Contents
Academic literature on the topic 'Métriques sur les graphes dynamiques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Métriques sur les graphes dynamiques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Métriques sur les graphes dynamiques"
Guéneau, Grégory, Didier Chabaud, and Marie-Christine Chalus Sauvannet. "Les réseaux comme catalyseurs des dynamiques entrepreneuriales au sein de territoires à bas revenus : Étude de cas de cinq Ecosystèmes Entrepreneuriaux Africains." Finance Contrôle Stratégie 27-2 (2024). http://dx.doi.org/10.4000/12d7f.
Full textDissertations / Theses on the topic "Métriques sur les graphes dynamiques"
Bridonneau, Vincent. "Generation and Analysis of Dynamic Graphs." Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH23.
Full textIn this thesis, we investigate iterative processes producing a flow of graphs. These processes findapplications both in complex networks and time-varying graphs. Starting from an initial configurationcalled a seed, these processes produce a continuous flow of graphs. A key question arises when theseprocesses impose no constraints on the size of the generated graphs: under what conditions can we ensurethat the graphs do not become empty? And how can we account for the changes between successive stepsof the process? To address the first question, we introduced the concept of sustainability, which verifieswhether an iterative process is likely to produce graphs with periodic behaviors. We defined and studied agraph generator that highlights the many challenges encountered when exploring this notion. Regardingthe second question, we designed a metric to quantify the changes occurring between two consecutive stepsof the process. This metric was tested on various generators as well as on real-world data, demonstratingits ability to capture the dynamics of a network, whether artificial or real. The study of these two conceptshas opened the door to many new questions and strengthened the connections between complex networkanalysis and temporal graph theory
Turek, Ondrej. "Opérateurs de Schrödinger sur des graphes métriques." Phd thesis, Université du Sud Toulon Var, 2009. http://tel.archives-ouvertes.fr/tel-00527790.
Full textTurek, Ondřej. "Opérateurs de Schrödinger sur des graphes métriques." Toulon, 2009. http://tel.archives-ouvertes.fr/tel-00527790/fr/.
Full textThis thesis is devoted to investigation of quantum graphs, in other words, quantum systems in which a nonrelativistic particle is confined to a graph. We propose a new way to represent the boundary conditions, and with the help of this result we solve the longstanding open problemof approximating by regular graphs all singular vertex couplings in quantum graph vertices. We present a construction in which the edges are disjunct and the pairs of the so obtained endpoints are joined by additional connecting edges of lengths 2d. Each connecting edge carries a delta potential and a vector potential. It is shown that when the lengths 2d of the connecting edges shrink to zero and the added potentials properly depend on d, the limit can yield any requested singular vertex coupling. This type of boundary conditions is used to examine scattering properties of singular vertices of degrees 2 and 3. We show thar the couplings between each pair of the outgoing edges are individually tunable, which could enable the design of quantum spectral junctions filters. We also study Schrödinger operators on an infinite quantum graph of a chain form which consists of identical rings connected at the touching points by delta-couplings. If the graph is periodic, the Hamiltonian has a band spectrum. We consid a "bending" deformation of the chain consisting in changing the position of the point of contact between two rings. We show that this deformation gives rive to eigenvalues and analyze their dependence on the "bending angle"
Fotsu, Ngwompo Roger. "Contribution au dimensionnement des systèmes sur des critères dynamiques et énergétiques : approche par bond graph." Lyon, INSA, 1997. http://www.theses.fr/1997ISAL0023.
Full textThe purpose of this work is to present a methodology to validate the size of a system components for its proper operation based on dynamic and energetic criteria. If some specifications of a desired performance are given and a structure of actuator system is chosen, then the problem considered here is to check that components of the actuator system are able to follow the desired dynamic while satisfying the power constraints. The modelling tool adopted is bond graph for its property of representing power transfer and interconnections between elements of a system. The links between sizing problem and inverse system have led us to study the problem of system inversion firstly using classical theory. We then propose a bond graph based method for invertibility study and a procedure for construction of inverse bond graph using the concept of bicausality. Some structural anal y sis on the inverse bond graph are carried out by exploiting the properties of bicausal bonds. These theoretical tools and the graphic representation of inverse model then allow us to develop a method for verification of the appropriateness of an actuator system to some performance specifications by checking the proper operation of the system at each lev el from the output to the input. For illustration, the proposed method is applied to the validation of a two-link manipulator actuators and it is thus possible to analyse the causes of saturations and to detect components which impose limitations to the performance of the system
Magos, Rivera Miguel. "Sur la modélisation des systèmes dynamiques à topologie variable : une formulation Hamiltonienne à ports paramétrée." Lyon 1, 2005. http://www.theses.fr/2005LYO10016.
Full textKozhevnikov, Artem. "Propriétés métriques des ensembles de niveau des applications différentiables sur les groupes de Carnot." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112073/document.
Full textMetric properties of level sets of differentiable maps on Carnot groupsAbstract.We investigate the local metric properties of level sets of mappings defined between Carnot groups that are horizontally differentiable, i.e.with respect to the intrinsic sub-Riemannian structure. We focus on level sets of mapping having a surjective differential,thus, our study can be seen as an extension of implicit function theorem for Carnot groups.First, we present two notions of tangency in Carnot groups: one based on Reifenberg's flatness condition and another coming from classical convex analysis.We show that for both notions, the tangents to level sets coincide with the kernels of horizontal differentials.Furthermore, we show that this kind of tangency characterizes the level sets called ``co-abelian'', i.e.for which the target space is abelian andthat such a characterization may fail in general.This tangency result has several remarkable consequences.The most important one is that the Hausdorff dimension of the level sets is the expected one. We also show the local connectivity of level sets and, the fact that level sets of dimension one are topologically simple arcs.Again for dimension one level set, we find an area formula that enables us to compute the Hausdorff measurein terms of generalized Stieltjes integrals.Next, we study deeply a particular case of level sets in Heisenberg groups. We show that the level sets in this case are topologically equivalent to their tangents.It turns out that the Hausdorff measure of high-codimensional level sets behaves wildly, for instance, it may be zero or infinite.We provide a simple sufficient extra regularity condition on mappings that insures Ahlfors regularity of level sets.Among other results, we obtain a new general characterization of Lipschitz graphs associated witha semi-direct splitting of a Carnot group of arbitrary step.We use this characterization to derive a new characterization of co-ablian level sets that can be represented as graphs
Bolte, Jérôme. "Sur des systèmes dynamiques dissipatifs de type gradient : applications en optimisation." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2003. http://tel.archives-ouvertes.fr/tel-00002568.
Full textde type gradient sont l'objet central de cette thèse. Le
caractère dissipatif de telles dynamiques est au coeur de
nombreux domaines en mathématiques : optimisation,
mécanique, équations d'évolutions en dimension infinie.
Dans une première partie, les champs de gradients (ou de sous-différentiels
de fonction convexe) sont contrôlés à l'aide d'opérateurs-barrières.
La motivation essentielle est d'obtenir
des méthodes intérieures de descente en vue d'optimiser
une fonction sous des contraintes convexes. Le cadre
d'étude proposé permet d'unifier dans un même formalisme de nombreuses
méthodes continues : gradient projeté, plus grande pente riemannienne,
méthode continue de Newton... Parmi les conséquences de
la généralisation proposée, on peut, par exemple, évoquer des
résultats abstraits de viabilité et de convergence globale. Toujours
dans cette
perspective, les fonctions de Legendre jouent un rôle crucial~:
elles permettent d'une part de donner lieu à des structures
riemanniennes possédant de nombreuses propriétés - parmi lesquelles une
propriété d'intégration caractéristique remarquable -, et d'autre part,
elles fournissent en dimension infinie un cadre intéressant
pour l'étude de certaines équations d'évolution de type
parabolique.
La deuxième partie est consacrée à l'étude de systèmes
dynamiques du second ordre en temps avec une dissipation géométrique
de type hessien. Outre leur intérêt en optimisation
et leurs liens avec les méthodes de type Newton, ces systèmes
sont d'une grande souplesse et permettent d'approcher certains
phénomènes non-lisses en mécanique unilatérale. En guise d'application,
il est en effet prouvé que les systèmes considérés permettent
d'obtenir à la limite des dynamiques
satisfaisant des lois de chocs inélastiques. Les
perspectives de cette étude ouvrent en particulier la voie à une approche
alternative de certains systèmes d'inégalités variationnelles de type
hyperbolique.
L'une des préoccupations majeures de cette thèse est la question
de la convergence des orbites des systèmes étudiés. Dans le
cadre de la minimisation convexe, quasi-convexe, ou analytique, de nombreux
résultats sont proposés : convergence globale, ,
vitesse de convergence, contrôle asymptotique, attractivité des
minima sous contraintes en dimension infinie.
Picard, Marchetto Aymeric. "Isomorphisme de réseaux d'automates et son influence sur le graphe d'interaction." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ4034.
Full textAn automata network with n components on a finite alphabet Q is a discrete dynamical system described by successives iterations of a function f : Qⁿ → Qⁿ. An important parameter in most applications is the interaction graph: a graph with vertices from 1 to n and with an arc from i to j if f_j(x) depends on x_i. In general, this interaction graph is easier to approximate than the network's actual dynamic. This raises an important question: what does the interaction graph tell us about the network's dynamic? In an attempt to find limits to this question, we study the inverse: what does the network's dynamic tell us about its interaction graph? To this end, we study networks up to isomorphism. Isomorphism preserves most studied properties, but does not preserve the interaction graph. We will thus study G(f), the set of interaction graphs of all networks isomorphic to f. Notably, we prove that K_n, the interaction graph with all arcs, is always in G(f), and it's the only graph with this property. This means if K_n is the interaction graph of f, then it gives no information on f up to isomorphism. Inversely, we show there are networks f that give no information on their interaction graph: G(f) contains all graphs, except the empty one. Finally, we also study the impact of isomorphism on asynchronous dynamics. We show that it preserves very little properties of those dynamics, except the number of fixed points
Badr, Nadine. "Interpolation réelle des espaces de Sobolev sur les espaces métriques mesurés et applications aux inégalités fonctionnelles." Phd thesis, Université Paris Sud - Paris XI, 2007. http://tel.archives-ouvertes.fr/tel-00736066.
Full textNeggaz, Mohammed Yessin. "Automatic classification of dynamic graphs." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0169/document.
Full textDynamic networks consist of entities making contact over time with one another. A major challenge in dynamic networks is to predict mobility patterns and decide whether the evolution of the topology satisfies requirements for the successof a given algorithm. The types of dynamics resulting from these networks are varied in scale and nature. For instance, some of these networks remain connected at all times; others are always disconnected but still offer some kind of connectivity over time and space (temporal connectivity); others are recurrently connected,periodic, etc. All of these contexts can be represented as dynamic graph classes corresponding to necessary or sufficient conditions for given distributed problems or algorithms. Given a dynamic graph, a natural question to ask is to which of the classes this graph belongs. In this work we provide a contribution to the automation of dynamic graphs classification. We provide strategies for testing membership of a dynamic graph to a given class and a generic framework to test properties in dynamic graphs. We also attempt to understand what can still be done in a context where no property on the graph is guaranteed through the distributed problem of maintaining a spanning forest in highly dynamic graphs