Dissertations / Theses on the topic 'Méthode étendue des éléments finis (XFEM)'

To see the other types of publications on this topic, follow the link: Méthode étendue des éléments finis (XFEM).

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 24 dissertations / theses for your research on the topic 'Méthode étendue des éléments finis (XFEM).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Lasry, Jérémie. "Calculs de plaques fissurées en flexion avec la méthode des éléments finis étendue (XFEM)." Phd thesis, INSA de Toulouse, 2009. http://tel.archives-ouvertes.fr/tel-00465635.

Full text
Abstract:
Cette thèse est consacrée au développement de méthodes numériques pour la simulation de plaques et coques fissurées. Pour ce problème, les méthodes classiques sont basées sur la Méthode des Elements Finis (MEF). En raison de la présence d'une singularité en fond de fissure, la MEF souffre de plusieurs défauts. Son taux de convergence n'est pas optimal. De plus, en cas de propagation de la fissure, le domaine doit être remaillé. Une nouvelle méthode d'éléments finis, introduite en 1999 et baptisée XFEM, permet de s'affranchir de ces inconvénients. Dans cette méthode, la base éléments finis est enrichie par des fonctions de forme spécifiques qui représentent la séparation du matériau et la singularité de fond de fissure. Ainsi, domaine et fissure sont indépendants et le taux de convergence est optimal. Dans cette thèse, on développe deux formulations XFEM adaptées à un modèle de plaques minces. Ces méthodes ont pu être implémentées dans la bibliothèque d'éléments finis Getfem++, et testées sur des exemples où la solution exacte est connue. L'étude d'erreur montre que la méthode XFEM possède un taux de convergence optimal, alors que la MEF montre une convergence plus lente. L'autre contribution de cette thèse concerne le calcul de Facteurs d'Intensité de Contraintes (FIC) : ces grandeurs indiquent le risque de propagation de la fissure. Nous proposons deux méthodes de calcul originales, basées sur nos formulations XFEM. La première méthode utilise l'intégrale-J, et la deuxième fournit une estimation directe, sans post-traitement.
APA, Harvard, Vancouver, ISO, and other styles
2

Paul, Bertrand. "Modélisation de la propagation de fractures hydrauliques par la méthode des éléments finis étendue." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0182/document.

Full text
Abstract:
La perméabilité des roches est fortement influencée par la présence de fractures car ces dernières constituent un chemin préférentiel pour l’écoulement des fluides. Ainsi la présence de fractures naturelles est un facteur déterminant pour la productivité d’un réservoir. Dans le cas de roches à faible conductivité, des techniques de stimulation telle que la fracturation hydraulique sont utilisées pour en augmenter la perméabilité et rendre le réservoir exploitable d’un point de vue économique. A l’inverse, dans le cas du stockage géologique, la présence de fractures dans la roche représente un danger dans la mesure où elle facilite le transport et la migration des espèces disséminées dans la roche. Pour le stockage de CO2, les fuites par les fractures présentes dans les couvertures du réservoir et la réactivation des failles constituent un risque majeur. Et en ce qui concerne le stockage géologique de déchets radioactifs, la circulation de fluide dans des réseaux de fractures nouvelles ou réactivées au voisinage de la zone de stockage peut aboutir à la migration de matériaux nocifs. Il est donc important de prévoir les effets de la présence de fractures dans un réservoir. Le but de cette thèse est le développement d’un outil numérique pour la simulation d’un réseau de fractures et de son évolution sous sollicitation hydro-mécanique. Grâce à sa commodité, la méthode des éléments finis étendue (XFEM) sera retenue et associée à un modèle de zone cohésive. La méthode XFEM permet en effet l’introduction de fissures dans le modèle sans nécessairement remailler en cas de propagation des fissures. L’écoulement du fluide dans la fissure et les échanges de fluide entre la fissure et le milieu poreux seront pris en compte via un couplage hydro-mécanique. Le modèle est validé avec une solution analytique asymptotique pour la propagation d’une fracture hydraulique plane dans un milieu poroélastique en 2D comme en 3D. Puis, nous étudions la propagation de fractures hydrauliques sur trajets inconnus. Les fissures sont initialement introduites comme des surfaces de fissuration potentielles étendues. Le modèle de zone cohésive sépare naturellement les domaines adhérents et ouverts. Les surfaces potentielles de fissuration sont alors actualisées de manière implicite par un post-traitement de l’état cohésif. Divers exemples de réorientation de fissures hydrauliques et de compétition entre fissures voisines sont analysés. Enfin, nous présentons l’extension du modèle aux jonctions de fractures hydrauliques
The permeability of rocks is widely affected by the presence of fractures as it establishes prevailing paths for the fluid flow. Natural cracks are then a critical factor for a reservoir productiveness. For low permeability rocks, stimulation techniques such as hydrofracturing have been experienced to enhance the permeability, so that the reservoir becomes profitable. In the opposite, when it comes to geological storage, the presence of cracks constitutes a major issue since it encourages the leak and migration of the material spread in the rock. In the case of CO2 storage, the scenario of leakage across the reservoir seal through cracks or revived faults is a matter of great concern. And as for nuclear waste storage, the fluid circulation in a fracture network around the storage cavity can obviously lead to the migration of toxic materials. It is then crucial to predict the effects of the presence of cracks in a reservoir. The main purpose of this work is the design of a numerical tool to simulate a crack network and its evolution under hydromechanical loading. To achieve this goal we chose the eXtended Finite Element Method (XFEM) for its convenience, and a cohesive zone model to handle the crack tip area. The XFEM is a meshfree method that allows us to introduce cracks in the model without necessarily remeshing in case of crack propagation. The fluid flow in the crack as well as the exchanges between the porous rock and the crack are accounted for through an hydro-mechanical coupling. The model is validated with an analytical asymptotic solution for the propagation of a plane hydraulic fracture in a poroelastic media, in 2D as well as in 3D. Then we study the propagation of hydraulic fractures on non predefined paths. The cracks are initially introduced as large potential crack surfaces so that the cohesive law will naturally separate adherent and debonding zones. The potential crack surfaces are then updated based on a directional criterion appealing to cohesive integrals only. Several examples of crack reorientation and competition between nearby cracks are presented. Finally, we extend our model to account for the presence of fracture junctions
APA, Harvard, Vancouver, ISO, and other styles
3

Panetier, Julien. "Vérification des facteurs d'intensité de contrainte calculés par XFEM." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2009. http://tel.archives-ouvertes.fr/tel-00505777.

Full text
Abstract:
La prévision de la tenue des structures fissurées nécessite le calcul du taux de restitution d'énergie ou des facteurs d'intensité de contrainte (FIC) en pointe de fissure. Ces quantités sont généralement évaluées après une analyse éléments finis. Plus récemment l'apparition de la XFEM a permis d'améliorer la description des champs en pointe fissure et de s'affranchir des remaillages successifs après chaque pas de propagation. Néanmoins, la solution ainsi calculée demeure une solution approchée de la solution du problème de référence. Il est donc important de pouvoir évaluer la pertinence de ces calculs. Ces travaux de thèse proposent une technique à même de fournir un encadrement conservatif des FIC évalués par une méthode éléments finis classique et par la XFEM. L'utilisation des techniques d'évaluation d'erreur sur les quantités d'intérêt et de l'erreur en relation de comportement permet dans un premier temps de fournir des bornes de bonne qualité pour les FIC. On propose ensuite une méthode permettant d'évaluer l'erreur globale commise lors d'une analyse XFEM. Elle fait intervenir l'erreur en relation de comportement et des techniques de construction de champs de contrainte adéquates. On est alors en mesure de proposer un encadrement assez fin des FIC pour un coût numérique très raisonnable. L'estimation d'erreur peut finalement être envisagée comme un moyen de déterminer les quantités d'intérêt avec précision.
APA, Harvard, Vancouver, ISO, and other styles
4

Habib, Fakhreddine. "Modélisation de la propagation de fissures dans un contexte thermo-électro-mécanique non linéaire par la méthode des éléments finis étendus (XFEM)." Doctoral thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/34002.

Full text
Abstract:
L’apparition des fissures macroscopiques peut manifestement se déclencher à plusieurs étapes du processus de la vie d’une cathode dans une cuve d’électrolyse. Diverses causes peuvent engendrer un tel surgissement. Au préchauffage électrique, par exemple, la répartition spatiale irrégulière des gradients thermiques peut conduire à la naissance d’une ou plusieurs fissures. L’objectif principal de ce travail se résume à la modélisation et la simulation de la propagation de fissures dans un contexte multiphysique, thermo-électro-mécanique. L’approche se base sur une philosophie de développement numérique monolithique, du couplage fortement non linéaire avec la prise en compte des échanges thermoélectriques à travers les lèvres de fissures, par la méthode des éléments finis étendus (XFEM). Ce projet a été dressé sous forme de trois sous-projets. En premier lieu, un nouveau modèle de la propagation de fissures en contexte thermomécanique dans un domaine fissuré a été développé. Une stratégie d’enrichissement géométrique par XFEM a été élaborée avec succès pour modéliser la propagation de fissures ainsi que pour atteindre le taux optimal de convergence espéré sur les réponses physiques et sur le calcul des facteurs d’intensité de contraintes. Trois benchmarks ont été examinés et validés à partir des résultats existants dans la littérature. Ensuite, un nouvel exemple de propagation de fissures et défauts multiples a été conçu. La comparaison des résultats obtenus montre la robustesse ainsi que la précision du développement numérique. En second lieu, une approche originale de la modélisation du couplage fort thermoélectrique, en présence d’une discontinuité matérielle forte statique et en tenant compte des échanges thermique et électrique à travers ses lèvres, a été développée. Tout d’abord, un modèle a été élaboré et validé dans le cas d’une fissure capacitive, où les propriétés du diélectrique, entre les lèvres de la fissure, jouent un rôle déterminant pour la quantification de son intensité d’échange. De même, un modèle a été confirmé pour le choix d’un milieu gazeux remplissant la région entre les deux lèvres, assurant l’aspect résistif d’échange thermique. Le modèle thermoélectrique a été mis en œuvre par XFEM, en implémentant la version améliorée, et en tenant compte du traitement des parasites numériques dus aux éléments de transition. Trois cas d’études ont été proposés, le premier a été appliqué pour valider la mise en œuvre numérique du modèle proposé via un patch test développé. Une bonne convergence et précision des résultats numériques ont été observées. Le second a porté sur le cas d’une fissure courbée, moins fréquente dans la littérature, qui peut être rencontré dans de nombreuses applications, et représente un défi numérique notable. Le troisième est une étude élaborée sur la cathode. L’analyse de l’impact de la présence des fissures sur l’efficacité énergétique a été soulevée aussi pour le cas de fissures multiples. En troisième lieu, une originalité numérique de la propagation de fissures en couplage thermo-électro-mécaniques (TEM) avec les échanges thermique et électrique entre les lèvres de la fissure a été exposée. La fissure n’est pas statique, cette fois-ci. L’aire générée par le déplacement des lèvres est prise en considération dans les expressions physiques des coefficients d’échanges thermique et électrique. Cela est transcrit par la quantification du saut de déplacement à travers les lèvres. Cet aspect rend le problème mécanique non linéaire, aussi, par le biais des échanges, et par conséquent le système global TEM est fortement non linéaire. Une approche originale du point de vue de la technicité d’intégration a été implémentée. Elle est fondée sur une technique de sous-triangulation barycentrique par une ’toile d’araignée’ pour les éléments de surface coupés par la fissure. Une autre technique basée sur l’intégration par ’bras’ de fissure réservée pour les éléments d’échanges thermique et électrique. Deux cas d’études essentiels ont été envisagés. Le premier est un exemple de propagation en mode mixte d’une fissure inclinée en TEM avec les échanges thermique et électrique en fonction du saut de déplacement. Le deuxième a été réservé pour un cas d’étude industrielle d’une cuve en opération, en contexte TEM. L’impact de la présence de la fissure sur les différentes réponses physiques est analysé. Comme constatation, en expansion thermoélectrique du bloc cathodique, la fissure a plus tendance à rejoindre la surface supérieure pour mettre, probablement, fin à la vie de la cathode.
The outbreak of visible cracks can be triggered at several stages in the life of a cathode block in an electrolysis cell. Various matters can prompt such an upsurge. Under electrical pre-heating, for example, the random spatial distribution of thermal gradients can lead to the rise of one or more cracks. The main objective of this work is to model and simulate the crack propagation in a multi-physical, thermo-electro-mechanical, context. The approach is based on a monolithic numerical development philosophy of a strongly nonlinear coupling, with the consideration of thermoelectric exchanges through the crack lips using the extended finite element method (XFEM). This project was sketched essentially on three sub-projects. Firstly, a new model of crack propagation in a thermomechanical fashion over a cracked domain has been developed. A geometrical enrichment strategy by XFEM has been successfully performed to model crack growth as well as to achieve the expected optimal convergence rate in physical responses and the computation of stress intensity factors. Three benchmarks were examined and validated from existing results in the literature. Then, anew example of the propagation of multiple cracks and multiple defects was designed. The comparison of the results obtained shows a good agreement with the reported works as well as the robustness and the accuracy of the numerical development. Secondly, an original approach to the modeling of full thermoelectric coupling, in the presence of a strong static material discontinuity and taking into account the thermal and electrical exchanges through its lips, has been elaborated. First, a model has been established and validated in the case of a capacitive crack, where the properties of the dielectric, between the inter-crack-lips, play a determining role for the ascertainment of its exchange intensity. Similarly, a model has been settled for the choice of a gaseous medium filling the gap between the two rims, ensuring the resistive heat exchange aspect. The thermoelectric model has been implemented via XFEM by performing the enhanced version and taking into account the treatment of numerical noise due to the blending elements. Three case studies were intended, the first one was employed to validate the numerical implementation of the stated model via a developed patch test. Good convergence and accuracy of numerical outcomes have been noted. The second focused on the case of a curved crack, less considered in the literature, which can be encountered in many applications, and represents a significant numerical challenge. The third is an elaborate study on the cathode. The analysis of the impact of cracks on energy efficiency was also raised for the case of multiple cracks. Thirdly, numerical originality of crack propagation in the context of the full thermo-electro-mechanical (TEM) coupling combined with thermal and electrical exchanges between the crack lips has been displayed. The area formed by the displacement of the two crack bank sis carried out in the physical expressions of the heat and electrical coefficients. The quantification of this gap is rendered by the resulting displacement jump across the lips. This aspect makes the mechanical problem nonlinear as well through exchanges, and therefore the global TEM system is strongly nonlinear. An original integration strategy, from a technical point of view, has been realized. It is based on a technique of barycentric sub-triangulation through a ’spider-web’ for the surface elements cut by the crack. Another procedure based on integration by crack ’arms’ reserved for heat and electrical exchanges elements. Two case studies have been examined. The first one is an example of the mixed-mode growth of a sloped crack in TEM context with thermal and electrical exchanges as a function of the displacement jump. The second was held for an industrial case of an electrolysis cell in operation and TEM circumstances. The impact of the presence of crack on several physical responses is analyzed. As an outcome, due to the thermoelectric expansion of the cathode block, the crack is expected to join the upper surface and lead to the end of the cathode’s life.
APA, Harvard, Vancouver, ISO, and other styles
5

Jamond, Olivier. "Propagation numérique de zones critiques dans un pneumatique par approches multi-modèles." Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2011. http://www.theses.fr/2011ECAP0020/document.

Full text
Abstract:
Ces travaux se sont attachés au développement, à l’implémentation et à la validation d’une stratégie numérique pour la simulation de l’évolution d’un endommagement localisé susceptible de conduire à l’apparition, puis à la propagation de fissures dans une structure complexe, incompressible. Nous avons abordé cet objectif général en procédant par étapes.Dans un premier temps, nous avons développé une méthodologie numérique innovante pour la propagation de fissures dans le cadre de la mécanique de la rupture fragile. Cette méthodologie a deux caractéristiques importantes : incluant l’enrichissement Heaviside de la méthode XFEM dans le cadre de modélisation Arlequin, cette méthodologie permet de ne pas remailler la structure initiale, au cours de la propagation de la fissure. Attachant un patch Arlequin local en fond de la fissure qui se propage, elle permet d’approcher, avec la précision nécessaire, le comportement local des champs mécaniques. Cette méthodologie a été implémentée et testée numériquement. Dans un deuxième temps, nous avons étendu cette méthodologie pour la prise en compte de l’endommagement par fatigue. Dans l’approche développée, l’initiation et la propagation de fissures sont pilotées par l’évolution du champ d’endommagement. Un modèle heuristique représentatif, fournissant les incréments de propagation d’une fissure à partir des champs d’endommagement et de contraintes au voisinage de sa pointe, est proposé. En utilisant des modèles physiques représentatifs des difficultés liées à la problématique d’initiation et de propagation de fissures, sous l’effet d’un endommagement par fatigue, nous avons montré, à travers des essais numériques, une faisabilité globale de notre approche. Dans un troisième temps, nous nous sommes intéressés à la prise en compte de la contrainte d’incompressibilité dans une modélisation Arlequin. L’intégration de cette contrainte pose pour la formulation Arlequin continue et/ou discrète des questions spécifiques : comment gérer la double contrainte dans la zone de couplage en continu et en discret ?, comment traiter les éléments partiellement incompressibles ? Des réponses sont données et étayées théoriquement et/ou numériquement. Enfin, nous avons proposé un ensemble de procédures pratiques, permettant d’évaluer, de manière générale et performante, une intersection de maillages tridimensionnels. Ces développements, nécessaires à la mise en œuvre opérationnelle du cadre Arlequin dans des codes industriels, sont validés par des résultats de calculs Arlequin 3D
Résumé en anglais non disponible
APA, Harvard, Vancouver, ISO, and other styles
6

Sherif, Ahmed. "Compact High-Order Accurate Scheme for Laminar Incompressible Two-Phase Flows." Electronic Thesis or Diss., Ecole centrale de Nantes, 2023. http://www.theses.fr/2023ECDN0004.

Full text
Abstract:
L'objectif de cette thèse est de développer une méthode précise d'ordre élevé pour résoudre le problème d'écoulementlaminaire incompressible à deux phases. Trois tâches principales sont à accomplir. Premièrement, la méthode doit être stable en énergie, ce qui signifie que la condition sans divergence de l'équation de Navier-Stokes incompressible est satisfaite partout dans le domaine de calcul. Deuxièmement, les discontinuités locales apparaissant dans le champ d'écoulement diphasique doivent être capturées avec précision. Troisièmement, l'interface matérielle entre les deux fluides doit être représentée avec précision à chaque pas de temps. Dans ce travail, une nouvelle méthode Hybridizable Discontinuous Galerkin (HDG) est utilisée pour la discrétisation spatiale. Cette méthode hybride qui appartient à la famille des méthodes DG-FEM satisfait la condition sans divergence en introduisant des variables de trace de vitesse et de pression du même ordre plus une approximation de vitesse et de pression adaptée à l'intérieur des éléments. Deplus, les concepts de FEM eXtended (X-FEM) sont utilisés pour approximer les discontinuités dans le champ d'écoulement en enrichissant l'approximation FEM standard dans les éléments où deux fluides existent. Enfin, l'interface du matériau en mouvement entre les deux fluides est capturée à l'aide de la méthode Level-Set
The objective of this thesis is to develop a high-order accurate method to solve the two-phase incompressible laminar flowproblem. Three main tasks are to be achieved. First, the method has to be energy-stable meaning that the divergence-free condition of the incompressible Navier-Stokes equation is satisfied everywhere in the computational domain. Second, the local discontinuities arising in the two-phase flow field have to be captured accurately. Third, the material interface betweenthe two fluids has to be represented accurately in each time step. In this work, a novel Hybridizable Discontinuous Galerkin (HDG) method is used for the spatial discretization. This hybrid method that belongs to the family of DG-FEM methods satisfies the divergence-free condition by introducing velocity and pressure trace variables of the same order plus a tailoredvelocity and pressure approximation inside the elements. Furthermore, the concepts of eXtended FEM (X-FEM) are used toapproximate discontinuities in the flow field by enriching the standard FEM approximation in elements where two fluids exist. Finally, the moving material interface between the twofluids is captured using the Level-Set method
APA, Harvard, Vancouver, ISO, and other styles
7

Jan, Yannick. "Modélisation de la propagation de fissure sur des structures minces, soumises à des sollicitations intenses et rapides, par la méthode X-FEM." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI066/document.

Full text
Abstract:
Actuellement, les méthodes classiques (éléments finis, endommagement, critère de rupture) pour analyser la tenue des structures sous des chargements extrêmes sont très dépendantes de la taille de maille du modèle et nécessitent à la fois un savoir-faire spé- cifique dans le domaine et des études de sensibilité au maillage. De nouvelles approches basées sur la méthode des éléments finis étendus permettent de traiter des propagations de fissure sur des structures de petites tailles et volumiques. Cependant, la propagation sur de grandes longueurs avec des modèles volumiques demande une puissance de calcul importante, souvent inaccessible dans le cadre industriel. Cette thèse a pour but de cou- pler des éléments finis de coque avec la méthode des éléments finis étendue (X-FEM). On peut ainsi diminuer la taille des modèles et gagner en temps de calcul. La fissure peut éga- lement évoluer librement dans le maillage. Après avoir fait le choix d’un élément fini de coque simple et de bonne qualité, l’objectif est de modifier cet élément afin de permettre la description d’une fissure au sein même de celui-ci. Ensuite, l’enjeu est d’adapter les critères de propagation qui existent déjà pour des modèles plans ou volumiques pour les matériaux dits "ductiles" afin de les utiliser dans le cadre d’une modélisation coque. Ces critères sont basés sur l’analyse des champs de contrainte et déformation sur un demi- disque aval à la pointe de fissure. Le calcul de la contrainte équivalente extraite de ces champs servant de seuil pour déclencher ou non la propagation est un point clef de ce travail. Cette étude se place dans le cadre de la plasticité généralisée et fait l’hypothèse d’une fissure initialement traversante dans l’épaisseur de la coque. La phase d’amorçage de la fissure n’est pas prise en compte et le défaut initial est supposé préexistant au sein de la structure. En vue de valider le couplage coque/X-FEM et le critère de propagation, des essais de fissuration sur des structures minces sont réalisés et présentés dans ce document
In shipbuilding industry, classical methods to analyze the behavior of structures under extreme loadings are very dependent on the size of the mesh. Moreover, propagation over long lengths with volumetric models requires huge processing power, often inaccessible within this framework. In order to manage these issues and due to the geometry to be considered, a coupling between shell finite element and the extended finite element method (X-FEM) using an adapted propagation criterion is proposed. The developments are made in the fast explicit dynamic finite element code EUROPLEXUS, CEA Saclay. For shell structures involving significant thickness such as submarines, Mindlin-Reissner theory is needed to enable shear strain. Therefore, locking-free element are used to avoid the numerical issue of shear-locking that appears when the shell becomes too thin. The fracture of Mindlin-Reissner plates based on the X-FEM discrete approximation framework is studied by Dolbow and Belytschko with the MITC4. A four node shell element using the same formulation is here only enriched with a step function along the crack line to take into consideration the discontinuity of the displacement field across the crack. The calculation remains accurate without the asymptotic enrichment functions near the crack-tip, as long as the mesh is refined near the crack tip. The numerical integration issue for elements cut by the crack is solved by a partitioning strategy developed by Elguedj. Since the crack is contained in the shell for which the mid plane's position is entirely known, only one information left is needed to locate it. Therefore, a crack is represented by several line segments on the three-dimensional mesh. Only through thickness cracks are considered so far. As regards to the crack propagation, a local criteria proposed by Haboussa is used based on the calculation of mechanical equivalent quantities in the vicinity of the crack tip. The maximum of the equivalent stress tensor near the crack tip is used to decide if the crack propagates as well as its propagation direction, and the Kaninen equation gives the crack velocity
APA, Harvard, Vancouver, ISO, and other styles
8

Dib, Dayana. "Analyse théorique et numérique de l'endommagement par micro-fissuration descomposites à matrice quasi-fragile." Thesis, Paris Est, 2015. http://www.theses.fr/2015PEST1099.

Full text
Abstract:
Le problème initial traité dans cette thèse relève du cadre général de la modélisation des tunnels profonds. Pour cela, on a adopté l'approche basée sur la mécanique linéaire de la rupture. L'étude s'est appuyée sur le critère mixte de Leguillon. Suite à cette étude, on a pu tirer que ce n'est pas le critère mixte qui est insuffisant mais plutôt la façon d'aborder le problème. D'où le passage à la prise en compte de l'hétérogénéité du matériau constitutif et la possibilité d'amorçage d'une fissure sous une contrainte de compression. Une première approche a été entreprise par l'étude d'une bicouche périodique sous contrainte de compression verticale. La couche de grande raideur s'est apparue le siège d'une traction transversale. Effectivement la possibilité d'amorçage d'une fissure est tout à fait probable grâce toujours à la vérification des critères d'énergie et de contrainte. Une deuxième approche consistait à observer au plus près la microstructure du matériau ; on a considéré le problème d'une inclusion elliptique dans une matrice infinie. Par la méthode des variables complexes et la technique de la transformation conforme, on a analysé le champ de contrainte autour de l'inclusion et on a mis en évidence la présence d'une traction qui dépend fortement des paramètres choisis. Par la méthode des éléments finis étendus, on a calculé la variation de l'énergie potentielle mise en jeu par la création d'une fissure. Par une démarche semblable à l'approche précédente, à savoir la vérification des critères d'énergie et de contrainte, on a conclu à la possibilité d'amorçage d'une fissure. Mots clefs : mécanique linéaire de la rupture, critère mixte de Leguillon, énergie potentielle, taux de restitution d'énergie, méthode des éléments finis étendus, bicouche périodique, méthode des variables complexes
The initial problem treated in this thesis falls within the general framework of modeling deep tunnels. For this reason, the approach based on linear fracture mechanics was adopted. The study was based on the mixed criterion of Leguillon. Following This study, the mixed criterion was not insufficient but the way to approach the problem was. Where the transition to the consideration of the heterogeneity of the material component and the possibility of initing a crack under a compressive stress. A first approach was undertaken the study of periodic bilayer under the stress of vertical compression. The layer of the highest stiffness has appeared the seat of a transverse traction. Indeed the possibility to initiate a crack is quite likely always through the verification of the energy and the stress criteria. A second approach was to observe more closer the microstructure of the material; we have considered the problem of elliptic inclusion in an infinite matrix. By the method of complex variables and the technique of conformal mapping, we analyzed the stress field around the inclusion and were revealed the presence of a traction which depends strongly of the selected parameters. By the extended finite element method, we calculated the variation of the potential energy involved by creating a fracture. In a similar approach to the previous one, namely verification of the energy and the stress criteria, we concluded the possibility of initiating a crack. Keywords: linear fracture mechanics, mixed criterion of Leguillon, potential energy, energy release rate, extended finite element method, periodic bilayer, method of complex variables
APA, Harvard, Vancouver, ISO, and other styles
9

Grégoire, David. "Initiation, propagation, arrêt et redémarrage de fissures sous impact." Phd thesis, INSA de Lyon, 2008. http://tel.archives-ouvertes.fr/tel-00418626.

Full text
Abstract:
Les risques liés à la propagation de fissures sous impact sont encore très difficiles à estimer. La détermination de critères de rupture dynamique uniquement à partir de résultats expérimentaux reste délicate. Ainsi la première étape pour valider des lois de propagation de fissures sous impact passe par le développement d'outils de simulation numérique. Depuis les années 1970, de nombreux codes de calcul mécanique ont été dédiés à l'étude de la propagation de fissures, notamment dans le cas du phénomène de fatigue. La principale difficulté consiste dans la nécessité de suivre la géométrie de la fissure au cours du temps. Ces dernières années, des méthodes alternatives basées sur la partition de l'unité ont permis une description implicite des discontinuités mobiles. C'est le cas de la méthode des éléments finis étendue (X-FEM) qui paraît particulièrement adaptée à la simulation de la propagation dynamique de fissures sous chargement mixte où les trajets de fissures ne sont pas connus a priori. Si ces outils numériques permettent maintenant de représenter l'avancée dynamique d'une fissure, les résultats numériques doivent être comparés à des résultats expérimentaux pour s'assurer que les lois introduites sont physiquement fondées. Notre objectif est donc de développer conjointement des techniques expérimentales fiables et un outil de simulation numérique robuste pour l'étude des phénomènes hautement transitoires que sont l'initiation, la propagation, l'arrêt et le redémarrage de fissures sous impact.
Des expériences de rupture dynamique ont donc été réalisées sur du Polyméthacrylate de méthyle (PMMA) durant lesquelles la mixité du chargement varie et des arrêts et redémarrages de fissures se produisent. Deux bancs d'essais différents ont été utilisé, le premier basé sur la technique des barres de Hopkinson (ou barres de Kolsky), le second mettant en jeu un vérin rapide. Le PMMA étant transparent, la position de la fissure au cours de l'essai a été acquise grâce à des caméras rapides mais aussi en utilisant un extensomètre optique (Zimmer), habituellement dédié à la mesure de déplacements macroscopiques d'un contraste noir/blanc. L'utilisation de cet extensomètre pour suivre la fissure au cours de l'essai a permis d'obtenir une localisation très précise de la pointe de la fissure en continu, permettant ainsi l'étude des phases transitoires de propagation. Afin d'étudier le même phénomène dans des matériaux opaques comme les aluminiums aéronautiques (Al 7075), des techniques de corrélation d'images numériques ont été employées en mouchetant les éprouvettes impactées. De nouveaux algorithmes ont été développés afin de traiter les images issues d'une caméra ultra-rapide (jusqu'à 400 000 images par seconde).
Plusieurs géométries ont été envisagées afin d'étudier différents cas de propagation dynamique : initiation en mode I pur, initiation en mode mixte, propagation, arrêt, redémarrage, interaction entre deux fissures, influence d'un trou sur le trajet d'une fissure, branchement dynamique de fissures. Ces expériences ont ensuite été reproduites numériquement afin de valider les algorithmes et les critères de rupture choisis.
APA, Harvard, Vancouver, ISO, and other styles
10

Amdouni, Saber. "Numerical analysis of some saddle point formulation with X-FEM type approximation on cracked or fictitious domains." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0007/document.

Full text
Abstract:
Ce mémoire de thèse à été réalisée dans le cadre d'une collaboration scientifique avec "La Manufacture Française des Pneumatiques Michelin". Il porte sur l'analyse mathématique et numérique de la convergence et de la stabilité de formulations mixtes ou hybrides de problèmes d'optimisation sous contrainte avec la méthode des multiplicateurs de Lagrange et dans le cadre de la méthode éléments finis étendus (XFEM). Tout d'abord, nous essayons de démontrer la stabilité de la discrétisation X-FEM pour le problème d'élasticité linéaire incompressible en statique. Le deuxième axe, qui représente le contenu principal de la thèse est dédié à l'étude de certaines méthodes de multiplicateur de Lagrange stabilisées. La particularité de ces méthodes est que la stabilité du multiplicateur est assurée par l'ajout de termes supplémentaires dans la formulation faible. Dans ce contexte, nous commençons par l'étude de la méthode de stabilisation de Barbosa-Hughes appliquée au problème de contact unilatéral sans frottement avec XFEM cut-off. Ensuite, nous construisons une nouvelle méthode basée sur des techniques de projections locales pour stabiliser un problème de Dirichlet dans le cadre de X-FEM et une approche de type domaine fictif. Nous faisons aussi une étude comparative entre la stabilisation avec la technique de projection locale et la stabilisation de Barbosa-Hughes. Enfin, nous appliquons cette nouvelle méthode de stabilisation aux problèmes de contact unilatéral en élastostatique avec frottement de Tresca dans le cadre de X-FEM
This Ph.D. thesis was done in collaboration with "La Manufacture Française des Pneumatiques Michelin". It concerns the mathematical and numerical analysis of convergence and stability of mixed or hybrid formulation of constrained optimization problem with Lagrange multiplier method in the framework of the eXtended Finite Element Method (XFEM). First we try to prove the stability of the X-FEM discretization for incompressible elastostatic problem by ensured a LBB condition. The second axis, which present the main content of the thesis, is dedicated to the use of some stabilized Lagrange multiplier methods. The particularity of these stabilized methods is that the stability of the multiplier is provided by adding supplementary terms in the weak formulation. In this context, we study the Barbosa-Hughes stabilization technique applied to the frictionless unilateral contact problem with XFEM-cut-off. Then we present a new consistent method based on local projections for the stabilization of a Dirichlet condition in the framework of extended finite element method with a fictitious domain approach. Moreover we make comparative study between the local projection stabilization and the Barbosa-Hughes stabilization. Finally we use the local projection stabilization to approximate the two-dimensional linear elastostatics unilateral contact problem with Tresca frictional in the framework of the eXtended Finite Element Method X-FEM
APA, Harvard, Vancouver, ISO, and other styles
11

Moumnassi, Mohammed. "La représentation implicite des volumes pour l'analyse par éléments finis avec XFEM et Level-sets." Thesis, Metz, 2011. http://www.theses.fr/2011METZ033S/document.

Full text
Abstract:
La méthode des éléments finis (ÉF) est largement utilisée pour la simulation numérique de problèmes physiques formulés en terme d’équations aux dérivées partielles (EDP). Une étape cruciale du processus d’analyse par cette méthode est la discrétisation de la géométrie du domaine afin de construire le maillage sur lequel est formulé l’espace d’approximation du problème. Cependant, la création d’un maillage de qualité conforme aux frontières courbes et aux arêtes vives, dont dépend les résultats numériques, nécessite encore un apport significatif de temps humain lors du processus globale d’analyse. L’objet de ce travail est la mise en œuvre d’une nouvelle approche qui permet de réaliser des simulations sur un objet dont la frontière est non-conforme au maillage, tout en conservant les avantages des ÉF. Pour cela, on utilise une représentation implicite du domaine (Level set) et la méthode des éléments finis étendus (XFEM). Dans un premier temps, on s’intéresse à construire des objets par Level sets indépendamment de la discrétisation spatiale (i.e. un maillage simple). Des stratégies ont été développées afin de construire des objets implicites à partir de la représentation paramétrique la plus populaire en conception CAO, de préserver les arêtes vives et pour pouvoir représenter correctement les frontières courbes. Dans un deuxième temps, on s’intéresse à l’adaptation de la méthode XFEM afin de réaliser une intégration numérique correcte et de préserver la stabilité des formulations mixtes pour la gestion de la contrainte de Dirichlet. La dernière partie consiste à vérifier la précision et les taux de convergence dans le cas des frontières courbes et pour des objets entièrement non-conformes au maillage
The Finite Element Method (FEM) is widely used for numerical simulations of physical problems formulated in terms of partial differential equations (PDE). A crucial step in the process of analysis by this method is the discretization of the geometry to construct a mesh representing the approximation space of the problem. However, high quality mesh that conforms to the curved boundaries and sharp features, whose depends on the numerical results, still requires a significant amount of human time in the global process of analysis. The aim of this work is to implement a new approach that allows performing simulations on an object whose boundaries do not conform to the mesh, while retaining the benefits of FEM. For this purpose, the implicit representation of the domain (Level set) and the eXtended Finite Element Method (XFEM) are used. In the first step, the focus is to build objects by using Level sets independently of the spatial discretization (i.e. a simple mesh). Strategies have been developed to build implicit objects from the parametric representation (the most common in Computer Aided Design CAD), to preserve sharp features and correctly represent curved boundaries. In a second step, the focus lies on adapting XFEM to achieve a proper numerical integration and to preserve the stability of mixed formulations for managing Dirichlet constraints. The last part consists in verifying the accuracy and rate convergence in the case of implicit curved boundaries and of non-conforming objects to the mesh
APA, Harvard, Vancouver, ISO, and other styles
12

Chagneau, Anthony. "Méthode de zoom structural étendue aux hétérogénéités non linéaires." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS051.

Full text
Abstract:
Une approche multi-échelle introduit une méthode de zoom structural dans une zone d’intérêt, appelé le patch, utilisant uniquement des opérateurs de projection de champs. Les différents comportements dans le patch et dans la structure globale sont pris en compte sans utiliser des paramètres de poids entre énergies locales et globales comme la méthode Arlequin. Notre problème initial est de fiabiliser numériquement la méthode de zoom structural pour le cas linéaire, et plus précisément de choisir un solveur performant sur les espaces de Krylov, ainsi qu’un préconditionnement et une rénumérotation efficaces et adaptés au système à résoudre. Une fois le solveur choisi, cette approche est validée mécanique sur deux essais, un de traction et l’autre de cisaillement. Une étude paramétrique sur le patch est effectué afin d’obtenir une solution acceptable. L’objectif suivant est d’étendre cette approche à des régions comportant des hétérogénéités à comportement non linéaire. On s’est intéressé au comportement élastoplastique. L’hypothèse de départ est de considérer le comportement élastoplastique uniquement à l’intérieur du patch et un comportement élastique sur la structure globale ainsi que sur la zone de raccord. On valide ensuite cette approche avec différents essais comprenant plusieurs défauts et donc plusieurs patchs ainsi que des histoire de chargement différents
A multi-scale approach introduces a structural zoom method into a region of interest, called the patch, using only field projection operators. The different behaviours in the patch and in the overall structure are taken into account without using weight parameters between local and global energies such as the Arlequin method. Our initial problem is to digitally reliable the structural zoom method for the linear case, and more precisely to choose a high-performance solver on Krylov spaces, as well as effective preconditioning and ordering adapted to the system to be solved. Once the solver is chosen, this approach is mechanically validated in the mean of two tests, namely traction and shear. A parametric study of the patch is performed to obtain an acceptable solution. The next objective is to extend this approach to regions with heterogeneities of non-linear behaviour. The method has been reached out for elastoplastic behaviour. Initial hypothesis assumes the elastoplastic behaviour only inside the patch and an elastic behaviour of the overall structure as well as of the gluing area. Finally, this approach is validated with different tests including several faults and therefore several patches as well as different loading history
APA, Harvard, Vancouver, ISO, and other styles
13

Martin, Dave. "Multiphase modeling of melting : solidification with high density variations using XFEM." Doctoral thesis, Université Laval, 2016. http://hdl.handle.net/20.500.11794/27140.

Full text
Abstract:
La modélisation de la cryolite, utilisée dans la fabrication de l’aluminium, implique plusieurs défis, notament la présence de discontinuités dans la solution et l’inclusion de la difference de densité entre les phases solide et liquide. Pour surmonter ces défis, plusieurs éléments novateurs ont été développés dans cette thèse. En premier lieu, le problème du changement de phase, communément appelé problème de Stefan, a été résolu en deux dimensions en utilisant la méthode des éléments finis étendue. Une formulation utilisant un multiplicateur de Lagrange stable spécialement développée et une interpolation enrichie a été utilisée pour imposer la température de fusion à l’interface. La vitesse de l’interface est déterminée par le saut dans le flux de chaleur à travers l’interface et a été calculée en utilisant la solution du multiplicateur de Lagrange. En second lieu, les effets convectifs ont été inclus par la résolution des équations de Stokes dans la phase liquide en utilisant la méthode des éléments finis étendue aussi. Troisièmement, le changement de densité entre les phases solide et liquide, généralement négligé dans la littérature, a été pris en compte par l’ajout d’une condition aux limites de vitesse non nulle à l’interface solide-liquide pour respecter la conservation de la masse dans le système. Des problèmes analytiques et numériques ont été résolus pour valider les divers composants du modèle et le système d’équations couplés. Les solutions aux problèmes numériques ont été comparées aux solutions obtenues avec l’algorithme de déplacement de maillage de Comsol. Ces comparaisons démontrent que le modèle par éléments finis étendue reproduit correctement le problème de changement phase avec densités variables.
The modelling of the cryolite bath, used in the smelting of aluminum, offers multiple challenges, particularly the presence of discontinuities in the solution and a difference in density between the solid and liquid phases. To over come these challenges, several novel elements were developed in this thesis. First of all, the phase change problem, commonly named the Stefan problem, was solved in two dimensions using the extended finite element method. A specially designed Lagrange multiplier formulation, using an enriched Lagrange multiplier solution, was implemented to impose the melting temperature on the interface. The interface velocity is determined by the jump in the heat flux across the interface and was calculated using the Lagrange multiplier values. Secondly, convection was included by solving the Stokes equations in the liquid phase using the extended finite element method as well. Thirdly, the density change between solid and liquid phases, usually neglected in the literature, was taken into account by the addition of a non-zero velocity boundary condition at the solid-liquid interface to maintain mass conservation in the system. Benchmark analytical and numerical problems were solved to validated the various components of the model and the coupled system of equations. The solutions to the numerical problems were compared to the solutions obtained using Comsol’s moving mesh algorithm. Theses comparisons show that the extended finite element method correctly solves the phase change problem with non-constant densities.
APA, Harvard, Vancouver, ISO, and other styles
14

Gibert, Gaël. "Propagation de fissures en fatigue par une approche X-FEM avec raffinement automatique de maillage." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI088.

Full text
Abstract:
Dans cette thèse, une nouvelle approche est présentée, combinant la méthode des éléments finis étendus (X-FEM) et un raffinement adaptatif et automatique de maillage (AMR). La méthode X-FEM, développée durant les deux dernières par une importante communauté, a prouvé son efficacité pour gérer l'évolution de discontinuités dans de nombreux problèmes de mécanique de la rupture. Comme cette méthode permet de décrire la fissure indépendamment du maillage de la structure, un raffinement hiérarchique relativement simple peut être appliqué sur ce dernier pour adapter localement l'échelle de discrétisation à celle des phénomènes physiques mis en jeux. Cela permet d'obtenir une description précise de quantités physiques d'intérêt dans une zone limitée autour du front de fissure et réduire considérablement le coût numérique, particulièrement lorsque le trajet de propagation n'est pas connu a priori. Dans ce travail, on propose une stratégie pour combiner X-FEM et AMR : les relations de compatibilité cinématique et les méthodes de projection nécessaires pour les matériaux dépendant de l'histoire de chargement doivent inclure correctement le modèle d'enrichissement. L'implémentation de cette approche combinant X-FEM et AMR, dans le code éléments finis industriel Cast3M, est présentée en détails. En particulier, une nouvelle méthode de projection spécifique à ce contexte est proposée. Des applications numériques et une étude expérimentale de propagation par fatigue en plasticité confinée ont été réalisées pour démontrer la précision, la robustesse et l'efficacité de cette méthode
To guarantee the high level of safety of industrial components under fatigue cycles it is essential to be able to predict the initiation and growth of cracks during their entire lifetime. However the numerical cost of a propagation simulation on engineer-sized problems with non-linear behavior may be prohibitive, with the classical techniques. Here, a new approach combining the eXtended Finite Element Method (X-FEM) and automatic Adaptive Mesh Refinement (AMR) is presented taking advantage of both methods. The X-FEM, developed over the past two decades by a large community, have proven its efficiency to handle evolving discontinuities in a variety of fracture analysis. Since this method enables to describe the crack and its propagation independently of the mesh of the structure, a simple hierarchical mesh refinement procedure can be applied. Automatic adaptive re-meshing is a valuable method for elastic-plastic crack propagation analysis since it permits a locally fine mesh and then an accurate description of physical quantities in a limited area around the crack front. This is particularly important when local fracture criteria are concerned. Moreover local refinement saves computational effort, particularly when the propagation path is not a priori known. In the present work, it is shown that both methods combine with minimal effort: the kinematic continuity relations and the field transfer process, needed for history-dependent material, must include in a proper way the enrichment of the model. If this requirement is not fulfilled, numerical error may be introduced. Implementation of this combined X-FEM/AMR approach in the finit elements code Cast3M is presented in detail. In particular, an innovative field transfer strategy is proposed in 2D and 3D. Numerical applications of crack propagation in elastic-plastic media demonstrate accuracy, robustness and efficiency of the technique. Moreover, an experimental study has been conducted on a example propagation with notable impact of confined plasticity. This study provides experimental data to compare with the numerical results obtained with the developed method. This validates our modelization choices. It also is the opportunity to test the developed method robustness on a realistic case of utilization. This study showed the interest of the proposed modelization taking into account plasticity induced crack closure during the fatigue propagation
APA, Harvard, Vancouver, ISO, and other styles
15

Laouati, Atmane. "Modélisation de problèmes thermoélectriques non linéaires dans un milieu fissuré par la méthode XFEM." Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/30001/30001.pdf.

Full text
Abstract:
L’objectif principal de cette thèse est le développement d’un outil numérique, en utilisant l’approche XFEM, permettant la simulation des problèmes transitoires non linéaires thermoélectriques dans un milieu fissuré en deux dimensions, avec prise en compte des échanges thermiques et électriques entre les lèvres de la fissure. La simulation numérique de la propagation de fissures présente un grand intérêt pour de nombreux secteurs industriels (production d’aluminium, aéronautique, nucléaire, etc.). De plus, c’est un problème complexe sur le plan numérique. La méthode d’éléments finis classiques présentent des contraintes importantes de raffinement de maillage en fond de fissure, de remaillage pendant la propagation de la fissure avec la projection des champs, ce qui a pour effet d’augmenter le temps de calcul et de dégrader la précision des résultats. D’autre part, la méthode des éléments finis étendue XFEM, a reçu un succès grandissant pour le traitement de problèmes avec fissures durant la dernière quinzaine d’années. Elle permet d’utiliser un maillage qui ne se conforme pas à la géométrie des fissures, ceci grâce à un enrichissement de l’approximation éléments finis. Dans cette thèse, on s’intéresse à étendre le champ d’application de la méthode XFEM pour les problèmes non linéaires thermoélectriques avec fissures. En effet, le problème thermique transitoire est couplé avec le problème électrique par la génération de la chaleur dans le solide, et la génération de chaleur à la fissure à cause de la résistance de l’interface. Les échanges thermiques et électriques entre les lèvres de la fissure sont aussi considérés, et dépendent, respectivement, du saut de la température et du potentiel électrique à la fissure. En raison de la génération de la chaleur dans le solide et aux lèvres L’objectif principal de cette thèse est le développement d’un outil numérique, en utilisant l’approche XFEM, permettant la simulation des problèmes transitoires non linéaires thermoélectriques dans un milieu fissuré en deux dimensions, avec prise en compte des échanges thermiques et électriques entre les lèvres de la fissure. La simulation numérique de la propagation de fissures présente un grand intérêt pour de nombreux secteurs industriels (production d’aluminium, aéronautique, nucléaire, etc.). De plus, c’est un problème complexe sur le plan numérique. La méthode d’éléments finis classiques présentent des contraintes importantes de raffinement de maillage en fond de fissure, de remaillage pendant la propagation de la fissure avec la projection des champs, ce qui a pour effet d’augmenter le temps de calcul et de dégrader la précision des résultats. D’autre part, la méthode des éléments finis étendue XFEM, a reçu un succès grandissant pour le traitement de problèmes avec fissures durant la dernière quinzaine d’années. Elle permet d’utiliser un maillage qui ne se conforme pas à la géométrie des fissures, ceci grâce à un enrichissement de l’approximation éléments finis. Dans cette thèse, on s’intéresse à étendre le champ d’application de la méthode XFEM pour les problèmes non linéaires thermoélectriques avec fissures. En effet, le problème thermique transitoire est couplé avec le problème électrique par la génération de la chaleur dans le solide, et la génération de chaleur à la fissure à cause de la résistance de l’interface. Les échanges thermiques et électriques entre les lèvres de la fissure sont aussi considérés, et dépendent, respectivement, du saut de la température et du potentiel électrique à la fissure. En raison de la génération de la chaleur dans le solide et aux lèvres
The main objective of this thesis is the development of a numerical tool, using the XFEM approach, for the simulation of transient nonlinear thermoelectrical problems in fractured media in two dimensions, taking into account thermal and electrical exchanges between the crack’s lips. Numerical simulations of crack propagation are of great interest for many industrial sectors (aluminum production, aerospace, nuclear, etc.). In addition, this is a numerically complex problem. The classical finite element method has important constraints of mesh refinement at the crack tip, remeshing during crack propagation and field projections, which has the effect of increasing the computation time and degrading the accuracy. On the other hand, the eXtended Finite Element Method (XFEM), has received a growing success for the treatment of the problems containing cracks in the last fifteen years. It allows using a mesh that does not conform to the geometry of the crack; this is possible by the enrichment of the finite element approximation. In this thesis, we are interested in extending application field of the XFEM method to the nonlinear thermoelectrical problems with cracks. Indeed, the transient thermal problem is coupled to the electrical problem by the heat generation in the solid, and the heat generation at the crack’s lips due to the interface resistance. The heat and electrical exchanges between the crack’s lips are also considered, and depend, respectively, on the temperature and the voltage jump at the crack. Due to the heat generation in the solid and in crack’s lips (Joule effect), and the temperature dependence of the physical parameters of the material, the problem is nonlinear and fully coupled. The discretized nonlinear system by the XFEM method is solved using the Newton-Raphson algorithm. The robustness of the proposed technique is demonstrated through the simulation of different examples, and the results shows an excellent agreement with the analytical solution, or with the finite element solution using a refined mesh.
APA, Harvard, Vancouver, ISO, and other styles
16

Mekhlouf, Réda. "Modélisation XFEM, Nitsche, Level-set et simulation sous FEniCS de la dynamique de deux fluides non miscibles." Doctoral thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/30205.

Full text
Abstract:
À l’heure actuelle, les écoulements à deux fluides non miscibles jouent un rôle très important dans plusieurs domaines, que ça soit en science ou en ingénierie. Leur complexité est tellement élevée que les modèles actuels ne permettent de résoudre que des cas particuliers ou simplifiés avec un degré de précision qui demeurent souvent plutôt modeste. Une nouvelle approche numérique parait être une nécessité pour capturer la complexité physique du phénomène. Pour ce faire nous avons besoin d’outils robustes. Au niveau de l’interface de séparation entre les deux fluides non miscibles, les variables physiques sont discontinues, ce qui pose un défi majeur dans la description des variables et des conditions aux limites à l’interface. Le fait que les densités et les viscosités de chaque fluide soient différentes de part et d’autre de l’interface donne naissance à des défauts et des impuretés dans le champ des vitesses, ce qu’on appelle une discontinuité faible. Pour sa part, l’existence de la force de tension superficielle au niveau de l’interface crée une discontinuité sur le champ de pression, ce qu’on appelle une discontinuité forte. Un autre grand problème se pose au niveau de l’étude numérique du problème, où les méthodes numériques classiques ont une précision assez limitée dans ce genre de situation. L’objectif de ce travail est de fournir une étude complète de la dynamique de l’interface entre deux fluides non miscibles à l’aide d’outils mathématiques, physiques et numériques robustes. D’abord, une étude analytique du problème a été faite où l’équation de Navier-Stokes et les conditions de saut sur les variables physiques au niveau de l’interface de séparation entre les fluides ont été prouvées en détail. Pour traiter les discontinuités, nous avons discrétisé nos variables à l’aide de la méthode XFEM. Dû aux larges distorsions rencontrées dans ce genre d’écoulement, nous avons utilisé l’approche Eulérienne, pour corriger les oscillations des solutions dues aux choix du système de coordonnées nous avons utilisé les techniques de stabilisation SUPG/PSPG. Le traitement de la courbure des interfaces K été fait à l’aide de l’opérateur Laplace Beltrami et le suivi d’interface à l’aide de la méthode ¨Level-set¨. Pour le traitement des conditions de saut au niveau de l’interface la méthode Nitsche est développée dans différents contextes. Après avoir développé un modèle physique et mathématique dans les premières parties de notre travail, nous avons fait une étude numérique à l’aide de la plateforme de calcul FEniCS, qui est une plateforme de développement en langage C++ avec une interface Python. Un code de calcul a été développé dans le cas des écoulements de deux fluides non miscibles avec les modèles physiques et les outils mathématiques développés dans les sections précédentes.
The two-phase flow problems have an important role in the multitude of domains in science and engineering. Their complexity is so high that the actual models can solve only particular or simplified cases with a certain degree of precision. A new approach is a necessity to understand the evolution of new ideas and the physical complexity in this kind of flow, to contribute to the study of this field. A good study requires solid and robust tools to have performing results and a maximum of efficacy. At the interface of separation between the two immiscible fluids, the physical parameters are discontinuous, which gives us difficulties for the description of the physical variables at the interface and boundary conditions. The fact that the density and the viscosity are discontinuous at the interface creates kinks in the velocity, which represent a weak discontinuity. The existence of the surface tension at the interface create a discontinuity for the pressure field, it represents a strong discontinuity. The main objective of this work is to make a complete study based on strong and robust physical, mathematical and numerical tools. A strong combination, capable of capturing the physical aspect of the interface between the two fluids with a very good precision. Building such a robust, cost effective and accurate numerical model is challenging and requires lots of efforts and a multidisciplinary knowledge in mathematics, physics and computer science. First, an analytical study was made where the one fluid model of the Navier-Stokes equation was proved from Newton’s laws and jump conditions at the interface was proved and detailed analytically. To treat the problem of discontinuity, we used the XFEM method to discretize our discontinuous variables. Due to the large distortion encountered in this kind of fluid mechanic problems, we are going to use the Eulerian approach, and to correct the oscillation of solutions we will use the SUPG/PSPG stabilization technic. The treatment of the interface curvature k was done with the Laplace Beltrami operator and the interface tracking with the Level-set method. To treat the jump conditions with a very sharp precision we used the Nitsche’s method, developed in different cases. After building a strong mathematical and physical model in the first parts of our work, we did a numerical study using the FEniCS computational platform, which is a platform of computational development based on C++ with a Python interface. A numerical code was developed in this study, in the case of two-phase flow problem, based on the previous mathematical and physical models detailed in previous sections.
APA, Harvard, Vancouver, ISO, and other styles
17

Jover, Carrasco Elena. "Simulations 3D des interactions entre fissure et dislocations." Thesis, Université Grenoble Alpes, 2022. https://tel.archives-ouvertes.fr/tel-03689315.

Full text
Abstract:
La ténacité à la rupture est contrôlée non seulement par les paramètres macroscopiques mais aussi par la microstructure. Les défauts de la structure cristalline comme les lacunes, les inclusions ou les dislocations peuvent aussi grandement impacter la ténacité. Pour mieux comprendre ce phénomène, on mènera des simulations 3D d'un front de fissure interagissant avec des dislocations. Ces simulations visent à mesurer les variations des facteurs d'intensité des contraintes sur le front de fissure créées par la présence de dislocations. Pour cela, on combinera deux modèles préexistants : la méthode des éléments finis étendus (XFEM) et la dynamique des dislocations discrètes (DDD). XFEM est une évolution de la méthode des éléments fini qui permet l'étude d'une fissure qui se propage sans avoir besoin de remaillage, elle contrôlera le volume étudié, le chargement appliqué et la position de la fissure tandis que tant que la DDD contrôlera les dislocations, leur mouvement et leur multiplication. La précision du modèle crée sera testée en le comparant avec des résultats de simulations atomistiques. Pour mesurer qualitativement les effets des dislocations sur la ténacité, plusieurs dislocations avec des différents systèmes de glissement seront étudiées. D'autres paramètres comme la distance entre la fissure et la dislocation, la direction de la fissure, et la déformation initiale seront aussi étudiées. Pour comparer le modèle étudié avec des résultats provenant d'autres simulations, deux orientations de fissure seront simulées. Les dislocations étudiées ont des effets sur la fissure différents en fonction de leur système de glissement. Les résultats montrent des dislocations créant soit de l'écrantage, doit de l'anti-écrantage soit une combinaison des deux. Ces effets sont uniquement dépendants de la nature de la dislocation et ne changent pas quand la direction du vecteur de ligne de la dislocation change, ni quand la dislocation est plus éloignée de la fissure, même si l'intensité de l'effet change. De plus, les dislocations étant associées à un état de cisaillement local, elles affectent plus fortement KII que KI. KII contrôle aussi l'angle de propagation de la fissure, ce qui implique que les dislocations sont une des principales sources des déviations des fissures
Fracture toughness in materials is not only controlled by macroscopic parameters but also by the microstructure. The defects of the crystalline structure such as voids, inclusions or dislocations can also greatly impact toughness. To better understand this, 3D simulations of a crack front interacting with dislocations will be carried out. These simulations aim at measuring the variations of the stress intensity factors on the crack front caused by the presence of dislocations. To carry out these simulations, two preexisting models will be combined: Extended Finite Elements Method (XFEM) and Discrete Dislocation Dynamics (DDD). XFEM is an evolution of the Finite Elements Methods that allows the study of a propagating crack without needing to remesh, it will control the studied volume, the applied loading and the crack position while DDD controls the dislocations, their movement, and their multiplication. The accuracy of the created model is tested by comparisons with atomistic simulations. To test the effect of dislocations on toughness, several dislocations with different slip systems were studied. Other parameters such as dislocation crack distance, line direction, and initial strain were also studied. To compare the studied model with existing simulation results, two crack orientations were selected. The studied dislocations have different behaviors depending on their slip system. The results show dislocations creating shielding, antishielding or a combination of both. These effects are only dependent of the dislocation nature, and do not change when the dislocation line direction changes or if the dislocation is farther from the crack, though the intensity of the effect does change given these circumstances. Since the presence of dislocations is associated to a shear stress in their glide planes, it is found that they have more effect on KII than on KI. KII also controls the crack propagation angle, which means that the dislocations are one of the main sources of crack deviation
APA, Harvard, Vancouver, ISO, and other styles
18

Li, Min, and Min Li. "Numerical model building based on XFEM/level set method to simulate ledge freezing/melting in Hall-Héroult cell." Doctoral thesis, Université Laval, 2017. http://hdl.handle.net/20.500.11794/27919.

Full text
Abstract:
Au cours de la production de l'aluminium via le procédé de Hall-Héroult, le bain gelé, obtenu par solidification du bain électrolytique, joue un rôle significatif dans le maintien de la stabilité de la cellule d'électrolyse. L'objectif de ce travail est le développement d'un modèle numérique bidimensionnel afin de prédire le profil du bain gelé dans le système biphasé bain liquide/bain gelé, et ce, en résolvant trois problèmes physiques couplés incluant le problème de changement de phase (problème de Stefan), la variation de la composition chimique du bain et le mouvement de ce dernier. Par souci de simplification, la composition chimique du bain est supposée comme étant un système binaire. La résolution de ces trois problèmes, caractérisés par le mouvement de l'interface entre les deux phases et les discontinuités qui ont lieu à l'interface, constitue un grand défi pour les méthodes de résolution conventionnelles, basées sur le principe de la continuité des variables. En conséquence, la méthode des éléments finis étendus (XFEM) est utilisée comme alternative afin de traiter les discontinuités locales inhérentes à chaque solution tandis que la méthode de la fonction de niveaux (level-set) est exploitée pour capturer, implicitement, l'évolution de l'interface entre les deux phases. Au cours du développement de ce modèle, les problématiques suivantes : 1) l'écoulement monophasique à densité variable 2) le problème de Stefan couplé au transport d'espèces chimiques dans un système binaire sans considération du phénomène de la convection et 3) le problème de Stefan et le mouvement du fluide qui en résulte sont investigués par le biais du couplage entre deux problèmes parmi les problèmes mentionnées ci-dessus. La pertinence et la précision de ces sous-modèles sont testées à travers des comparaisons avec des solutions analytiques ou des résultats obtenus via des méthodes numériques conventionnelles. Finalement, le modèle tenant en compte les trois physiques est appliqué à la simulation de certains scénarios de solidification/fusion du système bain liquide-bain gelé. Dans cette dernière application, le mouvement du bain, induit par la différence de densité entre les deux phases ou par la force de flottabilité due aux gradients de température et/ou de concentration, est décrit par le problème de Stokes. Ce modèle se caractérise par le couplage entre différentes physiques, notamment la variation de la densité du fluide et de la température de fusion en fonction de la concentration des espèces chimiques. En outre, la méthode XFEM démontre sa précision et sa flexibilité pour traiter différents types de discontinuité tout en considérant un maillage fixe.
Au cours de la production de l'aluminium via le procédé de Hall-Héroult, le bain gelé, obtenu par solidification du bain électrolytique, joue un rôle significatif dans le maintien de la stabilité de la cellule d'électrolyse. L'objectif de ce travail est le développement d'un modèle numérique bidimensionnel afin de prédire le profil du bain gelé dans le système biphasé bain liquide/bain gelé, et ce, en résolvant trois problèmes physiques couplés incluant le problème de changement de phase (problème de Stefan), la variation de la composition chimique du bain et le mouvement de ce dernier. Par souci de simplification, la composition chimique du bain est supposée comme étant un système binaire. La résolution de ces trois problèmes, caractérisés par le mouvement de l'interface entre les deux phases et les discontinuités qui ont lieu à l'interface, constitue un grand défi pour les méthodes de résolution conventionnelles, basées sur le principe de la continuité des variables. En conséquence, la méthode des éléments finis étendus (XFEM) est utilisée comme alternative afin de traiter les discontinuités locales inhérentes à chaque solution tandis que la méthode de la fonction de niveaux (level-set) est exploitée pour capturer, implicitement, l'évolution de l'interface entre les deux phases. Au cours du développement de ce modèle, les problématiques suivantes : 1) l'écoulement monophasique à densité variable 2) le problème de Stefan couplé au transport d'espèces chimiques dans un système binaire sans considération du phénomène de la convection et 3) le problème de Stefan et le mouvement du fluide qui en résulte sont investigués par le biais du couplage entre deux problèmes parmi les problèmes mentionnées ci-dessus. La pertinence et la précision de ces sous-modèles sont testées à travers des comparaisons avec des solutions analytiques ou des résultats obtenus via des méthodes numériques conventionnelles. Finalement, le modèle tenant en compte les trois physiques est appliqué à la simulation de certains scénarios de solidification/fusion du système bain liquide-bain gelé. Dans cette dernière application, le mouvement du bain, induit par la différence de densité entre les deux phases ou par la force de flottabilité due aux gradients de température et/ou de concentration, est décrit par le problème de Stokes. Ce modèle se caractérise par le couplage entre différentes physiques, notamment la variation de la densité du fluide et de la température de fusion en fonction de la concentration des espèces chimiques. En outre, la méthode XFEM démontre sa précision et sa flexibilité pour traiter différents types de discontinuité tout en considérant un maillage fixe.
During the Hall-Héroult process for smelting aluminium, the ledge formed by freezing the molten bath plays a significant role in maintaining the internal working condition of the cell at stable state. The present work aims at building a vertically two-dimensional numerical model to predict the ledge profile in the bath-ledge two-phase system through solving three interactive physical problems including the phase change problem (Stefan problem), the variation of bath composition and the bath motion. For the sake of simplicity, the molten bath is regarded as a binary system in chemical composition. Solving the three involved problems characterized by the free moving internal boundary and the presence of discontinuities at the free boundary is always a challenge to the conventional continuum-based methods. Therefore, as an alternative method, the extended finite element method (XFEM) is used to handle the local discontinuities in each solution space while the interface between phases is captured implicitly by the level set method. In the course of model building, the following subjects: 1) one-phase density driven flow 2) Stefan problem without convection mechanism in the binary system 3) Stefan problem with ensuing melt flow in pure material, are investigated by coupling each two of the problems mentioned above. The accuracy of the corresponding sub-models is verified by the analytical solutions or those obtained by the conventional methods. Finally, the model by coupling three physics is applied to simulate the freezing/melting of the bath-ledge system under certain scenarios. In the final application, the bath flow is described by Stokes equations and induced either by the density jump between different phases or by the buoyancy forces produced by the temperature or/and compositional gradients. The present model is characterized by the coupling of multiple physics, especially the liquid density and the melting point are dependent on the species concentration. XFEM also exhibits its accuracy and flexibility in dealing with different types of discontinuity based on a fixed mesh.
During the Hall-Héroult process for smelting aluminium, the ledge formed by freezing the molten bath plays a significant role in maintaining the internal working condition of the cell at stable state. The present work aims at building a vertically two-dimensional numerical model to predict the ledge profile in the bath-ledge two-phase system through solving three interactive physical problems including the phase change problem (Stefan problem), the variation of bath composition and the bath motion. For the sake of simplicity, the molten bath is regarded as a binary system in chemical composition. Solving the three involved problems characterized by the free moving internal boundary and the presence of discontinuities at the free boundary is always a challenge to the conventional continuum-based methods. Therefore, as an alternative method, the extended finite element method (XFEM) is used to handle the local discontinuities in each solution space while the interface between phases is captured implicitly by the level set method. In the course of model building, the following subjects: 1) one-phase density driven flow 2) Stefan problem without convection mechanism in the binary system 3) Stefan problem with ensuing melt flow in pure material, are investigated by coupling each two of the problems mentioned above. The accuracy of the corresponding sub-models is verified by the analytical solutions or those obtained by the conventional methods. Finally, the model by coupling three physics is applied to simulate the freezing/melting of the bath-ledge system under certain scenarios. In the final application, the bath flow is described by Stokes equations and induced either by the density jump between different phases or by the buoyancy forces produced by the temperature or/and compositional gradients. The present model is characterized by the coupling of multiple physics, especially the liquid density and the melting point are dependent on the species concentration. XFEM also exhibits its accuracy and flexibility in dealing with different types of discontinuity based on a fixed mesh.
APA, Harvard, Vancouver, ISO, and other styles
19

Yao, Lan. "Experimental and numerical study of dynamic crack propagation in ice under impact loading." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI043/document.

Full text
Abstract:
Les phénomènes liés au comportement à la rupture de la glace sous impact sont fréquents dans le génie civil, pour les structures offshore, et les processus de dégivrage. Pour réduire les dommages causés par l'impact de la glace et optimiser la conception des structures ou des machines, l'étude sur le comportement à la rupture dynamique de la glace sous impact est nécessaire. Ces travaux de thèse portent donc sur la propagation dynamique des fissures dans la glace sous impact. Une série d'expériences d'impact est réalisée avec un dispositif de barres de Hopkinson. La température est contrôlée par une chambre de refroidissement. Le processus dynamique de la rupture de la glace est enregistré avec une caméra à grande vitesse et ensuite analysé par des méthodes d'analyse d'images. La méthode des éléments finis étendus complète cette analyse pour évaluer la ténacité dynamique. Au premier abord, le comportement dynamique de la glace sous impact est étudié avec des échantillons cylindriques afin d'établir la relation contrainte-déformation dynamique qui sera utilisée dans les simulations numériques plus tard. Nous avons observé de multi-fissuration dans les expériences sur les échantillons cylindriques mais son étude est trop difficile à mener. Pour mieux comprendre la propagation des fissures dans la glace, des échantillons rectangulaires avec une pré-fissure sont employés. En ajustant la vitesse d'impact on aboutit à la rupture des spécimens avec une fissure principale à partir de la pré-fissure. L'histoire de la propagation de fissure et de sa vitesse sont évaluées par analyse d'images basée sur les niveaux de gris et par corrélation d'images. La vitesse de propagation de la fissure principale est identifiée dans la plage de 450 à 610 m/s ce qui confirme les résultats précédents. Elle varie légèrement au cours de la propagation, dans un premier temps elle augmente et se maintient constante ensuite et diminue à la fin. Les paramètres obtenus expérimentalement, tels que la vitesse d'impact et la vitesse de propagation de fissure, sont utilisés pour la simulation avec la méthode des éléments finis étendus. La ténacité d'initiation dynamique et la ténacité dynamique en propagation de fissure sont déterminées lorsque la simulation correspond aux expériences. Les résultats indiquent que la ténacité dynamique en propagation de fissure est linéaire vis à vis de la vitesse de propagation et semble indépendante de la température dans l'intervalle -15 à -1 degrés
The phenomena relating to the fracture behaviour of ice under impact loading are common in civil engineering, for offshore structures, and de-ice processes. To reduce the damage caused by ice impact and to optimize the design of structures or machines, the investigation on the dynamic fracture behaviour of ice under impact loading is needed. This work focuses on the dynamic crack propagation in ice under impact loading. A series of impact experiments is conducted with the Split Hopkinson Pressure Bar. The temperature is controlled by a cooling chamber. The dynamic process of the ice fracture is recorded with a high speed camera and then analysed by image methods. The extended finite element method is complementary to evaluate dynamic fracture toughness at the onset and during the propagation. The dynamic behaviour of ice under impact loading is firstly investigated with cylindrical specimen in order to obtain the dynamic stress-strain relation which will be used in later simulation. We observed multiple cracks in the experiments on the cylindrical specimens but their study is too complicated. To better understand the crack propagation in ice, a rectangular specimen with a pre-crack is employed. By controlling the impact velocity, the specimen fractures with a main crack starting from the pre-crack. The crack propagation history and velocity are evaluated by image analysis based on grey-scale and digital image correlation. The main crack propagation velocity is identified in the range of 450 to 610 m/s which confirms the previous results. It slightly varies during the propagation, first increases and keeps constant and then decreases. The experimentally obtained parameters, such as impact velocity and crack propagation velocity, are used for simulations with the extended finite element method. The dynamic crack initiation toughness and dynamic crack growth toughness are determined when the simulation fits the experiments. The results indicate that the dynamic crack growth toughness is linearly associated with crack propagation velocity and seems temperature independent in the range -15 to -1 degrees
APA, Harvard, Vancouver, ISO, and other styles
20

Barrau, Nelly. "Généralisation de la méthode Nitsche XFEM pour la discrétisation de problèmess d'interface elliptiques." Thesis, Pau, 2013. http://www.theses.fr/2013PAUU3025/document.

Full text
Abstract:
Cette thèse porte sur la généralisation de la méthode NXFEM proposée par A. et P. Hansbo pour le problème d’interface elliptique. La modélisation et simulation numérique d’écoulements dans des domaines fracturés sont au coeur de nombreuses applications, telles que le milieu pétrolier (modélisation de réservoirs, présence de failles, propagation d’un signal, repérage de couches), l’aérospatiale (problème de chocs, de rupture), en génie civil (fissuration du béton), mais également dans la biologie cellulaire (déformation des globules rouges). En outre, de nombreux projets de recherche nécessitent le développement des méthodes robustes pour la prise en compte de singularités, ce qui fait partie des motivations et des objectifs de l'équipe Concha, ainsi que de cette thèse. Une modification de cette méthode a tout d’abord été proposée afin d’obtenir la robustesse à la fois par rapport à la géométrie du maillage coupé par l’interface et par rapport aux paramètres de diffusion. Nous nous sommes ensuite intéressés à sa généralisation à tout type de maillages 2D-3D (triangles, quadrilatères, tétraèdres, hexaèdres), et pour tout type d’éléments finis (conformes, non conformes, Galerkin discontinus) pour des interfaces planes et courbes. Les applications ont été orientées vers des problèmes d’écoulements en milieux poreux fracturés : adaptation de la méthode NXFEM à la résolution d’un modèle asymptotique de failles, à des problèmes instationnaires, de transports, ou encore à des domaines multi-fracturés
This thesis focuses on the generalization of the NXFEM method proposed by A. and P. Hansbo for elliptic interface problem. Numerical modeling and simulation of flow in fractured media are at the heart of many applications, such as petroleum and porous media (reservoir modeling, presence of faults, signal propagation, identification of layers ...), aerospace (problems of shock, rupture), civil engineering (concrete cracking), but also in cell biology (deformation of red blood cells). In addition, many research projects require the development of robust methods for the consideration of singularities, which is one of the motivations and objectives of the Concha team and of this thesis. First a modification of this method was proposed to obtain a robust method not only with respect to the mesh-interface geometry, but also with respect to the diffusion parameters. We then looked to its generalization to any type of 2D-3D meshes (triangles, quadrilaterals, tetrahedra, hexahedra), and for any type of finites elements (conforming, nonconforming, Galerkin discontinuous) for plane and curved interfaces. The applications have been referred to the flow problems in fractured porous media : adaptation of NXFEM method to solve an asymptotic model of faults, to unsteady problems, transport problems, or to multi-fractured domains
APA, Harvard, Vancouver, ISO, and other styles
21

Bencheikh, Issam. "Simulation multi-étapes de l’usure des outils de coupe revêtus par une modélisation XFEM/Level-set." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0094/document.

Full text
Abstract:
Lors de l'opération d’usinage à grande vitesse, la résistance à l'usure des outils de coupe est améliorée par l’utilisation des revêtements mono ou multicouches sur les faces actives de l’outil. Cependant, le chargement thermomécanique généré à l'interface outil-pièce affecte considérablement les zones de contact. Par cet effet, plusieurs modes d'usure tels que la fissuration, l’abrasion, l’adhésion et le délaminage du revêtement peuvent se manifester. L'étude du comportement des revêtements et de leurs différents modes de dégradation permet de mieux comprendre leur impact sur la durée de vie de l'outil et ainsi optimiser le procédé d'usinage. Dans ce travail de thèse, une approche numérique multi-étapes a été proposée pour prédire l'usure des outils de coupe revêtus. Cette approche est composée par trois principales étapes. La première consiste à effectuer une simulation éléments finis de l’usinage pour une courte durée (jusqu’à la stabilisation du chargement à l’interface outil/pièce). La deuxième étape consiste à récupérer ce chargement et de l’utiliser comme une entrée du modèle XFEM/Level-set. Ce dernier permet d’analyser le comportement des couches de revêtement sans recours à un maillage conforme aux interfaces. Par conséquence, la distorsion du maillage est évitée lorsque le profil d'outil usé est mis à jour, ainsi que le temps de calcul CPU est drastiquement réduit. La dernière étape de cette approche consiste à calculer le taux d’usure et ainsi prédire le déplacement des nœuds de l’outil de coupe affectés par l’usure. Les essais expérimentaux ont permis d’une part d’identifier les paramètres de contact outil/pièce, et d’autre part de valider l’approche proposée
In high speed machining, wear resistance of the cutting tools is improved by depositing single or multilayered coatings on their surface. However, the thermomechanical loading generated at the tool-workpiece interface greatly affects the contact zones. For this purpose, several wear modes such as cracking, abrasion, adhesion and delamination of the coating can be occurred. The study of the coatings behavior and their different degradation modes lead to better understanding of their impact on the tool life and machining process under optimal conditions. In this PhD thesis work, a multi-step numerical approach has been proposed to predict wear of the coated cutting tools. This approach involves three main steps. The first is to perform a finite element simulation of the orthogonal cutting for a short time (until the loading stabilization at the tool/workpiece interface). The second step is to recover this loading and use it as an input for the XFEM/Level-set model. The latter allow to take into account the coating layers presence without any need of mesh conforming to the interfaces. As a result, the mesh distortion is avoided when the worn tool profile is updated, as well as the CPU calculation time is drastically reduced. The final step of this approach is to convert the wear rate equation into a nodal displacement, thus representing the cutting tool wear. Based on the experimental tests, a procedure for identifying tool/workpiece contact parameters, and for calibrating the wear equation for each coating layer has been proposed. Experimental trials have been also used to validate the proposed approach
APA, Harvard, Vancouver, ISO, and other styles
22

Bach, Dang Phong. "Development of a finite element strategy for the modeling of nano-reinforced materials." Thesis, Compiègne, 2020. http://bibliotheque.utc.fr/EXPLOITATION/doc/IFD/2020COMP2550.

Full text
Abstract:
La modélisation des matériaux nano-renforcés nécessite de prendre en compte l’effet de taille induit par les phénomènes locaux à l’interface entre la nanoinclusion et la matrice. Cet effet de taille est interprété par une augmentation du rapport interface/volume et peut être pris en compte en introduisant une élasticité surfacique à l’interface. Alors que de nombreux travaux ont été développés du point de vue analytique, peu de contributions ont trait à la description numérique et à la mise en œuvre de cette élasticité surfacique dans la méthode des éléments finis (FEM). Nos études visent à développer des outils numériques efficaces basés sur la FEM pour la modélisation de nanocomposites. Dans un premier temps, nous évaluons les deux stratégies numériques existantes, à savoir l’approche XFEM et l’approche des éléments d’interface, dans la reproduction de l’effet de taille dans le processus d’homogénéisation. Deuxièmement, sur la base d’un test de performance des trois types de formulations d’E-FEM dans le cas de discontinuités faibles, nous proposons une formulation améliorée de SKON permettant d’intégrer l’effet d’une interface cohérente. Enfin, la modélisation numérique du comportement non linéaire des nanocomposites est étudiée. Lors de la première étape, une loi élastoplastique de type von Mises avec durcissement linéaire isotrope est considérée pour le volume, tandis que l’interface est considérée comme élastique linéaire
The modelization of nano-reinforced material requires to take into account the size effect caused by the local phenomena at the interface between the nano-inclusion and the matrix. This size effect is interpreted through an increase in the ratio interface/volume and can be taken into account by introducing a surface elasticity at the interface. Whereas a lot of works have been developed from the analytical point of view, few contributions are related to numerical description and implementation of such surface elasticity in Finite Element Method (FEM). Our studies aim to develop efficient numerical tools based on FEM for the modeling of nanocomposites. Firstly, we evaluate the two existent numerical strategies namely the XFEM approach and the Interface element approach in reproducing the size effect in the homogenization process. Secondly, based on a performance test on the three types of formulations of E-FEM for the case of weak discontinuity, we propose an enhanced SKON formulation allowing to incorporate the effect of a coherent interface. Finally, the numerical modeling on the nonlinear behavior of nanocomposites is investigated. In the first step, a von Mises type elastoplastic law with linear isotropic hardening is considered for the bulk while the interface is considered as linear elastic
APA, Harvard, Vancouver, ISO, and other styles
23

Tran, Anh Binh. "Développement de méthodes numériques multi échelle pour le calcul des structures constituées de matériaux fortement hétérogènes élastiques et viscoélastiques." Phd thesis, Université Paris-Est, 2011. http://tel.archives-ouvertes.fr/tel-00657270.

Full text
Abstract:
Les bétons sont des matériaux composites à la microstructure complexe et constitués de phases dont le contraste des propriétés physiques et mécaniques peut être très grand. Ces matériaux posent des difficultés aux approches macroscopiques lorsqu'il s'agit de maîtriser leurs comportements effectifs comme celui du fluage. Malgré ces difficultés, EDF doit se doter d'outils permettant de modéliser de façon prédictive l'évolution des bétons des ouvrages en service ou de prescrire lecahier des charges des bétons de nouvelles installations. Ayant pour objectif de contribuer à la résolution de ce problème, ce travail de thèse développe des méthodes numériques multi échelle pour le calcul des structures constituées de matériaux fortement hétérogènes élastiques ou viscoélastiques. Plus précisément, ce travail de thèse comporte trois parties. Dans la première partie, nous nous intéressons à un composite constitué d'une matrice élastique renforcée par des inclusionsélastiques dont les formes géométriques peuvent être quelconques et dont la fraction volumique peut être importante. Pour modéliser ce matériau composite, une première approche numérique consistant à combiner la méthode des éléments finis étendus (XFEM) standard et la méthode "level-set" (LS) classique est d'abord utilisée. Nous montrons que cette première approche numérique, qui apparaît naturelle, induit en fait plusieurs artefacts numériques non rapportés dans la littérature, conduisant en particulier à une convergence non optimale par rapport à la finessedu maillage. Par suite, nous élaborons une nouvelle approche numérique ($mu $-XFEM) basée sur la description des interfaces par des courbes de niveaux multiples et sur un enrichissement augmenté permettant de prendre en compte plusieurs interfaces dans un même élément. Nous démontrons au travers des comparaisons et exemples que la convergence est améliorée de manière substantielle par rapport à la première approche numérique. Dans la deuxième partie, nous proposons une nouvelle méthode pour calculer les déformations différées des structures composées de matériaux hétérogènes viscoélastiques linéaires. Contrairement aux approches proposées jusqu'à présent, notre méthode opère directement dans l'espace temporel et permet d'extraire de manière séquentielle le comportement homogénéisé d'un matériau hétérogène viscoélastique linéaire. Concrètement, les composantes du tenseur de relaxation effectif du matériau sont d'abord obtenues à partir d'un volume élémentaire représentatif et échantillonnées au cours du temps. Une technique d'interpolation et un algorithme implicite permettent ensuite d'évaluer numériquement la réponse temporelle du matériau par le biais d'un produit de convolution. Les déformations différées des structures sont enfin calculées par la méthode des éléments finis classique. Différents tests sont effectués pour évaluer la qualité et l'efficacité de la méthode proposée, montrant que cette dernière permet d'avoir un gain en temps de l'ordre de plusieurs centaines par rapport aux approches de type éléments finis multiniveaux. La troisième partie est consacrée à l'étude de la structure de l'enceinte de confinement d'un réacteur nucléaire. Nous prenons en compte les quatre niveaux d'échelles associés à la pâte deciment, au mortier, au béton et à la structure en béton précontraint par des câbles en acier. La méthode numérique d'homogénéisation élaborée dans la seconde partie est appliquée afin de construire les lois de comportement pour chacun des trois premiers niveaux. Les résultats obtenus présentent un intérêt pratique pour résoudre des problèmes posés par EDF
APA, Harvard, Vancouver, ISO, and other styles
24

Rukavina, Tea. "Multi-scale damage model of fiber-reinforced concrete with parameter identification." Thesis, Compiègne, 2018. http://www.theses.fr/2018COMP2460/document.

Full text
Abstract:
Dans cette thèse, plusieurs approches de modélisation de composites renforcés par des fibres sont proposées. Le matériau étudié est le béton fibré, et dans ce modèle, on tient compte de l’influence de trois constituants : le béton, les fibres, et la liaison entre eux. Le comportement du béton est analysé avec un modèle d’endommagement, les fibres d'acier sont considérées comme élastiques linéaires, et le comportement sur l'interface est décrit avec une loi de glissement avec l’extraction complète de la fibre. Une approche multi-échelle pour coupler tous les constituants est proposée, dans laquelle le calcul à l'échelle macro est effectué en utilisant la procédure de solution operator-split. Cette approche partitionnée divise le calcul en deux phases, globale et locale, dans lesquelles différents mécanismes de rupture sont traités séparément, ce qui est conforme au comportement du composite observé expérimentalement. L'identification des paramètres est effectuée en minimisant l'erreur entre les valeurs calculées et mesurées. Les modèles proposés sont validés par des exemples numériques
In this thesis, several approaches for modeling fiber-reinforced composites are proposed. The material under consideration is fiber-reinforced concrete, which is composed of a few constituents: concrete, short steel fibers, and the interface between them. The behavior of concrete is described by a damage model with localized failure, fibers are taken to be linear elastic, and the behavior of the interface is modeled with a bond-slip pull-out law. A multi-scale approach for coupling all the constituents is proposed, where the macro-scale computation is carried out using the operator-split solution procedure. This partitioned approach divides the computation in two phases, global and local, where different failure mechanisms are treated separately, which is in accordance with the experimentally observed composite behavior. An inverse model for fiber-reinforced concrete is presented, where the stochastic caracterization of the fibers is known from their distribution inside the domain. Parameter identification is performed by minimizing the error between the computed and measured values. The proposed models are validated through numerical examples
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography