Contents
Academic literature on the topic 'Méthodes de discrétisation d'ordre élevé'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Méthodes de discrétisation d'ordre élevé.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Méthodes de discrétisation d'ordre élevé"
Bourgin, Pierre-Yves. "Modèle intégré du fonctionnement hydrologique du bassin versant du Sassandra." La Houille Blanche, no. 5-6 (December 2019): 124–39. http://dx.doi.org/10.1051/lhb/2019024.
Full textDebruille, Jacques B., and Et Emmanuel Stip. "Syndrome De Capgras: ÉVolution Des Hypotheses." Canadian Journal of Psychiatry 41, no. 3 (April 1996): 181–87. http://dx.doi.org/10.1177/070674379604100309.
Full textDissertations / Theses on the topic "Méthodes de discrétisation d'ordre élevé"
Demaldent, Edouard. "Etude de schémas de discrétisation d'ordre élevé pour les équations de Maxwell en régime harmonique." Paris 9, 2009. https://bu.dauphine.psl.eu/fileviewer/index.php?doc=2009PA090028.
Full textThis thesis deals with numerical simulation issues, and concerns the study of time- harmonic electromagnetic scattering problems. We are mainly interested in integral re-presentation methods and in simulations that need the use of a direct solver. Their range of application is rapidly limited with classical approximation schemes, since they require a large number of unknowns to achieve accurate results. To overcome this problem, we intend to adapt the spectral finite element method to electromagnetic integral equa-tions, then to the hybrid boundary element - finite element method (BE-FEM). The main advantage of our approach is that the Hdivconforming property (Hdiv-Hcurl within the BE-FEM) is enforced, meanwhile it can be interpreted as a point-based scheme. This al-lows a significant increase of the approximation order, that yields to a dramatical decrease of both the number of unknowns and computational costs, while ensuring the accuracy of the result. Another originality of our study lies in the development of high-order ani-sotropic hexahedral elements, to deal with conducting scatterers coated with a thin layer of material. Key words :computational electromagnetics, Maxwell equations, integral equations, hybrid boundary element - finite element method, method of moments, spectral finite element method, high-order approximation
Jund, Sébastien. "Méthodes d'éléments finis d'ordre élevé pour la simulation numérique de la propagation d'ondes." Phd thesis, Université Louis Pasteur - Strasbourg I, 2007. http://tel.archives-ouvertes.fr/tel-00188739.
Full textGatard, Ludovic. "Méthodes d'équations intégrales de frontière d'ordre élevé pour les équations de Maxwell : couplage de la méthode de discrétisation microlocale et de la méthode multipôle rapide FMM." Bordeaux 1, 2007. http://www.theses.fr/2007BOR13416.
Full textDia, Boun Oumar. "Méthodes de directions alternées d'ordre élevé en temps." Lyon 1, 1996. http://www.theses.fr/1996LYO10138.
Full textChave, Florent. "Méthodes hybrides d'ordre élevé pour les problèmes d'interface." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS015/document.
Full textThe purpose of this Ph.D. thesis is to design and analyse Hybrid High-Order (HHO) methods on some interface problems. By interface, we mean (i) diffuse interface, and (ii) interface as an immersed boundary. The first half of this manuscrit is dedicated to diffuse interface, more precisely we consider the so called Cahn–Hilliard problem that models the process of phase separation, by which the two components of a binary fluid spontaneously separate and form domains pure in each component. In the second half, we deal with the interface as an immersed boundary and consider a hybrid dimensional model for the simulation of Darcy flows and passive transport in fractured porous media, in which the fracture is considered as an hyperplane that crosses our domain of interest
Dashtbeshbadounak, Narges. "Changement d'échelle de déplacements de fronts en milieux hétérogènes et application à l'EOR." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS084.
Full textNumerical modelling is a widely used tool in applied geoscience for quantifying flow in porous media, that is necessary to predict performance and optimize prospect exploitation at minimal environmental risk and cost. Reaching a satisfactory approximation of the exact solution and a robust numerical model of multiphase flows is particularly challenging because of the heterogeneity of the porous medium across a wide range of length scales, the coupling and nonlinearity of the driving equations, and the necessity of capturing all scales in the macroscale numerical model in a computationally efficient way. We have developed a sequential approach to accelerate immiscible multiphase flow modelling in heterogeneous porous media using discontinuous Galerkin methods and dynamic mesh coarsening. This approach involves dynamic domain decomposition and different solution strategies in the different flow regions, using a criterion that can be fastly evaluated. We use high-resolution grids and low order methods in regions near the saturation discontinuity and a discontinuous Galerkin method along with low-resolution grids in single-phase flow regions of the domain. We present a fast technique to estimate the position of the saturation front and identify the flow zones that need high-resolution gridding and eventually, we demonstrate the accuracy of our approach through test cases from the second SPE10 model by comparing our results with fine-scale simulations
Normand, Pierre-Elie. "Application de méthodes d'ordre élevé en éléments finis pour l'aérodynamique." Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14416/document.
Full textThe areas of research and analysis covered in this thesis focus on methods using high order finite elements applied for solving Navier-Stokes equations and turbulence models. It consists of two main parts:-The implementation of high-order methods in an industrial computer code -The development of a methodology for creating curved meshes on 3D geometries A series of test cases of increasing difficulty were conducted to validate these methods. We present, moreover, a case of a full aircraft where the process used to obtain the full mesh and the Navier-Stokes/turbulence model calculation are fully described and discussed. Motivation, contribution and technical barriers are finally discussed
Mbinky, Estelle Carine. "Adaptation de maillages pour des schémas numériques d'ordre très élevé." Paris 6, 2013. http://www.theses.fr/2013PA066696.
Full textMesh adaptation is an iterative process which consists in changing locally the size and orientation of the mesh according the behavior of the studied physical solution. It generates the best mesh for a given problem and a fix number of degrees of freedom. Mesh adaptation methods have proven to be extremely effective in reducing significantly the mesh size for a given precision and reaching quickly an second-order asymptotic convergence for problems containing singularities when they are coupled to high order numerical methods. In metric-based mesh adaptation, two approaches have been proposed: Multi-scale methods based on a control of the interpolation error in Lp-norm and Goal oriented methods that control the approximation error of a functional through the use of the adjoint state. However, with the emergence of very high order numerical methods such as the discontinuous Galerkin method, it becomes necessary to take into account the order of the numerical scheme in mesh adaptation process. Mesh adaptation is even more crucial for such schemes as they converge to first-order in flow singularities. Therefore, the mesh refinement at the singularities of the solution must be as important as the order of the method is high. This thesis deals with the extension of the theoretical and numerical results getting in the case of mesh adaptation for piecewise linear solutions to high order piecewise polynomial solutions. These solutions are represented using kth-order Lagrangian finite elements (k ≥ 2). This thesis will focus on modeling the local interpolation error of order k ≥ 3 on a continuous mesh. However, for metric-based mesh adaptation methods, the error model must be a quadratic form, which shows an intrinsic metric space. Therefore, to be able to produce such an area, it is necessary to decompose the homogeneous polynomial and to approximate it by a quadratic form taken at power k. This modeling allows us to define a metric field necessary to communicate with the mesh generator. The decomposition method will be an extension of the diagonalization method to high order homogeneous polynomials. Indeed, in 2D and 3D, symmetric tensor decomposition methods such as Sylvester decomposition and its extension to high dimensions will allow us to decompose locally the error function, then, to deduce the quadratic error model. Then, this local error model is used to control the overall error in Lp-norm and the optimal mesh is obtained by minimizing this error. In this thesis, we seek to demonstrate the kth-order convergence of high order mesh adaptation method for analytic functions and numerical simulations using kth-order solvers (k ≥ 3)
Blachère, Florian. "Schémas numériques d'ordre élevé et préservant l'asymptotique pour l'hydrodynamique radiative." Thesis, Nantes, 2016. http://www.theses.fr/2016NANT4020/document.
Full textThe aim of this work is to design a high-order and explicit finite volume scheme for specific systems of conservation laws with source terms. Those systems may degenerate into diffusion equations under some compatibility conditions. The degeneracy is observed with large source term and/or with late-time. For instance, this behaviour can be seen with the isentropic Euler model with friction or with the M1 model for radiative transfer, or with the radiation hydrodynamics model. We propose a general theory to design a first-order asymptotic preserving scheme (in the sense of Jin) to follow this degeneracy. The scheme is proved to be stable and consistent under a classical hyperbolic CFL condition in both hyperbolic and diffusive regimes, for any 2D unstructured mesh. Moreover, we justify that the developed scheme also preserves the set of admissible states in all regimes, which is mandatory to conserve physical solutions. This construction is achieved by using the non-linear scheme of Droniou and Le Potier as a target scheme for the diffusive equation, which gives the form of the global scheme for the complete system of conservation laws. Then, the high-order scheme is constructed with polynomial reconstructions and the MOOD paradigm as a limiter. The main difficulties are the preservation of the set of admissible states in both regimes on unstructured meshes and to deal with the high-order polynomial reconstruction in the diffusive limit without losing the asymptotic preserving property. Numerical results are provided to validate the scheme in all regimes, with the first and high-order versions
Burbeau, Anne. "Méthodes de Galerkine discontinu d'ordre élevé pour la simulation instationnaire en maillage non structuré." Bordeaux 1, 2000. http://www.theses.fr/2000BOR10608.
Full text