Academic literature on the topic 'Microalgal bioreactor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Microalgal bioreactor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Microalgal bioreactor"
Stiawan, Elva. "Evaluation of The Biochemical Contents in Guillard f/2 and Walne Growth Medium to Fulfill the Animal-Free Aspects of Microalgal Bioprocessing." Indonesian Journal of Chemical Studies 1, no. 2 (December 13, 2022): 49–53. http://dx.doi.org/10.55749/ijcs.v1i2.16.
Full textNguyen, Luong N., Minh V. Truong, Anh Q. Nguyen, Md Abu Hasan Johir, Audrey S. Commault, Peter J. Ralph, Galilee U. Semblante, and Long D. Nghiem. "A sequential membrane bioreactor followed by a membrane microalgal reactor for nutrient removal and algal biomass production." Environmental Science: Water Research & Technology 6, no. 1 (2020): 189–96. http://dx.doi.org/10.1039/c9ew00851a.
Full textOrlando, Aliff Muhammad, Sulthan Rafii Ardiansyah, Arif Rahman, Nining Betawati Prihantini, and Nasruddin. "Effects of aeration intensity as agitation in simple photobioreactors on leptolyngbya (cyanobacteria) growth as biofuel feedstock." E3S Web of Conferences 67 (2018): 02011. http://dx.doi.org/10.1051/e3sconf/20186702011.
Full textMorowvat, Mohammad H., and Younes Ghasemi. "Maximizing Biomass and Lipid Production in Heterotrophic Culture of Chlorella vulgaris: Techno-Economic Assessment." Recent Patents on Food, Nutrition & Agriculture 10, no. 2 (September 18, 2019): 115–23. http://dx.doi.org/10.2174/2212798410666180911100034.
Full textVasilieva, Svetlana, Alexandr Lukyanov, Christina Antipova, Timofei Grigoriev, Elena Lobakova, Olga Chivkunova, Pavel Scherbakov, et al. "Interactive Effects of Ceftriaxone and Chitosan Immobilization on the Production of Arachidonic Acid by and the Microbiome of the Chlorophyte Lobosphaera sp. IPPAS C-2047." International Journal of Molecular Sciences 24, no. 13 (July 1, 2023): 10988. http://dx.doi.org/10.3390/ijms241310988.
Full textPaik, Sang-Min, Sang-Jun Sim, and Noo Li Jeon. "Microfluidic perfusion bioreactor for optimization of microalgal lipid productivity." Bioresource Technology 233 (June 2017): 433–37. http://dx.doi.org/10.1016/j.biortech.2017.02.050.
Full textMori, K., H. Ohya, K. Matsumoto, and H. Furune. "Sunlight supply and gas exchange systems in microalgal bioreactor." Advances in Space Research 7, no. 4 (January 1987): 47–52. http://dx.doi.org/10.1016/0273-1177(87)90031-7.
Full textSurisetty, Kartik, Hector De la Hoz Siegler, William C. McCaffrey, and Amos Ben-Zvi. "Robust modeling of a microalgal heterotrophic fed-batch bioreactor." Chemical Engineering Science 65, no. 19 (October 2010): 5402–10. http://dx.doi.org/10.1016/j.ces.2010.06.008.
Full textLoomba, Varun, Eric von Lieres, and Gregor Huber. "How Do Operational and Design Parameters Effect Biomass Productivity in a Flat-Panel Photo-Bioreactor? A Computational Analysis." Processes 9, no. 8 (August 10, 2021): 1387. http://dx.doi.org/10.3390/pr9081387.
Full textMetsoviti, Maria N., George Papapolymerou, Ioannis T. Karapanagiotidis, and Nikolaos Katsoulas. "Effect of Light Intensity and Quality on Growth Rate and Composition of Chlorella vulgaris." Plants 9, no. 1 (December 24, 2019): 31. http://dx.doi.org/10.3390/plants9010031.
Full textDissertations / Theses on the topic "Microalgal bioreactor"
Jones, Sarah Melissa Jane. "Mixing, mass transfer and energy analysis across bioreactor types in microalgal cultivation and lipid production." Doctoral thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/20064.
Full textKlein, Bruno Colling 1987. "Cultivo de microalgas para produção de bioetanol de terceira geração." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/266647.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química
Made available in DSpace on 2018-08-22T08:48:28Z (GMT). No. of bitstreams: 1 Klein_BrunoColling_M.pdf: 2562214 bytes, checksum: f891de86d253786cf5d2101fec1f3eba (MD5) Previous issue date: 2013
Resumo: A busca por uma maior sustentabilidade tem levado a uma mudança em direção à utilização de fontes renováveis para geração de energia em detrimento do uso de combustíveis fósseis, visando a uma modificação na matriz energética global. A utilização da biomassa de microalgas para produção de biocombustíveis vem sendo vista como uma alternativa promissora, uma vez que o seu cultivo proporciona produtividades em carboidratos e lipídios superiores às matérias-primas vegetais convencionalmente utilizadas na obtenção de etanol e biodiesel. Neste contexto, o objetivo da presente dissertação de mestrado foi avaliar a produção de biomassa da microalga clorofícea Chlorella vulgaris em fotobiorreator de placa plana em diferentes condições de fluxo luminoso, concentração de CO2 na alimentação gasosa e concentração de NaNO3 no meio de cultivo, visando o acúmulo de carboidratos para obtenção de bioetanol de terceira geração. As influências das variáveis nutricionais e de processo sobre a eficiência fotossintética das microalgas também foram estimadas para determinação do estado fisiológico das culturas. A produtividade média de biomassa e a concentração máxima final das microalgas foram significativamente afetadas pela incidência de radiação luminosa e pela suplementação de CO2 gasoso, obtendo-se maiores produtividades de carboidratos em cultivos com alto fluxo luminoso e concentrações de CO2 intermediárias (7,5%). Também foi observado o efeito positivo do aumento do fotoperíodo sobre o crescimento das microalgas. Através de hidrólise ácida foi possível atingir concentrações de até 2 g L-1 de açúcares fermentescíveis no hidrolisado a partir de biomassa de microalgas cultivadas em meio com baixo teor de nitrogênio. A fermentação etanólica foi então conduzida com a levedura Dekkerabruxellensis capaz de converter diferentes hexoses e pentoses em bioetanol, dada a presença de ambos os tipos de açúcares no hidrolisado
Abstract: The search for industrial processes with higher sustainability has led to a change towards the utilization of renewable sources for energy generation in substitution of fossil fuels, aiming the modification of the global energy matrix. The utilization of microalgal biomass for the production of biofuels is viewed as a promising alternative, since its cultivation yields carbohydrate and lipid productivities superior to those of conventional sources used in the obtention of bioethanol and biodiesel. In this context, the goal of this master thesis was to evaluate the biomass production of the chlorophycean microalga Chlorella vulgaris in a flat plate photobioreactor under different conditions of light flux, CO2 concentration in the gas feed and NaNO3 concentration in the culture medium, aiming carbohydrate accumulation for the production of third generation bioethanol. The influences of both process and nutritional variables on the photosynthetic efficiency of microalgae were estimated for the determination of the physiological condition of the cultures. The mean biomass productivity and the maximum final microalgae concentration were significantly affected by the incidence of light radiation and by the supplementation of gaseous CO2, the highest carbohydrate productivities being obtained in cultivations with high light flux and intermediate CO2 concentrations (7,5%). It was also observed the positive effect of increasing the photoperiod over microalgae growth. Through acid hydrolysis, it was possible to attain fermentable sugar concentration of up to 2 g L-1 from biomass of microalgae cultivated in low-nitrogen medium. The ethanolic fermentation was then carried out with the Dekkerabruxellensis yeast, capable of converting different hexoses and pentoses into ethanol, due to the presence of both sugar types in the hydrolysate
Mestrado
Desenvolvimento de Processos Químicos
Mestre em Engenharia Química
Wong, Yih Han. "Growth modelling and analysis of microalgae cultivation in photo-bioreactor." Thesis, Curtin University, 2014. http://hdl.handle.net/20.500.11937/2324.
Full textGera, G. "Treatment of sewage water by using microalgae coupled with membrane bioreactor (MBR) system." Thesis(Ph.D.), CSIR-National Chemical Laboratory, 2017. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/4354.
Full text“Microalgae in combination with membrane technology is an emerging process to combat the ever increasing pollution in the water bodies (rivers, lakes and sea) along with CO2 sequestration in a eco-friendly way without using the chemicals. As a microalga cultivates under four different conditions (photoautotrophic, heterotrophic, mixotrophic and photohetrotrophic), it can uptake nutrients, organic compounds, inorganic carbon (in the form of CO2)in the presence of bacteria and uses natural sunlight as a energy source for their growth. In short, microalgae are versatile unicellular species which not only prevents the eutrophication of the water bodies but also helps to increase the dissolved oxygen concentration thereby, helping the aquatic habitat to flourish in a natural way. As, microalgae were generally dispersed and suspended in the water, its harvesting is one of the bottleneck issue of the microalgal industries to grow forits mass production for various applications like fertilizers, biofuel, animal feed etc. Recently membrane technology shows sustainable solution for the harvesting of microalgae from water. Membrane filtration in combination with microalgal treatment for sewage water not only reduces the water footprints but also reduce the energy requirement as it does not require extensive oxygen like the conventional sewage water treatment plants. Therefore, microalgae in combination with membrane technology will be the futuristic technology for the treatment of sewage water. Conventional sewage water treatment plant required huge amount of air for aeration which is costly and also space required for plant is very large. The main objective of this dissertation is to (1) Screen and isolate microalgae from its natural habitat having potential to remove nutrients from sewage water.(2) Sewage water treatment using starved isolated microalgae species for the efficient removal of nutrients (TN and TP) (3)Optimization of process parameters for improving growth rate of microalgae and effective removal of nutrients.(4) Study the kinetics of nutrients uptake from the sewage water by immobilizing microalgae as well as to make effort for the reduction in the residence time. (5) Harvesting of microalgal biomass by applying membrane technology using different types of membranes. (6) Study the effects of various operational parameters such as Tran-membrane pressure (TMP), fluxes and membranes physicochemical properties parameters to get higher fluxes with maximum biomass recovery. (7) Economical analysis of the whole process for the treatment of sewage water using microalgae in combination with membrane technology for a small village. The microalgae-membrane based technology has a huge potential for the treatment of sewage as well as industrial wastewater in the near future. However, efficient design of photo-bioreactors or raceway pond using artificial radiation or solar radiation is essential. The commercial viability for the treatment of sewage water/industrial wastewater using microalgae-membrane based process will be depend upon the efficiency of microalgae for uptake of nutrients, design of photo-bioreactor for growth of microalgae and its harvesting using suitable membrane technology.”
CSIR and Goverment of India. project code #ESC0306
AcSIR
Rengel, Ana. "Energy and environmental analyses of a bioreactor for microalgae culture for energy production." Paris, ENMP, 2010. https://pastel.archives-ouvertes.fr/pastel-00631067.
Full textMicroalgae are photosynthetic organisms considered today for energy production. Photobioreactors are closed systems that present higher productivities than open ponds. In this study, a hydrodynamic model is developed for an internal airlift reactor and validated experimentally. Microparticles are added to the reactor at concentrations found in current microalgae cultures. Results show that gas hold-up and liquid velocities are not affected by the presence of particles. Light distribution and availability in the internal airlift reactor is calculated, taking into account biomass concentrations and algae optical properties. Light is attenuated from the wall to the reactor center while this attenuation increases with biomass concentrations. Based on two biological models, biomass productivities achieved in photobioreactors are higher than in open ponds. From biomass productivities, the reactor capacity to absorb CO2 and to release O2 is estimated. Results show that at moderate irradiances, dissolved O2 levels do not reach intoxication at low air flow rates. If natural air is injected into the reactor, CO2 and TIC become limiting therefore, it is necessary to inject CO2-enriched air. The hydrodynamics of a helical airlift reactor is also presented. Two pipe diameters are tested in the helical section. A mathematical correlation is proposed to estimate the friction factor as a function of the Reynolds number and curvature ratios. To perform microalgae culture at large scale, it is necessary to obtain a positive energy and GHGs balance. Therefore, microalgae culture has to be integrated in a system where conversion processes such as biodiesel production and anaerobic digestion are performed
Larronde-Larretche, Mathieu. "Development of a novel membrane bioreactor for cost-effective wastewater treatment and microalgae harvesting." Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/30805/.
Full textWalker, Tara L. "The Development Of Microalgae As A Bioreactor System For The Production Of Recombinant Proteins." Thesis, Queensland University of Technology, 2004. https://eprints.qut.edu.au/15905/1/Tara_Walker_Thesis.pdf.
Full textWalker, Tara L. "The Development Of Microalgae As A Bioreactor System For The Production Of Recombinant Proteins." Queensland University of Technology, 2004. http://eprints.qut.edu.au/15905/.
Full textRuiz, Martínez Ana. "Nutrient removal from an anaerobic membrane bioreactor effluent using microalgae. Study and modeling of the process." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/59409.
Full text[ES] En el tratamiento de aguas residuales urbanas, los bioreactores anaerobios de membranas presentan ventajas interesantes frente a los tratamientos aerobios. Algunas de estas ventajas son la menor producción de fangos, un menor consumo energético y la producción de biogás. Sin embargo, y generalmente, el efluente obtenido no puede ser vertido al medio sin una etapa previa de eliminación de amonio y fosfato. La presente tesis estudia la eliminación de dichos nutrientes inorgánicos empleando para ello un cultivo de microalgas. El objetivo principal de este trabajo es, por tanto, la obtención de un cultivo autóctono de microalgas y la evaluación de la capacidad que éstas tienen tanto de crecer en un efluente anaerobio como de eliminar el amonio y el fosfato presentes. Asimismo, se pretenden proporcionar las bases para la simulación y el diseño del sistema de depuración propuesto, mediante la obtención de las expresiones cinéticas que reproducen los principales procesos involucrados. En primer lugar se ha demostrado la capacidad de las microalgas, aisladas en una estación depuradora de aguas residuales, de crecer en el efluente anaerobio y de eliminar con éxito el amonio y fosfato en éste presente. El agua tratada, obtenida a mediante un proceso semicontinuo y con iluminación constante, presenta una excelente calidad. Los géneros Scenedesmus y Chlorococcum han proliferado más eficientemente y han llegado a ser los predominantes en el cultivo. Los resultados obtenidos indican que el nutriente limitante en el efluente a tratar es el fósforo, y por tanto la influencia de la limitación de fósforo en la eliminación de nutrientes ha sido estudiada en condiciones de laboratorio, junto con la influencia de la temperatura en la velocidad de eliminación de amonio. Han sido propuestas y validadas las correspondientes expresiones cinéticas que reproducen los efectos observados, teniendo en cuenta en todo momento la influencia de la intensidad de la luz. Por otro lado, un cultivo de Scenedesmus ha sido cultivado en el exterior, bajo condiciones cambiantes de luz y temperatura, que a su vez han sido monitorizadas constantemente, junto con la concentración de amonio. Los datos obtenidos han sido reproducidos mediante modelación matemática con resultados aceptables, aunque la precisión obtenida es menor que en condiciones de laboratorio. La presente tesis demuestra la viabilidad de combinar un cultivo de microalgas con un bioreactor de membranas para el tratamiento de agua residual urbana. Se exponen asimismo los factores básicos que influyen en la velocidad de eliminación de nutrientes, y se presentan los modelos matemáticos necesarios para reproducir los efectos observados. La presente tesis doctoral se incluye en el marco de un proyecto nacional de investigación financiado por el Ministerio de Economía y Competitividad de título "Estudio experimental de la recuperación como biogás de la energía de la materia orgánica y nutrientes del agua residual, acoplando un AnBRM y un cultivo de microalgas" (CTM2011-28595-C02-01/02). La presente tesis doctoral ha sido también financiada por el Ministerio de Educación, Cultura y Deporte a través de una ayuda para contratos predoctorales de Formación del Profesorado Universitario (AP2009-4903).
[CAT] En el tractament d'aigües residuals urbanes, els bioreactors anaerobis de membrana tenen avantatges interessants respecte als tractaments aerobis. Alguns d'aquests avantatges són: menys producció de fangs, menys consum energètic i la producció de biogàs. No obstant això, i en general, l'efluent obtingut no es pot tornar al medi sense una etapa prèvia d'eliminació d'amoni i fosfat. Aquesta tesi estudia l'eliminació d'aquests nutrients inorgànics emprant per a fer-ho un cultiu de microalgues. L'objectiu principal d'aquest treball és, per tant, l'obtenció d'un cultiu autòcton de microalgues i l'avaluació de la capacitat que aquestes tenen tant de créixer en un efluent anaerobi com d'eliminar l'amoni i el fosfat presents. Així mateix, volem proporcionar les bases per a la simulació i el disseny del sistema de depuració proposat, mitjançant l'obtenció de les expressions cinètiques que reprodueixen els principals processos involucrats. En primer lloc, s'ha demostrat la capacitat de les microalgues, aïllades en una estació depuradora d'aigües residuals, de créixer en l'efluent anaerobi i d'eliminar amb èxit l'amoni i el fosfat presents. L'aigua tractada, obtinguda mitjançant un procés semicontinu i amb il·luminació constant, presenta una qualitat excel·lent. Els gèneres Scenedesmus i Chlorococcum han proliferat més eficientment i han arribat a ser els predominants en el cultiu. Els resultats obtinguts indiquen que el nutrient limitant en l'efluent per tractar és el fòsfor, i per tant la influència de la limitació de fòsfor en l'eliminació tant d'amoni com de fosfat ha sigut estudiada en condicions de laboratori, juntament amb la influència de la temperatura en la velocitat d'eliminació d'amoni. S'han proposat i validat les expressions cinètiques corresponents que reprodueixen els efectes observats, tenint en compte en tot moment la influència de la intensitat de la llum. D'altra banda, s'ha cultivat a l'exterior un cultiu predominat per Scenedesmus, sota condicions canviants de llum i temperatura, que al seu torn s'han monitorat constantment, juntament amb la concentració d'amoni. Les dades obtingudes s'han reproduït mitjançant simulació matemàtica amb resultats acceptables, encara que la precisió obtinguda és més baixa que en condicions de laboratori. La nostra tesi demostra la viabilitat de combinar un cultiu de microalgues amb un bioreactor de membrana per al tractament d'aigua residual urbana. La tesi exposa així mateix els factors bàsics que influeixen en la velocitat d'eliminació de nutrients, i presenta els models matemàtics necessaris per a reproduir els efectes observats. Aquesta tesi doctoral s'inclou en el marc d'un projecte nacional de recerca finançat pel Ministeri d'Economia i Competitivitat amb el títol "Estudio experimental de la recuperación como biogás de la energía de la materia orgánica y nutrientes del agua residual, acoplando un AnBRM y un cultivo de microalgas" (CTM2011-28595-C02-01/02). La tesi doctoral ha sigut també finançada pel Ministeri d'Educació, Cultura i Esport a través d'una ajuda per a contractes predoctorals de formació del professorat universitari (AP2009-4903).
Ruiz Martínez, A. (2015). Nutrient removal from an anaerobic membrane bioreactor effluent using microalgae. Study and modeling of the process [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/59409
TESIS
Macedo, Hugo José Santana. "Projecto mecânico de um fotobiorreactor para crescimento de biomassa." Master's thesis, Universidade de Aveiro, 2008. http://hdl.handle.net/10773/2443.
Full textEste trabalho visou a elaboração do projecto de construção mecânica dum protótipo de um fotobiorreactor que permita a cultura de microalgas num meio artificial controlado, de forma a obter biomassa com elevado teor de lípidos para posterior extracção do óleo. Numa primeira fase deste trabalho consistiu no estudo das actuais estratégias e tecnologias utilizadas para cultura de microalgas. De forma a definir a linha de projecto. Posteriormente foi elaborado o projecto e dimensionamento final do fotobiorreactor, apresentando soluções mecânicas de forma a melhorar as actuais dificuldades técnicas associadas a este tipo de culturas Por fim realizou-se uma análise energética e análise de um possível scale-up para esta tecnologia de produção biomassa de microalgas. ABSTRACT: This work aimed at drafting the mechanical construction of a photobioreactor prototype to allow the cultivation of microalgae in a controlled artificial medium, in order to obtain biomass with high fat content for subsequent extraction of oil for production of biodiesel. The first phase of this work was the study of existing stategies and technologies used for cultivation of microalgae. In order to define the line of project. Subsequently was prepared the project and final design of fotobiorreactor, presenting mechanical solutions to improve the current technical difficulties associated with this type of cultures. Finally we did an energy and scale-up analysis of this technology of biomass production of microalgae.
Books on the topic "Microalgal bioreactor"
Leo n, Rosa, Ph. D., Galva n. Aurora, and Ferna ndez Emilio, eds. Transgenic microalgae as green cell factories. New York, N.Y: Springer Science+Business Media/Landes Bioscience, 2007.
Find full textTransgenic Microalgae As Green Cell Factories. Springer London, Limited, 2008.
Find full textTransgenic Microalgae as Green Cell Factories. Springer, 2014.
Find full textBook chapters on the topic "Microalgal bioreactor"
Yusoff, Fatimah Md, Norio Nagao, Yuki Imaizumi, and Tatsuki Toda. "Bioreactor for Microalgal Cultivation Systems: Strategy and Development." In Biofuel and Biorefinery Technologies, 117–59. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14463-0_4.
Full textCarvalho, João C. M., Marcelo C. Matsudo, Raquel P. Bezerra, Lívia S. Ferreira-Camargo, and Sunao Sato. "Microalgae Bioreactors." In Algal Biorefineries, 83–126. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7494-0_4.
Full textZarmi, Y., G. Bel, and C. Aflalo. "Theoretical Analysis of Culture Growth in Flat-Plate Bioreactors: The Essential Role of Timescales." In Handbook of Microalgal Culture, 205–24. Oxford, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118567166.ch12.
Full textDillschneider, Robert, and Clemens Posten. "Closed Bioreactors as Tools for Microalgae Production." In Advanced Biofuels and Bioproducts, 629–49. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3348-4_26.
Full textSolovchenko, Alexei, and Konstantin Chekanov. "Production of Carotenoids Using Microalgae Cultivated in Photobioreactors." In Production of Biomass and Bioactive Compounds Using Bioreactor Technology, 63–91. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9223-3_4.
Full textPapáček, Štěpán, Ctirad Matonoha, and Karel Petera. "Modeling and Simulation of Microalgae Growth in a Couette-Taylor Bioreactor." In Lecture Notes in Computer Science, 174–87. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97136-0_13.
Full textSteven, Soen. "Short Perspective on Membrane Integration in Microalgae Bioreactor for CO2 Capture." In Advances in Biological Sciences Research, 335–50. Dordrecht: Atlantis Press International BV, 2023. http://dx.doi.org/10.2991/978-94-6463-180-7_36.
Full text"Membranes and Microalgae in Wastewater Treatment." In Membrane Technology for Water and Wastewater Treatment in Rural Regions, 306–36. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-2645-3.ch012.
Full textYoo, Sung Jin, Se-Kyu Oh, and Jong Min Lee. "Design of Experiments and Sensitivity Analysis for Microalgal Bioreactor Systems." In Computer Aided Chemical Engineering, 722–26. Elsevier, 2012. http://dx.doi.org/10.1016/b978-0-444-59520-1.50003-8.
Full textKim, Jung Hun, Sung Jin Yoo, Dong Hwi Jeong, Gibaek Lee, and Jong Min Lee. "Optimization of Microalgal Bioreactor Oil Production via Run-to-run Control." In Computer Aided Chemical Engineering, 1759–64. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-444-63455-9.50128-8.
Full textConference papers on the topic "Microalgal bioreactor"
HANSEL, EZEQUIEL, Alice Costa Kiperstok, Rodrigo Gomes Guimaraes, and Emerson Andrade Sales. "CLAY AS A SUBSTRATUM MATERIAL FOR MICROALGAE BIOFILM CULTIVATION." In I South Florida Congress of Development. CONGRESS PROCEEDINGS I South Florida Congress of Development - 2021, 2021. http://dx.doi.org/10.47172/sfcdv2021-0025.
Full textHANSEL, EZEQUIEL, Alice Costa Kiperstok, Rodrigo Gomes Guimaraes, and Emerson Andrade Sales. "CLAY AS A SUBSTRATUM MATERIAL FOR MICROALGAE BIOFILM CULTIVATION." In I South Florida Congress of Development. CONGRESS PROCEEDINGS I South Florida Congress of Development - 2021, 2021. http://dx.doi.org/10.47172/sfcdv2021-0063.
Full textXu, Z., Y. Wang, Y. Chen, M. H. Spalding, and L. Dong. "MICROFLUIDIC MICROALGAL BIOREACTOR FOR HIGH-THROUGHPUT SCREENING OF CO2 CONCENTRATION CONDITIONS ON MICROALGAE GROWTH." In 2016 Solid-State, Actuators, and Microsystems Workshop. San Diego: Transducer Research Foundation, 2016. http://dx.doi.org/10.31438/trf.hh2016.14.
Full textDas, Jani. "Life Cycle Energy Analysis of a Microalgal Based Bioreactor." In 2021 IEEE Texas Power and Energy Conference (TPEC). IEEE, 2021. http://dx.doi.org/10.1109/tpec51183.2021.9384957.
Full textWang, Hsiang-Yu. "An Integrated Micro-bioreactor for enhancing the production of microalgal products." In The 7th International Multidisciplinary Conference on Optofluidics 2017. Basel, Switzerland: MDPI, 2017. http://dx.doi.org/10.3390/optofluidics2017-04142.
Full textEfremkin, S. I., B. M. Gritsun, and A. V. Savchits. "Development of an automated bioreactor control system for microalgae growing." In Научные тенденции: Вопросы точных и технических наук. ЦНК МОАН, 2018. http://dx.doi.org/10.18411/spc-12-10-2018-04.
Full textPatino, Rodrigo, Daniel Robledo, and Julia S. Martin del Campo. "Production of Microalgae Biomass and Biohydrogen in Solar Bioreactors." In World Renewable Energy Congress – Sweden, 8–13 May, 2011, Linköping, Sweden. Linköping University Electronic Press, 2011. http://dx.doi.org/10.3384/ecp11057178.
Full textFadlallah, Hadi, Hassan Peerhossaini, Christopher De Groot, and Mojtaba Jarrahi. "Motility Response to Hydrodynamic Stress During the Growth Cycle in Active Fluid Suspensions." In ASME 2020 Fluids Engineering Division Summer Meeting collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/fedsm2020-20125.
Full textDu, Jijun, Qing Wang, Ping Zeng, and Fan Zhang. "The Cultivation of Mixed Microalgae and CO2 Fixation in a Photo-Bioreactor." In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2010. http://dx.doi.org/10.1109/icbbe.2010.5514660.
Full textOsterthun, Norbert, Mark Helamieh, Dennis Berends, Nils Neugebohrn, Kai Gehrke, Martin Vehse, Martin Kerner, and Carsten Agert. "Influence of spectrally selective solar cells on microalgae growth in photo-bioreactors." In AGRIVOLTAICS2020 CONFERENCE: Launching Agrivoltaics World-wide. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0054814.
Full text