Dissertations / Theses on the topic 'Metric'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Metric.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ribeiro, Tiago CaÃla. "Metric homology." Universidade Federal do CearÃ, 2007. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=604.
Full textCoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior
No presente trabalho desenvolvemos e aplicamos a teoria de homologia mÃtrica, criada por Jean Paul Brasselet e Lev Birbrair. A cada conjunto semialgÃbrico X associamos uma coleÃÃo de espaÃos vetoriais reais (ou grupos abelianos) {MH_k^ν(X)} _{k є Z} de forma que se à dado um outro semialgÃbrico X' que à semialgebricamente bi-Lipschitz equivalente a X, entÃo MH_k^ν(X) à isomorfo a MH_k^ν(X') para todo k. Assim, a coleÃÃo {MH_k^ν(X)} carrega alguma informaÃÃo mÃtrica do semialgÃbrico X. Em particular, teremos condiÃÃes necessÃrias para que uma singularidade isolada x_0 pertencente a X seja cÃnica. Mais precisamente, dada uma subvariedade compacta L de uma esfera S_{x_0,r}, calculamos os grupos MH_k^ν(x_0*L) em termos da homologia singular de L, onde x_0*L denota o cone {tx_0+(1-t)x ; x pertencente a L, t pertencente a [0,1]}. Aliado à homologia mÃtrica temos os Ciclos de Chegger, objetos geomÃtricos que obstruem a natureza cÃnica de uma singularidade. Como uma aplicaÃÃo da teoria, apresentamos uma classe de superfÃcies complexas cujas singularidades (isoladas) sÃo nÃo-cÃnicas.
Sidiropoulos, Anastasios. "Computational metric embeddings." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/44712.
Full textIncludes bibliographical references (p. 141-145).
We study the problem of computing a low-distortion embedding between two metric spaces. More precisely given an input metric space M we are interested in computing in polynomial time an embedding into a host space M' with minimum multiplicative distortion. This problem arises naturally in many applications, including geometric optimization, visualization, multi-dimensional scaling, network spanners, and the computation of phylogenetic trees. We focus on the case where the host space is either a euclidean space of constant dimension such as the line and the plane, or a graph metric of simple topological structure such as a tree. For Euclidean spaces, we present the following upper bounds. We give an approximation algorithm that, given a metric space that embeds into R1 with distortion c, computes an embedding with distortion c(1) [delta]3/4 (A denotes the ratio of the maximum over the minimum distance). For higher-dimensional spaces, we obtain an algorithm which, for any fixed d > 2, given an ultrametric that embeds into Rd with distortion c, computes an embedding with distortion co(1). We also present an algorithm achieving distortion c logo(1) [delta] for the same problem. We complement the above upper bounds by proving hardness of computing optimal, or near-optimal embeddings. When the input space is an ultrametric, we show that it is NP-hard to compute an optimal embedding into R2 under the ... norm. Moreover, we prove that for any fixed d > 2, it is NP-hard to approximate the minimum distortion embedding of an n-point metric space into Rd within a factor of Q(n1/(17d)). Finally, we consider the problem of embedding into tree metrics. We give a 0(1)approximation algorithm for the case where the input is the shortest-path metric of an unweighted graph.
(cont.) For general metric spaces, we present an algorithm which, given an n-point metric that embeds into a tree with distortion c, computes an embedding with distortion (clog n)o ... . By composing this algorithm with an algorithm for embedding trees into R1, we obtain an improved algorithm for embedding general metric spaces into R1.
by Anastasios Sidiropoulos.
Ph.D.
Razafindrakoto, Ando Desire. "Hyperconvex metric spaces." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4106.
Full textENGLISH ABSTRACT: One of the early results that we encounter in Analysis is that every metric space admits a completion, that is a complete metric space in which it can be densely embedded. We present in this work a new construction which appears to be more general and yet has nice properties. These spaces subsequently called hyperconvex spaces allow one to extend nonexpansive mappings, that is mappings that do not increase distances, disregarding the properties of the spaces in which they are defined. In particular, theorems of Hahn-Banach type can be deduced for normed spaces and some subsidiary results such as fixed point theorems can be observed. Our main purpose is to look at the structures of this new type of “completion”. We will see in particular that the class of hyperconvex spaces is as large as that of complete metric spaces.
AFRIKAANSE OPSOMMING: Een van die eerste resultate wat in die Analise teegekom word is dat enige metriese ruimte ’n vervollediging het, oftewel dat daar ’n volledige metriese ruimte bestaan waarin die betrokke metriese ruimte dig bevat word. In hierdie werkstuk beskryf ons sogenaamde hiperkonvekse ruimtes. Dit gee ’n konstruksie wat blyk om meer algemeen te wees, maar steeds gunstige eienskappe het. Hiermee kan nie-uitbreidende, oftewel afbeeldings wat nie afstande rek nie, uitgebrei word sodanig dat die eienskappe van die ruimte waarop dit gedefinieer is nie ’n rol speel nie. In die besonder kan stellings van die Hahn- Banach-tipe afgelei word vir genormeerde ruimtes en sekere addisionele ressultate ondere vastepuntstellings kan bewys word. Ons hoofdoel is om hiperkonvekse ruimtes te ondersoek. In die besonder toon ons aan dat die klas van alle hiperkonvekse ruimtes net so groot soos die klas van alle metriese ruimtes is.
Lazaj, Klotilda. "Metric Preserving Functions." Connect to resource online, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1256915437.
Full textHussain, Azham. "Metric based evaluation of mobile devices : mobile goal question metric (mGQM)." Thesis, University of Salford, 2012. http://usir.salford.ac.uk/26720/.
Full textAnfinsen, Jarle. "Making substitution matrices metric." Thesis, Norwegian University of Science and Technology, Department of Computer and Information Science, 2005. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9237.
Full textWith the emergence and growth of large databases of information, efficient methods for storage and processing are becoming increasingly important. The existence of a metric distance measure between data entities enables efficient index structures to be applied when storing the data. Unfortunately, this is often not the case. Amino acid substitution matrices, which are used to estimate similarities between proteins, do not yield metric distance measures. Finding efficient methods for converting a non-metric matrix into a metric one is therefore highly desirable. In this work, the problem of finding such conversions is approached by embedding the data contained in the non-metric matrix into a metric space. The embedding is optimized according to a quality measure which takes the original data into account, and a distance matrix is then derived using the metric distance function of the space. More specifically, an evolutionary scheme is proposed for constructing such an embedding. The work shows how a coevolutionary algorithm can be used to find a spatial embedding and a metric distance function which try to preserve as much of the proximity structure of the non-metrix matrix as possible. The evolutionary scheme is compared to three existing embedding algorithms. Some modifications to the existing algorithms are proposed, with the purpose of handling the data in the non-metric matrix more efficiently. At a higher level, the strategy of deriving a metric distance function from a spatial embedding is compared to an existing algorithm which enforces metricity by manipulating the data in the non-metric matrix directly (the triangle fixing algorithm). The methods presented and compared are general in the sense that they can be applied in any case where a non-metric matrix must be converted into a metric one, regardless of how the data in the non-metric matrix was originally derived. The proposed methods are tested empirically on amino acid substitution matrices, and the derived metric matrices are used to search for similarity in a database of proteins. The results show that the embedding approach outperforms the triangle fixing approach when applied to matrices from the PAM family. Moreover, the evolutionary embedding algorithms perform best among the embedding algorithms. In the case of the PAM250 scoring matrix, a metric distance matrix is found which is more sensitive than the mPAM250 matrix presented in a recent paper. Possible advantages of choosing one method over another are shown to be unclear in the case of matrices from the BLOSUM family.
Bagge, Joar. "A graphotactic language metric." Thesis, KTH, Matematik (Inst.), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-128781.
Full textMatthews, S. G. "Metric domains for completeness." Thesis, University of Warwick, 1985. http://wrap.warwick.ac.uk/60775/.
Full textAl-Harbi, Sami. "Clustering in metric spaces." Thesis, University of East Anglia, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396604.
Full textJensen, Harold Franklin. "Variable buoyancy system metric." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/58193.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 111-112).
Over the past 20 years, underwater vehicle technology has undergone drastic improvements, and vehicles are quickly gaining popularity as a tool for numerous oceanographic tasks. Systems used on the vehicle to alter buoyancy, or variable buoyancy (VB) systems, have seen only minor improvements during the same time period. Though current VB systems are extremely robust, their lack of performance has become a hinderance to the advancement of vehicle capabilities. This thesis first explores the current status of VB systems, then creates a model of each system to determine performance. Second, in order to quantitatively compare fundamentally different VB systems, two metrics, [beta]m and [beta]vol, are developed and applied to current systems. By determining the ratio of performance to size, these metrics give engineers a tool to aid VB system development. Finally, the fundamental challenges in developing more advanced VB systems are explored, and a couple of technologies are investigated for their potential use in new systems.
by Harold Franklin Jensen III.
S.M.
Nordebo, Jonatan. "The Reissner-Nordström metric." Thesis, Umeå universitet, Institutionen för fysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-118337.
Full textChoy, Tze Leung. "Sparse distance metric learning." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:a98695a3-0a60-448f-9ec0-63da3c37f7fa.
Full textFuhry, David P. "Skylines in Metric Space." Kent State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=kent1208562156.
Full textBüch, Lutz [Verfasser], and Artur [Akademischer Betreuer] Andrzejak. "Metric Selection and Metric Learning for Matching Tasks / Lutz Büch ; Betreuer: Artur Andrzejak." Heidelberg : Universitätsbibliothek Heidelberg, 2020. http://d-nb.info/1224684524/34.
Full textLaub, Julian. "Non-metric pairwise proximity data." [S.l.] : [s.n.], 2004. http://edocs.tu-berlin.de/diss/2004/laub_julian.pdf.
Full textLee, Seunghwan Han. "Probabilistic reasoning on metric spaces." [Bloomington, Ind.] : Indiana University, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3380096.
Full textTitle from PDF t.p. (viewed on Jul 19, 2010). Source: Dissertation Abstracts International, Volume: 70-12, Section: B, page: 7604. Adviser: Lawrence S. Moss.
Chang, Hong. "Semi-supervised distance metric learning /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?COMP%202006%20CHANG.
Full textRekdal, Espen Ekornes. "Metric Indexing in Time Series." Thesis, Norwegian University of Science and Technology, Department of Computer and Information Science, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-10487.
Full textErlandsen, Stian. "Metric indexing by database techniques." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for datateknikk og informasjonsvitenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-12565.
Full textLemaire-Beaucage, Jonathan. "Voronoi Diagrams in Metric Spaces." Thesis, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/20736.
Full textLi, Rong. "A system-wide anonymity metric." Thesis, Wichita State University, 2011. http://hdl.handle.net/10057/5041.
Full textThesis (M.S.)--Wichita State University, College of Engineering, Dept. of Electrical Engineering and Computer Science.
Chandirasekaran, Devasena. "Optimized AODV with modified metric." Thesis, Wichita State University, 2011. http://hdl.handle.net/10057/5162.
Full textThesis (M.S.)--Wichita State University, College of Engineering, Dept. of Electrical Engineering & Computer Science.
Khan, Moazzam. "Security metric based risk assessment." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47527.
Full textYusupova, Tatiana. "Problems in metric diophantine approximations." Thesis, University of York, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.534907.
Full textHolland, Andrew J. "Metric implementation in U.S. construction." Thesis, Gainesville, Florida : University of Florida, 1997. http://hdl.handle.net/10945/26631.
Full textRowe, Paul Michael Dominic. "Contributions to metric number theory." Thesis, Royal Holloway, University of London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.408263.
Full textCoffey, Michael R. "Ricci flow and metric geometry." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/67924/.
Full textvan, Staden Wernd Jakobus. "Metric aspects of noncommutative geometry." Diss., University of Pretoria, 2019. http://hdl.handle.net/2263/77893.
Full textDissertation (MSc)--University of Pretoria, 2019.
Physics
MSc
Unrestricted
Pan, Jiajun. "Metric learning for structured data." Thesis, Nantes, 2019. http://www.theses.fr/2019NANT4076.
Full textMetric distance learning is a branch of re-presentation learning in machine learning algorithms. We summarize the development and current situation of the current metric distance learning algorithm from the aspects of the flat database and nonflat database. For a series of algorithms based on Mahalanobis distance for the flat database that fails to make full use of the intersection of three or more dimensions, we propose a metric learning algorithm based on the submodular function. For the lack of metric learning algorithms for relational databases in non-flat databases, we propose LSCS(Relational Link-strength Constraints Selection) for selecting constraints for metric learning algorithms with side information and MRML (Multi-Relation Metric Learning) which sums the loss from relationship constraints and label constraints. Through the design experiments and verification on the real database, the proposed algorithms are better than the current algorithms
Erninger, Klas. "Algebraic Simplifications of Metric Information." Thesis, KTH, Matematik (Avd.), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-277744.
Full textDenna uppsats handlar om att tolka metrisk data med hjälp utav topologiska verktyg, som exempelvis homologi. Vi visar hur man går från ett metriskt rum till ett topologiskt rum via Vieteris-Rips komplex. Vi använder den vanliga metoden till Topologisk Data Analys (TDA), och transformerar vårat metriska rum till tama parametriserade vektorrum. Det visas sedan hur vi kan förenkla tama parametriserade vektorrum. Vi presenterar även en annan metod för TDA, där vi går från ett metriskt rum till ett filtrerat tamt parametriserat kedjekomplex. Sedan visar vi hur man förenklar kedjekomplex över kroppar för att kunna förenkla filtrerade tama parametriserade kedjekomplex.
Otafudu, Olivier Olela. "Convexity in quasi-metric spaces." Doctoral thesis, University of Cape Town, 2012. http://hdl.handle.net/11427/10950.
Full textIncludes bibliographical references.
The principal aim of this thesis is to investigate the existence of an injective hull in the categories of T-quasi-metric spaces and of T-ultra-quasi-metric spaces with nonexpansive maps.
Okutan, Osman Berat. "Persistence, Metric Invariants, and Simplification." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1559312147225384.
Full textReinke, Kristen Nicole. "SAFETY METRIC THE WEITZ COMPANY." Thesis, The University of Arizona, 2009. http://hdl.handle.net/10150/192951.
Full textAbou-Moustafa, Karim. "Metric learning revisited: new approaches for supervised and unsupervised metric learning with analysis and algorithms." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106370.
Full textDans cette thèse, je propose deux algorithmes pour l'apprentissage de la métrique dX; le premier pour l'apprentissage supervisé, et le deuxième pour l'apprentissage non-supervisé, ainsi que pour l'apprentissage supervisé et semi-supervisé. En particulier, je propose des algorithmes qui prennent en considération la structure et la géométrie de X d'une part, et les caractéristiques des ensembles de données du monde réel d'autre part. Cependant, si on cherche également la réduction de dimension, donc sous certaines hypothèses légères sur la topologie de X, et en même temps basé sur des informations disponibles a priori, on peut apprendre une intégration de X dans un espace Euclidien de petite dimension Rp0 p0 << p, où la distance Euclidienne révèle mieux les ressemblances entre les éléments de X et leurs groupements (clusters). Alors, comme un sous-produit, on obtient simultanément une réduction de dimension et un apprentissage métrique. Pour l'apprentissage supervisé, je propose PARDA, ou Pareto discriminant analysis, pour la discriminante réduction linéaire de dimension. PARDA est basé sur le mécanisme d'optimisation à multi-objectifs; optimisant simultanément plusieurs fonctions objectives, éventuellement des fonctions contradictoires. Cela permet à PARDA de s'adapter à la topologie de classe dans un espace dimensionnel plus petit, et naturellement gère le problème de masquage de classe associé au discriminant Fisher dans le cadre d'analyse de problèmes à multi-classes. En conséquence, PARDA permet des meilleurs résultats de classification par rapport aux techniques modernes de réduction discriminante de dimension. Pour l'apprentissage non-supervisés, je propose un cadre algorithmique, noté par ??, qui encapsule les algorithmes spectraux d'apprentissage formant an algorithme d'apprentissage de métrique. Le cadre ?? capture la structure locale et la densité locale d'information de chaque point dans un ensemble de données, et donc il porte toutes les informations sur la densité d'échantillon différente dans l'espace d'entrée. La structure de ?? induit deux métriques de distance pour ses éléments: la métrique Bhattacharyya-Riemann dBR et la métrique Jeffreys-Riemann dJR. Les deux mesures réorganisent la proximité entre les points de X basé sur la structure locale et la densité autour de chaque point. En conséquence, lorsqu'on combine l'espace métrique (??, dBR) ou (??, dJR) avec les algorithmes de "spectral clustering" et "Euclidean embedding", ils donnent des améliorations significatives dans les précisions de regroupement et les taux d'erreur pour une grande variété de tâches de clustering et de classification.
Powell, J. E. "Metric versus non-metric skeletal traits : which is the more reliable indicator of genetic distance?" Thesis, University of Bristol, 1989. http://hdl.handle.net/1983/e44b5162-0f9d-4f0a-afdf-2eac49563e4b.
Full textGupta, Kishan. "Metric and non-metric inputs influence spatial and working memory processes of medial entorhinal neurons." Thesis, Boston University, 2013. https://hdl.handle.net/2144/12771.
Full textThe medial entorhinal cortex (MEC) contains spatial cell types including grid and head direction (HD) cells. Grid cells fire action potentials when animals pass through environmental locations that form vertices of tessellating triangles. HD cells fire when animals face a preferred direction along their azimuth. These cells have been widely studied for their potential metric role in spatial navigation, but considerably less is known about their non-metric functions. This thesis examines non-metric influences on the MEC during working memory maintenance, 'look-ahead' activity, and 'more familiar' or 'less familiar' environmental rotations. The first experiment tests the hypothesis that persistent spiking of MEC neurons could represent a sensory cue during a working memory task. Animals ran a T-Maze where an auditory stimulus cued rats to move toward left- or right-reward arms. Instead of the hypothesized increase in spike rate during the delay period between cue and reward, MEC spike rates were suppressed. Additionally, MEC ensemble firing at the choice point suggests that these cells encoded reward locations. This indicates the MEC displays forward activation of possible future locations ('look-ahead' activity). To model this experiment's look-ahead results, a recent model of goal-directed navigation was adapted to the previous T-Maze task. This adaptation trains a virtual rat to associate cues to reward cells and corresponding place cells, a difference from previous models where goal locations were not cueassociated. The rat reliably learns goal locations, performs look-ahead scans at the choice point, and simulated MEC activity decodes to reward locations, successfully modeling look-ahead behavior. The final experiment examines effects of environmental recency on spatial tuning of MEC neurons. Rats performed spatial alternation on a T-Maze rotated into 'more familiar' or 'less familiar' configurations as MEC units were recorded. Spatial cells oriented their firing fields in register with the T-Maze more often during less familiar rotations. This implies a shift in animals' reference frame with learned experience suggesting the MEC is comparing contexts in the same environment. In summary, these results highlight previously uninvestigated, non-metric influences over MEC activity with strong implications for goal-directed behavior and spatial navigation.
Lease, Loren Rosemond. "Ancestral determination of African American and European American deciduous dentition using metric and non-metric analysis." Columbus, OH : Ohio State University, 2003. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1054742334.
Full textTitle from first page of PDF file. Document formatted into pages; contains xvii, 421 p.: ill. (some col.). Includes abstract and vita. Advisor: Paul W. Sciulli, Dept. of Anthropology. Includes bibliographical references (p. 130-152).
Calisti, Matteo. "Differential calculus in metric measure spaces." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21781/.
Full textNeri, Giulio. "Effective metric for bootstrapped Newtonian sources." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21717/.
Full textAmato, Giuseppe. "Approximate similarity search in metric spaces." [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=964997347.
Full textGrossman, Mary Alice. "Validation of a Quality Management Metric." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2000. http://handle.dtic.mil/100.2/ADA384217.
Full text"September 2000." Thesis advisor(s): Osmundson, John; Michael, J. Bret. Includes bibliographical references (p. 121). Also available online.
Fevang, Rune, and Arne Bergene Fossaa. "Empirical evaluation of metric indexing methods." Thesis, Norwegian University of Science and Technology, Department of Computer and Information Science, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-8902.
Full textMetric indexing is a branch of search technology that is designed for search non-textual data. Examples of this includes image search (where the search query is an image), document search (finding documents that are roughly equal) to search in high-dimensional Euclidean spaces. Metric indexing is based on the theory of metric spaces, where the only thing known about a set of objects is the distance between them (defined by a metric distance function). A large number of methods have been proposed to solve the metric indexing problem. In this thesis, we have concentrated on new approaches to solving these problems, as well as combining existing methods to create better ones. The methods studied in this thesis include D-Index, GNAT, EMVP-Forest, HC, SA-Tree, SSS-Tree, M-Tree, PM-Tree, M*-Tree and PM*-Tree. These have all been implemented and tested against each other to find strengths and weaknesses. This thesis also studies a group of indexing methods called hybrid methods which combines tree-based methods (like SA-Tree, SSS-tree and M-Tree), with pivoting methods (like AESA and LAESA). The thesis also proposes a method to create hybrid trees from existing trees by using features in the programming language. Hybrid methods have been shown in this thesis to be very promising. While they may have a considerable overhead in construction time,CPU usage and/or memory usage, they show large benefits in reduced number of distance computations. We also propose a new way of calculating the Minimal Spanning Tree of a graph operating on metric objects, and show that it reduces the number of distance computations needed.
Palmer, Ian Christian. "Riemannian geometry of compact metric spaces." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34744.
Full textNomura, Kouichi. "A recipe for multi-metric gravity." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199102.
Full textJones, Miranda Rose. "Conformal deformation of a conic metric." Thesis, Wichita State University, 2011. http://hdl.handle.net/10057/3996.
Full textThesis (M.S.)--Wichita State University, College of Liberal Arts and Sciences, Dept. of Mathematics and Statistics.
Jägrell, Linus. "Geometry of the Lunin-Maldacena metric." Thesis, KTH, Teoretisk fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-153502.
Full textWitt, Frederik. "Special metric structures and closed forms." Thesis, University of Oxford, 2005. http://ora.ox.ac.uk/objects/uuid:30b7a34b-cc46-4981-aee5-964787c1235e.
Full textVelani, Sanju Lalji. "Metric diophantine approximation in hyperbolic space." Thesis, University of York, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304351.
Full textSalp, Cem. "Metric diophantine approximation and cantor sets." Thesis, University of York, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.444750.
Full textKilbane, James. "Finite metric subsets of Banach spaces." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288272.
Full text