Academic literature on the topic 'Micro-swimmer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Micro-swimmer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Micro-swimmer"
Avron, J. E., O. Kenneth, and D. H. Oaknin. "Pushmepullyou: an efficient micro-swimmer." New Journal of Physics 7 (November 18, 2005): 234. http://dx.doi.org/10.1088/1367-2630/7/1/234.
Full textALOUGES, FRANÇOIS, ANTONIO DESIMONE, and LUCA HELTAI. "NUMERICAL STRATEGIES FOR STROKE OPTIMIZATION OF AXISYMMETRIC MICROSWIMMERS." Mathematical Models and Methods in Applied Sciences 21, no. 02 (February 2011): 361–87. http://dx.doi.org/10.1142/s0218202511005088.
Full textIshikawa, Takuji. "Stability of a Dumbbell Micro-Swimmer." Micromachines 10, no. 1 (January 7, 2019): 33. http://dx.doi.org/10.3390/mi10010033.
Full textIshikawa, Takuji, Tomoyuki Tanaka, Yohsuke Imai, Toshihiro Omori, and Daiki Matsunaga. "Deformation of a micro-torque swimmer." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, no. 2185 (January 2016): 20150604. http://dx.doi.org/10.1098/rspa.2015.0604.
Full textRoper, Marcus, Rémi Dreyfus, Jean Baudry, Marc Fermigier, Jérôme Bibette, and Howard A. Stone. "Do magnetic micro-swimmers move like eukaryotic cells?" Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464, no. 2092 (January 15, 2008): 877–904. http://dx.doi.org/10.1098/rspa.2007.0285.
Full textPimponi, D., M. Chinappi, P. Gualtieri, and C. M. Casciola. "Hydrodynamics of flagellated microswimmers near free-slip interfaces." Journal of Fluid Mechanics 789 (January 22, 2016): 514–33. http://dx.doi.org/10.1017/jfm.2015.738.
Full textMathijssen, A. J. T. M., A. Doostmohammadi, J. M. Yeomans, and T. N. Shendruk. "Hydrodynamics of micro-swimmers in films." Journal of Fluid Mechanics 806 (September 29, 2016): 35–70. http://dx.doi.org/10.1017/jfm.2016.479.
Full textYu, Shimin, Ningze Ma, Hao Yu, Haoran Sun, Xiaocong Chang, Zhiguang Wu, Jiaxuan Deng, et al. "Self-Propelled Janus Microdimer Swimmers under a Rotating Magnetic Field." Nanomaterials 9, no. 12 (November 22, 2019): 1672. http://dx.doi.org/10.3390/nano9121672.
Full textIima, M., and A. S. Mikhailov. "Propulsion hydrodynamics of a butterfly micro-swimmer." EPL (Europhysics Letters) 85, no. 4 (February 2009): 44001. http://dx.doi.org/10.1209/0295-5075/85/44001.
Full textKEAVENY, ERIC E., and MARTIN R. MAXEY. "Spiral swimming of an artificial micro-swimmer." Journal of Fluid Mechanics 598 (February 25, 2008): 293–319. http://dx.doi.org/10.1017/s0022112007009949.
Full textDissertations / Theses on the topic "Micro-swimmer"
Alarcón, Oseguera Francisco. "Computational study of the emergent behavior of micro-swimmer suspensions." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/394065.
Full textLos sistemas activos se definen como materiales fuera del equilibrio termodinámico compuestos por muchas unidades interactuantes que individualmente consumen energía y colectivamente generan movimiento o estreses mecánicos. Ejemplos se pueden encontrar en un enorme rango de escalas de longitud, desde el mundo biológico hasta artificial, incluyendo organismos unicelulares, tejidos y organismos pluricelulares, grupos de animales, coloides auto-propulsados y nano-nadadores artificiales. Actualmente se están desarrollando experimentos en este campo a un ritmo muy veloz, en consecuencia son necesarias nuevas ideas teóricas para traer unidad al campo de estudio e identificar comportamientos “universales” en estos sistemas propulsados internamente. El objetivo de esta tesis es el estudiar mediante simulaciones numéricas, el comportamiento colectivo de un modelo de micro-nadadores. En particular, el modelo de squirmers, donde el movimiento del fluido es axi-simétrico. Existen estructuras coherentes que emergen de estos sistemas así que, el entender si las estructuras coherentes son generadas por la firma hidrodinámica intrínseca de los squirmers individuales o por un efecto de tamaño finito se vuelve algo de primordial importancia. Nosotros también estudiamos la influencia que tiene la geometría en la aparición de estructuras coherentes, la interacción directa entre las partículas, la concentración, etc.
Baillou, Renaud. "Exploration lagrangienne des environnements complexes par les micro-organismes : suivi Lagrangien de E. coli motiles sous confinement et pénétration de la barrière de mucus." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS559.
Full textMicroorganisms are ubiquitous on Earth. They developed self-propulsion to explore their environment and colonize new ecological niche. Some of them are pathogens and trigger inflammation when in contact with epithelial cells. While the hydrodynamical nature of their motion is rather well understood in Newtonian fluids, there is still much to understand when they interact mechanically with their environment either through the presence of geometric obstacles or stemming from the non-Newtonian nature of their swimming environments. In this thesis, we take a look at the motility of bacterial microswimmers (E. coli) under two physiologically conditions, especially relevant in the biophysical context of bacterial infections through intestinal mucus: firstly in the case of a confined geometry between two parallel surfaces, and secondly in intestinal mucus of animal origin. First, we perform experiments with E. coli using an in-house tracking device that allows us to capture the trajectories of bacteria while visualizing their bodies and flagella for long periods of time. We use it to understand the effects of surfaces as they explore a confined environment. Confinement slows the spread of E. coli by trapping them on surfaces and interrupting the "runs" they take from the bulk. Experimental results are rationalized with a stochastic model that accounts for the complex internal dynamics that result in active reorientations of E. coli. The motion at surfaces is specifically studied, and the interindividual variability observed in the swimming properties is questioned under the prism of their morphologies, especially their number of flagella. We then turn to understanding the movement of E. coli in intestinal mucus, which is extracted from two different groups of piglets that are compared. After a purification process, the different samples are characterized by an original in vitro experiment in which bacteria have penetrated a mucus barrier, from which emerges a "penetration length" characterizing a "mucus quality", complemented by rheological and optical measurements. The penetration length ranges from 100 to 1000 microns depending on the sample and seems to depend more on the structure size than on the macrorheology. Different rheological signatures are observed with and without the influence of the shear history. This preliminary study offers many perspectives, both physical (OCT microscopy / X-ray scattering / microrheology) and medical (diagnostic tool for patients / use of selected bacterial strains). To get a temporal view of the penetration process, machine learning is finally used to extend the use of the Lagrangian tracking device to optically complex fluids, successfully implemented for mucus. Bacteria are shown to explore mucus ten times slower than water, and to get blocked after a few minutes. The results and experimental protocols developed in this thesis extend the state-of-the-art on the subject of microswimmers in methodological terms, while also providing some new data on swimming patterns and penetration into viscoelastic fluids
Conference papers on the topic "Micro-swimmer"
Zhang, Chuang, Wenxue Wang, Ning Xi, Yuechao Wang, and Lianqing Liu. "A bio-syncretic micro-swimmer assisted by magnetism." In 2015 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). IEEE, 2015. http://dx.doi.org/10.1109/3m-nano.2015.7425496.
Full textBucher, Izhak, and Eyal Setter. "A Micro-Scale Swimmer Propelled by Traveling Surface Waves." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47271.
Full textTabak, Ahmet Fatih, and Serhat Yesilyurt. "Validated Reduced Order Models for Simulating Trajectories of Bio-Inspired Artificial Micro-Swimmers." In ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30857.
Full textWilliams, Brian, Sandeep Anand, Jagannathan Rajagopalan, and Taher Saif. "Artificial Swimmer Powered by Cardiomyocytes." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14854.
Full textTabak, A. F., and S. Yesilyurt. "Modeling and Simulations of the Motion of Bio-Inspired Micro Swimming Robots." In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13268.
Full textAcemoglu, Alperen, F. Zeynep Temel, and Serhat Yesilyurt. "Characterization and Modeling of Micro Swimmers With Helical Tails and Cylindrical Heads Inside Circular Channels." In ASME 2013 11th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icnmm2013-73101.
Full textYoshida, Koki, and Hiroaki Onoe. "Soft Spiral-Shaped Micro-Swimmer with Propulsion Force Control by Pitch Change." In 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). IEEE, 2019. http://dx.doi.org/10.1109/transducers.2019.8808332.
Full textKadam, Sudin, and Ravi N. Banavar. "Modelling and Controllability of the Motion of a Slender, Flexible Micro-Swimmer." In 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob). IEEE, 2018. http://dx.doi.org/10.1109/biorob.2018.8487214.
Full textSetter, Eyal, and Izhak Bucher. "An Optimal Waving Device Utilized in Micro Swimmer/Pump: Analytical, Numerical and Experimental Analysis." In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-83014.
Full textAbdi, Hossein, and Hossein Nejat Pishkenari. "Optimal Control of a High Maneuverable Micro-Swimmer in Low Reynolds Number Flow to Reduce Energy Consumption." In 2019 7th International Conference on Robotics and Mechatronics (ICRoM). IEEE, 2019. http://dx.doi.org/10.1109/icrom48714.2019.9071880.
Full text