolfgang Bach, and Thomas M. McCollom. "Geomicrobiology in oceanography: microbe–mineral interactions at and below the seafloor." Trends in Microbiology 13, no. 9 (September 2005): 449–56. http://dx.doi.org/10.1016/j.tim.2005.07.005.
Full textVaughan, David J., and Jonathan R. Lloyd. "Mineral-organic-microbe interactions: Environmental impacts from molecular to macroscopic scales." Comptes Rendus Geoscience 343, no. 2-3 (February 2011): 140–59. http://dx.doi.org/10.1016/j.crte.2010.10.005.
Full textLoudon, Claire-Marie, Natasha Nicholson, Kai Finster, Natalie Leys, Bo Byloos, Rob Van Houdt, Petra Rettberg, et al. "BioRock: new experiments and hardware to investigate microbe–mineral interactions in space." International Journal of Astrobiology 17, no. 4 (July 24, 2017): 303–13. http://dx.doi.org/10.1017/s1473550417000234.
Full textAhmed, Engy, and Sara J. M. Holmström. "Microbe–mineral interactions: The impact of surface attachment on mineral weathering and element selectivity by microorganisms." Chemical Geology 403 (May 2015): 13–23. http://dx.doi.org/10.1016/j.chemgeo.2015.03.009.
Full textDAVIS, K. J., K. H. NEALSON, and A. LÜTTGE. "Calcite and dolomite dissolution rates in the context of microbe?mineral surface interactions." Geobiology 5, no. 2 (June 2007): 191–205. http://dx.doi.org/10.1111/j.1472-4669.2007.00112.x.
Full text