Dissertations / Theses on the topic 'Méthode du cluster couplé'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 45 dissertations / theses for your research on the topic 'Méthode du cluster couplé.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Aldair, Misael Wilken. "Shedding X-rays on molecules through the lenses of relativistic electronic structure theory." Electronic Thesis or Diss., Université de Lille (2022-....), 2023. http://www.theses.fr/2023ULILR043.
Full textThis thesis aims to investigate the electronic structure of actinides by means of ab initio relativistic quantum chemistry methods, with a specific emphasis on the spectroscopic observables of the uranyl moiety (UO22+). Considering the pivotal role of this unit in the solid-state and solution chemistry of uranium, one of the most abundant and stable actinides on earth, as well as recent advancements in synchrotron radiation facilities, our investigation relies on evaluating the interaction of x-ray photons with the uranyl unit in varying degrees of complexity, ranging from molecules to crystalline solids.First, we showcase how the resonant-convergent formulation of response theory can be employed to investigate the X-ray absorption fine structure (XAFS) of actinides. 4-component damped-response time-dependent density functional theory (4c-DR-TD-DFT) simulations for the uranyl tetrachloride dianion ([UO2Cl4]2-) were found to be consistent with previous data for angle-resolved near edge x-ray absorption spectroscopy (NEXAFS) at the oxygen K-edge and high energy resolution fluorescence detected (HERFD) at the uranium M4- and L3-edges of the dicesium uranyl tetrachloride crystal (Cs2UO2Cl4), a prototype system for actinide electronic structure investigations.We then present the results of collaborative work with the Rossendorf Beamline at the European Synchrotron Radiation Facility (ESRF). 2-component TD-DFT simulations within the Tamm-Dancoff approximation (2c-TDA) and HERFD measurements uranyl systems within different structural motifs highlight the role of charge transfer states in determining the spectral features at the uranium M4-edge.The role of orbital correlation and relaxation in the core-ionization energies of heavy elements was investigated using the recently developed core-valence-separation equation-of-motion coupled-cluster method (CVS-EOM-CC). We also evaluated the performance of various 4- and 2-component Hamiltonians for calculating these properties. The results of this investigation highlight the importance of computing two-electron interaction beyond the zeroth order truncation, i.e., the Coulomb term, when working at the tender (1 keV - 5 keV) and hard x-ray (5 keV - 200 keV) ranges.We also evaluated the performance of quantum-chemical embedding methods to account for environmental effects. Specifically, we employed the frozen density embedding (FDE) method, which allowed us to gain valuable insights into how the equatorial ligands of the uranyl ion influence its spectroscopic properties. Notably, this method successfully addressed the role of such interactions in binding energies in the soft X-ray range and in the peak splittings observed in the emission spectra at the U M4-edge. The latter is particularly significant as it has been instrumental in addressing a long-standing problem in actinide science: the role of 5f orbitals in actinyl bonding.In summary, this thesis presents fundamental research work that aims to push the boundaries of ab initio quantum chemical methods when addressing spectroscopic observables toward the bottom of the periodic table, and the findings of this work capture how these approaches can provide further insights into state-of-the-art experiments
Brochard, Michel. "Modèle couplé cathode-plasma-pièce en vue de la simulation du procédé de soudage à l'arc TIG." Aix-Marseille 1, 2009. http://theses.univ-amu.fr.lama.univ-amu.fr/2009AIX11006.pdf.
Full textDuring this work, a 2D axially symmetric model of a TIG arc welding process had been developped in order to predict for given welding parameters, the needed variables for a designer of welded assembly : the heat input on the workpiece, the weld pool geometry,. . . The developped model, using the Cast3M finite elements software, deals with the physical phenomena acting in each part of the process : the cathode, the plasma, the workpiece with a weld pool, and the interfaces between these parts. To solve this model, the thermohydraulics equations are coupled with the electromagnetic equations that are calculated in part using the least squares finite element method. The beginning of the model validation consisted in comparing the results obtained with the ones available in the scientific literature. Thus, this step points out the action of each force in the weld pool, the contribution of each heat flux in the energy balance. Finally, to validate the model predictivity, experimental and numerical sensivitivity analyses were conducted using a design of experiments approach. The effects of the process current, the arc gap and the electrode tip angle on the weld pool geometry and the energy transferred to the workpiece and the arc efficiency were studied. The good agreement obtained by the developped model for these outputs shows the good reproduction of the process physics
Roques, Sébastien. "Modélisation du comportement dynamique couplé rotor-stator d'une turbine en situation accidentelle." Phd thesis, Ecole centrale de nantes - ECN, 2007. http://tel.archives-ouvertes.fr/tel-00353938.
Full textHaddar, Mohamed. "Modélisation numérique d'un système mécanique couplé (fluide-structure) en présence du phénomène de choc : application au support moteur hydroélastique." Compiègne, 1991. http://www.theses.fr/1991COMPD412.
Full textDib, Serena. "Méthodes d'éléments finis pour le problème de Darcy couplé avec l'équation de la chaleur." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066294/document.
Full textIn this thesis, we study the heat equation coupled with Darcy's law by a nonlinear viscosity depending on the temperature in dimension d=2,3 (Hooman and Gurgenci or Rashad). We analyse this problem by setting it in an equivalent variational formulation and reducing it to an diffusion-convection equation for the temperature where the velocity depends implicitly on the temperature.Existence of a solution is derived without restriction on the data by Galerkin's method and Brouwer's Fixed Point. Global uniqueness is established when the solution is slightly smoother and the dataare suitably restricted. We also introduce an alternative equivalent variational formulation. Both variational formulations are discretized by four finite element schemes in a polygonal or polyhedral domain. We derive existence, conditional uniqueness, convergence, and optimal a priori error estimates for the solutions of the three schemes. Next, these schemes are linearized by suitable convergent successive approximation algorithms. We present some numerical experiments for a model problem that confirm the theoretical rates of convergence developed in this work. A posteriori error estimates are established with two types of errors indicators related to the linearisation and discretization. Finally, we show numerical results of validation
Nouisri, Amine. "Identification paramétrique en dynamique transitoire : traitement d’un problème couplé aux deux bouts." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLN005/document.
Full textThis thesis deals with parameters identification in transient dynamic in case of highly noisy experimental data. One long-term goal is the derivation of a non-intrusive method dedicated to the implementation in a commercial finite element code.In this work, the modified error in the constitutive relation framework is used to treat the identification of material parameters. The minimization of the cost function under constraints leads, in the case of transient dynamics, to a « two points boundary value problem » in which the differential space-time problem involves both initial and final time conditions. This results in a problem coupling the direct and adjoint fields, whose treatment is difficult.In the first part, methods such as those based on the « Riccati equations » and the « shooting methods » have been studied. It is shown that the identification is robust even in the case of highly corrupted measures, but these methods are limited either by the implementation intrusiveness, conditioning problems or the numerical cost.In the second part, an iterative over-relaxation approach is developed and compared to the aforementioned approaches on academic problems in order to validate the interest of the method. Finally, comparisons are carried out between this approach and a « discretized » variation of the formulation introduced by Bonnet and Aquino [Inverse Problems, vol. 31, 2015]
Faucher, Vincent. "Méthodes numériques et algorithmes parallèles pour la dynamique rapide des systèmes fluide-structure fortement couplés." Habilitation à diriger des recherches, INSA de Lyon, 2014. http://tel.archives-ouvertes.fr/tel-01011205.
Full textRegazzi, Arnaud. "Contribution à l'étude du vieillissement couplé thermo-hydro-mécanique de biocomposite PLA/lin." Phd thesis, Ecole Nationale Supérieure des Mines de Paris, 2013. http://pastel.archives-ouvertes.fr/pastel-00958086.
Full textDauvois, Yann. "Modélisation du transfert thermique couplé conductif et radiatif au sein de milieux fibreux portés à haute température." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLC097/document.
Full textIn the present work, the effective heat transfer properties of fibrous medium are determined by taking into account a coupling of heat conduction and radiation. A virtual, statistically homogeneous, two-phase fibrous sample has been built by stacking finite absorbing cylinders in vaccum. These cylinders are dispersed according to prescribed distribution functions defining the cylinder positions and orientations. Cylinder overlappings are allowed. Extinction, absorption and scattering are characterised by radiative statistical functions which allow the Beerian behaviour of a medium to be assessed (or not). They are accurately determined with a Monte Carlo method. Whereas the gaseous phase exhibits a Beerian behaviour, the fibre phase is strongly non Beerian. The radiative power field deposited within the fibrous material is calculated by resolving a model which couples a Generalized Radiative Transfer Equation (GRTE) and a classic Radiative Transfer Equation (RTE). The model of conduction transfer is based on a random walk method without meshing. The simulation of Brownian motion of walkers in fibres allows the energy equation to be solved. The idea of the method is to characterize the temperature in an elementary volume by the density of walkers, which roam the medium. The problem is governed by boundary conditions ; A constant concentration of walkers (or a constant flux) is associated with a fixed temperature (or flux)
Nguyen, Duc Manh. "Méthode Hydro-Géomécanique de caractérisation de la susceptibilité des sols à l'érosion interne." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENI052.
Full textInternal erosion is the displacement of the fine particles of a soil under the action of an internal flow. This mechanism could be the origin of the damage on embankments and earth dams. In the word, 46% of failure observed on earthwork, are caused by internal erosion. In France, 70 critical cases have been detected. Unfortunately, due to internal erosion, the prediction of risk remains difficult. The understanding of this phenomenon of internal erosion appears as a major scientific challenge. The aim of this thesis is to develop a diagnostic method of internal erosion in dams and other earthworks. We seek to establish a protocol that will guide us to the test and help us to interpret the results. This method allows concluding about the risk of internal erosion appearance. (i) Initially, the main results of geotechnical survey allow identifying the layers of homogeneous characteristics of soil which are measured by the pressuremeter test. The results of cluster analysis of pressuremeter tests allow determining the localisation, the nature and the mean geotechnical characteristics of the soil. (ii) The results are used to determine the threshold of sensibility to internal erosion with the help of expert software. This software allows to calculate the criteria of internal erosion and to describe the sensitivity of the soil to internal erosion. (iii) A new experimental device is developed in our laboratory. This experiment called “Cross Erosion Test" (CET) allows determining the experimental resistance of the soil to the risk of internal erosion. The test consists of the injection, in a first drilling, of clear water and of the recovery, in another drilling, of water charged with eroded particles. For different initial state of the soils, it is possible to measure and to characterize the internal erosion by visualisation of the water flow and the measurement of the weight of the extracted eroded particles. The results show that this experience allows characterizing the internal erosion in a specific soil. The advantage of this technique is that it can be used in situ to predict the risk of suffusion in dams and dikes. (iv) A validation of experiences, with a 3D finite element method is carried out with the help of the Comsol Multiphysics 4.3b software. This model shows that under experiment hydraulic conditions, the hydraulic gradient is concentrated around the injection and the pumping. A finite element 2D model is developed to simulate erosion process. This approach describes the phenomenon of internal erosion and transport of fines particles in the porous medium of soils tested
Ihsan, Mohammad. "Analysis of the stability of slopes submitted to water infiltration using advanced models : coupled hydromechanical model and Nonlinear Dynamics Method." Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10091/document.
Full textThis research concerns analysis of landslides, which constitute a major natural risk responsible for high human losses as well as large damages to structures, infrastructure and natural environment. This issue becomes particularly important, because of the climate change, which increases the risk of heavy rains as well as severe drought and consequently the risk of slope instability due to the environment change. Generally, analysis of slope stability is conducted using the limit equilibrium theory. As this theory does not take into consideration the process of mobilization of the friction, it could lead to an overestimation of the safety factor. A reliable analysis of the slope stability, in particular in heterogeneous soils submitted to the water action, requires the use of advanced numerical methods. Two methods were used in this research: the coupled hydro-mechanical method and the nonlinear dynamic method
Ghedhaifi, Weeded. "Modélisation de la combustion turbulente par le modèle de flamme cohérente couplé à une méthode de réduction de cinétique chimique en vu de la prédiction de l'émission des polluants." Châtenay-Malabry, Ecole centrale de Paris, 2006. http://www.theses.fr/2006ECAP1001.
Full textThe PhD was carried out in the EM2C Laboratory of CNRS and ECP and was supported by the glass industrial Saint-Gobain. The PhD work concerns turbulent combustion modelling and pollutant emissions. We developed a turbulent combustion model where the Coherent Flame Model (CFM) and detailed chemistry were combined. The CFM model was chosen since it provides a good description of the interaction between the flame front and turbulent scales in the considered flow. Detailed chemistry was introduced using a chemistry tabulation technique. We also developed a new model to predict Nitrogen Oxide production and thermal NO in particular. The existing models do not provide accurate estimations of NOx emission because of their simplified assumption. Then we developed a model using detailed chemistry considerations to decrease the required assumptions. To test these models, two simplified 2D configurations and a 3D configuration of glass furnace were used to carry out numerical simulations. The model was tested for the three combustion modes : premixed, partially premixed and non-premixed combustion. The numerical results are quite good and show the developed model capability of dealing with turbulent combustion where detailed chemistry is included. Furthermore, the NO modelling shows that the new model is able to predict a consistent behavior depending on the different parameters. However, the model needs to be validated using experimental measurements
Yahiaoui, Ala-Eddine. "Selective vehicle routing problem : cluster and synchronization constraints." Thesis, Compiègne, 2018. http://www.theses.fr/2018COMP2449/document.
Full textThe Vehicle Routing Problem (VRP) is a family of Combinatorial Optimization Problems generally used to solve different issues related to transportation systems and logistics. In this thesis, we focused our attention on a variant of the VRP called the Team Orienteering Problem (TOP). In this family of problems, it is a priory impossible to visit all the customers due to travel time limitation on vehicles. Instead, a profit is associated with each customer to represent its value and it is collected once the customer is visited by one of the available vehicles. The objective function is then to maximize the total collected profit with respect to the maximum travel time. Firstly, we introduced a new generalization for the TOP that we called the Clustered TOP (CluTOP). In this variant, the customers are grouped into subsets called clusters to which we associate profits. To solve this variant, we proposed an exact scheme based on the cutting plane approach with additional valid inequalities and pre-processing techniques. We also designed a heuristic method based on the order first-cluster second approach for the CluTOP. This Hybrid Heuristic combines between an ANLS heuristic that explores the solutions space and a splitting procedure that explores the giant tours search space. In addition, the splitting procedure is enhanced by local search procedure in order to enhance its coverage of search space. The second problem treated in this work is called the Synchronized Team Orienteering Problem with Time Windows (STOPTW). This variant was initially proposed in order to model scenarios related to asset protection during escaped wildfires. It considers the case of a heterogeneous fleet of vehicles along with time windows and synchronized visits. To solve this problem, we proposed a heuristic method based on the GRASP×ILS approach that led to a very outstanding results compared to the literature. The last variant of the TOP tackled in this thesis called the Set Orienteering Problem (SOP). Customers in this variant are grouped into subsets called clusters. Each cluster is associated with a profit which is gained if at least one customer is served by the single available vehicle. We proposed a Branch-and-Cut with two separation procedures to separate subtours elimination constraints. We also proposed a Memetic Algorithm with an optimal splitting procedure based on dynamic programming
Ndoye, El Hadji Malick. "Réseaux de capteurs sans fil linéaires : impact de la connectivité et des interférences sur une méthode d'accès basée sur des jetons circulants." Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22661/document.
Full textIn this thesis, we propose a MAC protocol that takes into account the specific characteristics of LSNs. This MAC protocol is based on tokens circulating that give the right to nodes to access to the transmission channel. We evaluate from this protocol the impact of interference and connectivity in the LSN. This evaluation allows us to propose clustering techniques in a LSN. We assume first a clustering based on a logical exploitation of the vicinity of the sensor nodes. In this case, we assume that a deterministic propagation model that does not take into account the complexity of the environment. Next, we consider a clustering technique wherein the propagation model takes into account the fluctuations that make complex the medium
Tran, Van tieng. "Structures en béton soumises à des chargements mécaniques extrêmes : modélisation de la réponse locale par la méthode des éléments discrets." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00627464.
Full textTran, Van Tieng. "Structures en béton soumises à des chargements mécaniques extrêmes : modélisation de la réponse locale par la méthode des éléments discrets." Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENU021/document.
Full textThis thesis work deals with the predicting of concrete structures submitted to some extreme loadings, and, more particularly, focuses on behavior of concrete under a high-confining pressure. At this range of pressures, irreversible compaction of the material occurs and needs to be considered. Doing so, two elasto-plastic-damaged constitutive laws have been developed and implanted into a discrete element numerical code. Local parameters to be used in these constitutive laws are identified by simulating reference uniaxial traction/compression tests and triaxial compression tests. Once these parameters have been obtained, the law showing the best agreement with the experimental data has been chosen to predict the reponse of concrete sample for triaxial compressive tests at different levels of confinement. The numerical results have been analyzed not only at macroscopic scale but also at discrete element scale. The need of a constitutive law taking into account the elasto-plastic-damaged behavior has been also proved. The second objective of the thesis work was to develop a fluid flow – coupled discrete element model by considering fundamental physical mechanisms of the interaction between the internal fluide flow and the solid particles of a porous material. The flow problem is solved by the finite volume method, where the volume is discretized into tetrahedra issue of a regular Delaunay triangulation. Our model is an adaptation for elastic fluids of a model originally developed for incompressible flows. The developed fluid-flow coupled discrete element has been used to simulate the undrained triaxial behavior of concrete under different levels of confinement. The results show a good reproduction of undrained behavior of saturated concrete under low confinement. For high confinement, the simulations only resemble the experimental results when the fluid compressibility is lower than that of water. Moreover, the effective stress was a relevant variable to describe the behavior of the wet concrete by an intrinsic limit state independent of the degree of saturation
Ayhan, Tezer Bahar. "Damage evaluation of civil engineering structures under extreme loadings." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2013. http://tel.archives-ouvertes.fr/tel-00975488.
Full textPhilippe, Christelle. "Analyse de la pollution atmosphérique aux échelles locale et régionale. Modélisation spatiale et temporelle à l'aide d'une méthode de scénarii épisodiques." Phd thesis, INSA de Rouen, 2004. http://tel.archives-ouvertes.fr/tel-00006789.
Full textFezzani, Riadh. "Approche parallèle pour l'estimation du flot optique par méthode variationnelle." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00713970.
Full textMarević, Petar. "Towards a unified description of quantum liquid and cluster states in atomic nuclei within the relativistic energy density functional framework." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS358/document.
Full textIn this thesis we develop a symmetry-conserving collective model for nuclear structure studies based on the relativistic energy density functional framework. Axially-symmetric quadrupole- and octupole-deformed reference states are generated by solving the relativistic Hartree-Bogoliubov equations. In the particle-hole channel of the effective interaction we employ the covariant point-coupling DD-PC1 functional, while the non-relativistic pairing force separable in momentum space is used in the particle-particle channel. Collective correlations related to restoration of broken symmetries are accounted for by simultaneously projecting reference states on good values of angular momenta, parity, and particle numbers. In the next step, symmetry-restored states are mixed within the generator coordinate method formalism. This enables us to obtain detailed spectroscopic predictions, including excitation energies, electromagnetic multipole moments and transition rates, as well as both the elastic and inelastic form factors. The described framework is global and it can be employed in various nuclear structure studies across the entire nuclide chart. As a first application, we will study formation of clusters in light nuclei. Nuclear clustering is considered to be a transitional phenomenon between quantum-liquid and solid phases in nuclei. In contrast to the conventional homogeneous quantum-liquid picture, spatial localization of alpha-particles gives rise to a molecule-like picture of atomic nuclei. In particular, we carry out a comprehensive analysis of quadrupole-octupole collectivity and cluster structures in neon isotopes. A special attention is paid to the case of self-conjugate ²⁰Ne isotope, where cluster structures are thought to form already in the ground state. Finally, we study the low-lying structure of ¹²C isotope. We focus on the structure of bands built on 0⁺ states that are known to manifest a rich variety of shapes, including the triangular configurations of the Hoyle band and 3-alpha linear chains in higher states
Jérôme, Dubois. "Contribution à l'algorithmique et à la programmation efficace des nouvelles architectures parallèles comportant des accélérateurs de calcul dans le domaine de la neutronique et de la radioprotection." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2011. http://tel.archives-ouvertes.fr/tel-00676001.
Full textLu, Xing. "La contrôlabilité frontière exacte et la synchronisation frontière exacte pour un système couplé d’équations des ondes avec des contrôles frontières de Neumann et des contrôles frontières couplés de Robin." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAD013/document.
Full textThis thesis studies the widespread natural phenomenon of synchronization, which was first observed by Huygens en 1665. On the basis of the results on the exact boundary controllability, for a coupled system of wave equations with Neumann boundary controls, we consider its exact boundary synchronization (by groups), as well as the determination of the state of synchronization. Then, we consider the exact boundary controllability and the exact boundary synchronization (by groups) for the coupled system with coupled Robin boundary controls. Due to difficulties from the lack of regularity of the solution, we have to face a bigger challenge. In order to overcome this difficulty, we take advantage of the regularity results for the mixed problem with Neumann boundary conditions (Lasiecka and Triggiani) to discuss the exact boundary controllability, and by the method of compact perturbation, to obtain the non-exact controllability for the system
Vignola, Emanuele. "A Theoretical Perspective on Hydrogenation and Oligomerization of Acetylene over Pd Based Catalysts." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEN054/document.
Full textSelective hydrogenation of acetylene in ethylene-rich flows is a fundamental process in the petrochemical industry since it allows the purification of ethylene for polymer applications. The reaction is catalyzed by Pd, which features acceptable selectivity towards ethylene compared to the total hydrogenation product, ethane. Pure Pd is, however, deactivated by oligomeric byproducts, known as ”green oil” in the literature. Therefore, most industrial catalysts are Pd-Ag alloys, where Ag helps to suppress the secondary reactions. This work addresses the formation of initial oligomers on Pd and Ag-Pd catalysts. A mean field based theoretical model was built to efficiently screen the topology of the topper most layer of the alloy catalyst under relevant conditions. This model gave evidence for strongly favored Pd island formation. To confirm this result, the system was then re-investigated by means of Monte Carlo simulations including the effect of segregation. Emergence of large domains of Pd were confirmed over large ratios of Ag to Pd. Green oil is expected to form on these catalytically active islands. To obtain a detailed view on the oligomerization process, activation energies were computed both for hydrogenation and oligomerization steps by periodic density functional theory on Pd(111). Oligomerization was found to be competitive with hydrogenation, with the hydrogenation of the oligomers being among the fastest processes. The role of Pd domains to green oil formation is still to be clarified under realistic conditions, where the surface is covered by many different species. A step forward to this goal was taken by developing a machine-learning tool which automatically interpolates model Hamiltonians on graphical lattices based on DFT computations, accounting for lateral interactions and distorted adsorption modes on crowded surfaces
Benguigui, Michaël. "Valorisation d’options américaines et Value At Risk de portefeuille sur cluster de GPUs/CPUs hétérogène." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4053/document.
Full textThe research work described in this thesis aims at speeding up the pricing of complex financial instruments, like an American option on a realistic size basket of assets (e.g. 40) by leveraging the parallel processing power of Graphics Processing Units. To this aim, we start from a previous research work that distributed the pricing algorithm based on Monte Carlo simulation and machine learning proposed by J. Picazo. We propose an adaptation of this distributed algorithm to take advantage of a single GPU. This allows us to get performances using one single GPU comparable to those measured using a 64 cores cluster for pricing a 40-assets basket American option. Still, on this realistic-size option, the pricing requires a handful of hours. Then we extend this first contribution in order to tackle a cluster of heterogeneous devices, both GPUs and CPUs programmed in OpenCL, at once. Doing this, we are able to drastically accelerate the option pricing time, even if the various classification methods we experiment with (AdaBoost, SVM) constitute a performance bottleneck. So, we consider instead an alternate, distributable approach, based upon Random Forests which allow our approach to become more scalable. The last part reuses these two contributions to tackle the Value at Risk evaluation of a complete portfolio of financial instruments, on a heterogeneous cluster of GPUs and CPUs
Lelievre, Tony. "Modèles multi-échelles pour les fluides viscoélastiques." Phd thesis, Ecole des Ponts ParisTech, 2004. http://tel.archives-ouvertes.fr/tel-00006797.
Full textChebly, Alia. "Trajectory planning and tracking for autonomous vehicles navigation." Thesis, Compiègne, 2017. http://www.theses.fr/2017COMP2392/document.
Full textIn this thesis, the trajectory planning and the control of autonomous vehicles are addressed. As a first step, a multi-body modeling technique is used to develop a four wheeled vehicle planar model. This technique considers the vehicle as a robot consisting of articulated bodies. The geometric description of the vehicle system is derived using the modified Denavit Hartenberg parameterization and then the dynamic model of the vehicle is computed by applying a recursive method used in robotics, namely Newton-Euler based Algorithm. The validation of the developed vehicle model was then conducted using an automotive simulator developed by Oktal, the Scaner-Studio simulator. The developed vehicle model is then used to derive coupled control laws for the lateral and the longitudinal vehicle dynamics. Two coupled controllers are proposed in this thesis: In the first controller, the control is designed using Lyapunov control techniques while in the second one an Immersion and Invariance approach is used. Both of the controllers aim to ensure a robust tracking of the reference trajectory and the desired speed while taking into account the strong coupling between the lateral and the longitudinal vehicle dynamics. In fact, the coupled controller is a key step for the vehicle safety handling, especially in coupled maneuvers such as lane-change maneuvers, obstacle avoidance maneuvers and combined maneuvers in critical driving situations. The developed controllers were validated in simulation under Matlab/Simulink using experimental data. Subsequently, an experimental validation of the proposed controllers was conducted using a robotized vehicle (Renault-ZOE) present in the Heudiasyc laboratory within the Equipex Robotex project. Concerning the trajectory planning, a local planning method based on the clothoid tentacles method is developed. Moreover, a maneuver planning strategy focusing on the overtaking maneuver is developed to improve and complete the local planning approach. The local and the maneuver planners are then combined in order to establish a complete navigation strategy. This strategy is then validated using the developed robotics vehicle model and the Lyapunov based controller under Matlab/Simulink
Bissery, Véronique. "Contribution au développement de la méthode Hydrophobic Cluster Analysis HCA d'exploitation des séquences de protéines : application à la superfamille des récepteurs des hormones stéroïdiennes et de l'acide rétinoi͏̈que, modélisation du domaine de liaison à l'hormone du récepteur androgène." Paris 5, 1989. http://www.theses.fr/1989PA05P625.
Full textLouis-Rose, Carole Julie. "Sur la contrôlabilité à zéro de problèmes d’évolution de type parabolique." Thesis, Antilles-Guyane, 2013. http://www.theses.fr/2013AGUY0609/document.
Full textThis thesis is devoted to the study of the null controllability of systems of parabolic partial differential equations, which we meet in physics, chemistry or in biology. In chemistry or in biology, the se systems model the evolution in time of a chemical concentration or the density of a population (of bacteria, cells). The aim of nu Il controllability is to lead the solution of the system to zero in a given time T, by acting on the system with a control. Thus we are looking for a control, of minimal norm, such as the associated solution y satisfies y(T)=O in the domain Omega under concern. We consider three types of null controllability problems in this thesis. At first, we are interested in the null controllability with afinite number of constraints on the normal derivative of the state, for the serni-Iinear heat equation. Then, we analyze the simultaneous null controllability with constraint on the control, for a linear system of two coupled parabolic equations. Our last study deals with the null controllability ofa non linear system oftwo coupled parabolic equations. We approach these controllability problems mainly by means of Carleman's inequalities. Indeed, the study of null controllability problems, and more generally exact controllability problems, is equivalent to obtain observability inequalities for the adjoint problem, consequences of Carleman's inequalities. We build the optimal controlusing the variationnal method and we characterize it by an optimality system
Carpentier, Denise. "Simulation de la cinétique d’absorption des défauts ponctuels par les dislocations et amas de défauts." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX077/document.
Full textCluster Dynamics (CD) is a mean field simulation method which makes it possible to predict the materials evolution under irradiation. In this work, we focus on sink strengths, which are the parameters used in CD to represent the capacity of sinks (dislocations, cavities…) to absorb point defects (vacancies, self-interstitials). To calculate the sink strengths, object kinetic Monte Carlo (OKMC) simulations are performed. The energy of point defects at stable and saddle points is described through their elastic dipoles. These elements are computed in an aluminum crystal using density functional theory. In a first part, the sink strengths of the main objects found in irradiated microstructures (dislocations, cavities and dislocation loops) are calculated on simple configurations. This study reveals the importance of elastic interactions, and enables us to identify the saddle point anisotropy of point defects as an important parameter, as it modifies both the point defects trajectories and the sink strength values. Then, we focus on the role of the relative position of sinks in their capacity to absorb point defects. Microstructures containing a large number of dislocation loops are generated by OKMC simulations and the absorption of point defects by those microstructures is measured. It is shown that the neighborhood of a sink modifies noticeably its capacity to absorb the point defects and this behavior is rationalized through the Voronoi volume associated with each sink. This study leads to the proposal of a new sink strength expression, and of a new formalism for CD in which clusters are described by their size and their Voronoi volume. The results show that this formalism makes it possible to strongly improve the prediction of the evolution of cluster size distributions during irradiation
Vahedi, Abolfazl. "Modélisation et caractérisation des machines synchro-reluctantes saturées par des méthodes numériques." Vandoeuvre-les-Nancy, INPL, 1996. http://www.theses.fr/1996INPL074N.
Full textRapti, Ioanna. "Numerical modeling of liquefaction-induced failure of geostructures subjected to earthquakes." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLC025.
Full textThe increasing importance of performance-based earthquake engineering analysis points out the necessity to assess quantitatively the risk of liquefaction. In this extreme scenario of soil liquefaction, devastating consequences are observed, e.g. excessive settlements, lateral spreading and slope instability. The present PhD thesis discusses the global dynamic response and interaction of an earth structure-foundation system, so as to determine quantitatively the collapse mechanism due to foundation’s soil liquefaction. As shear band generation is a potential earthquake-induced failure mode in such structures, the FE mesh dependency of results of dynamic analyses is thoroughly investigated and an existing regularization method is evaluated. The open-source FE software developed by EDF R&D, called Code_Aster is used for the numerical simulations, while soil behavior is represented by the ECP constitutive model, developed at CentraleSupélec. Starting from a simplified model of 1D SH wave propagation in a soil column with coupled hydromechanical nonlinear behavior, the effect of seismic hazard and soil’s permeability on liquefaction is assessed. Input ground motion is a key component for soil liquefaction apparition, as long duration of mainshock can lead to important nonlinearity and extended soil liquefaction. Moreover, when a variation of permeability as function of liquefaction state is considered, changes in the dissipation phase of excess pore water pressure and material behavior are observed, which do not follow a single trend. The effect of a regularization method with enhanced kinematics approach, called first gradient of dilation model, on 1D SH wave propagation is studied through an analytical solution. Deficiencies of the use of this regularization method are observed and discussed, e.g. spurious waves apparition in the soil’s seismic response. Next, a 2D embankment-type model is simulated and its dynamic response is evaluated in dry, fully drained and coupled hydromechanical conditions. Two criteria are used to define the onset of the structure’s collapse. The second order work is used to describe the local instability at specific instants of the ground motion, while the estimation of a local safety factor is proposed by calculating soil’s residual strength. Concerning the failure mode, the effect of excess pore water pressure is of great importance, as an otherwise stable structure-foundation system in dry and fully drained conditions becomes unstable during coupled analysis. Finally, a levee- foundation system is simulated and the influence of soil’s permeability, depth of the liquefiable layer, as well as, characteristics of input ground motion on the liquefaction-induced failure is evaluated. For the current levee model, its induced damage level (i.e. settlements and deformations) is strongly related to both liquefaction apparition and dissipation of excess pore water pressure on the foundation. A circular collapse surface is generated inside the liquefied region and extends towards the crest in both sides of the levee. Even so, when the liquefied layer is situated in depth, no effect on the levee response is found. This research work can be considered as a reference case study for seismic assessment of embankment-type structures subjected to earthquake and provides a high-performance computational framework accessible to engineers
Lelièvre, Tony. "Modèles multi-échelles pour les fluides viscoélastiques." Marne-la-vallée, ENPC, 2004. https://hal.science/tel-00006797.
Full textThe most important part of this work deals with the mathematical analysis of multiscale models of polymeric fluids. These models couple, at the microscopic level, a molecular description of the evolution of the polymer chains (in terms of stochastic differential equations) and, at the macroscopic level, the mass conservation and momentum equations for the solvent (which are partial differential equations). In Chapter 1, we introduce the models and give the main results obtained. In Chapters 2, 4, 5 and 7 we make precise the mathematical meaning and the well-posedness of the equations in either homogeneous flows or plane shear flows for some specific models of polymer chains. In Chapters 2, 3, 6 and 7, we analyse and prove convergence of some numerical schemes. Finally, in Chapter 8, we deal with the longtime behaviour of the coupled system. A second part of this document concerns a magnetohydrodynamic (MHD) problem coming from industry. In Chapter 9, we introduce the problem and the numerical methods used. We present a new test-case in MHD in Chapter 10. Finally, we give a stability analysis of the scheme in Chapter 11
Bassomo, Pierre. "Contribution à la parallélisation de méthodes numériques à matrices creuses skyline. Application à un module de calcul de modes et fréquences propres de Systus." Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 1999. http://tel.archives-ouvertes.fr/tel-00822654.
Full textRouet, François-Henry. "Problèmes de mémoire et de performance de la factorisation multifrontale parallèle et de la résolution triangulaire à seconds membres creux." Phd thesis, Institut National Polytechnique de Toulouse - INPT, 2012. http://tel.archives-ouvertes.fr/tel-00785748.
Full textBriki, Mohamed. "Étude du couplage entre structure et ordre chimique dans les agrégats bimétalliques : vers l’établissement de diagrammes de phases à l’échelle nanométrique." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112001/document.
Full textIf bulk phase diagrams of binary alloys are now well known, it is not the case for nanoalloys, which are particles consisting in a few hundred to a few thousand of atoms. The development of nanotechnologies is a powerful driving force to develop the interest in the phase diagrams of nanoparticles. For this purpose, we have studied the Wulff polyhedron of 405 atoms (PW405) in the Cu-Ag system characterized by a large difference in atomic radii between the components and a tendency to phase separation, at least in the bulk. The study is carried out by Monte Carlo simulations using N-body interatomic potentials, taking advantage of the complementarity of two thermodynamic ensembles, namely the semigrand canonical ensemble (sGC), i.e. at fixed difference in chemical potentials and the canonical ensemble, i.e. at fixed nominal concentration.We first show that a phase diagram of nanoalloy consists in a set of phase diagrams related to the various classes of surface sites or to the internal layers. Thus, for the PW405, we distinguish three phase diagrams: the (100) facets diagram, the (111) facets diagram and the phase diagram for the layers of the core. Each of these diagrams is linked to very different physical phenomena. Thus, the phase diagram of the (100) facets is related to a structural and chemical transition, while the one of the (111) facets characterizes a transition between phase separation and disorder, without structural evolution. In the sGC ensemble, this results in a collective bistability for the (100) facets and an individual bistability for the (111) facets. A consequence of this last point is the possibility to observe some (111) facets pure in copper and other (111) facets pure in silver within the same nanoparticle !The use of the Widom method to determine in the canonical ensemble is decisive in order to discriminate between a single-phase regime (with surface or subsurface segregation) and a two-phase regime. Furthermore, the difference of atomic radii between Cu and Ag plays an important role, both for stabilizing the Janus configuration (with an Ag shell) in the two-phase state, and for lowering the critical temperature of the core layers by a factor of about 2 with respect to the bulk phase diagram.An analysis of the Monte Carlo simulations within an effective lattice formalism and a mean-field approximation is very powerful to determine the driving forces at the origin of each type of transition, both for the different facets of the surface layers and for the core. Moreover, this allowed us to show that the edges act as a nano-armature for the nanoparticles. This work ends with the establishment of what should be considered as the first phase diagram of nanoalloys, to the best of our knowledge
Taurines, Kevin. "Modelling and experimental analysis of a geothermal ventilated foundation." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI100/document.
Full textThis thesis deals with the thermal and energy analysis of a geothermal ventilated fonudation. Similarly to earth-to-air heat exchangers (EAHE) this foundation enables, according to the season, to preheat or to cool down the air for the hygienic air change. Considering the energy consumption constraints and the buildings users thermal comfort desire, these systems appears to be relevant. The principle of this foundation is simple: to force the air to circulate in a hollowed beam buried into the ground (1 to 3m depth) so that it takes advantage - via convection - to the thermal inertia of the ground. The difference lays on the fact that the channel is not a plastic or aluminium pipe but it a part of the building structure, namely the reinforced concrete foundation. This induces a significant space gain, usually devoted to the pipe burying. From a thermal point of view, the foundation exchanges heat with both the soil beneath the building, and with the soil exposed to the weather thermal loads. Furthermore, the depth - imposed by structural and economical purposees - is lower than that of traditional EAHE. In addition to the fact that concrete is a porous material, the humidity content may strongly influence the thermal performance of the foundation. The current work thus proposes to study the complex thermal behaviour of this foundation in two ways. The first is experimental: an retirement home equipped with two foundation has been intensively instrumented and data recorded over more than one year. The other is numerical: two models validated against the experimental data have been developed. The first is intended to be a designing tool, the second a tool to allow a fine comprehension of the physical phenomenon and take into account coupled heat and moisture transfers
Beghdadi, Azeddine. "Etude statistique de la morphologie des composés métalliques granulaires par analyse d'image." Paris 6, 1986. http://www.theses.fr/1986PA066281.
Full textFortun, Auad Sergio Fernando. "Four essays on understanding the matching between entrepreneurs and European Venture capitalists." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM1064.
Full textOur thesis aims to improve the understanding of European Venture Capital market and the matching that takes place between entrepreneurs and Venture Capitalists. We present four essays that allow us to get to know: the theoretical and empirical literature on the subject, the different types of European venture capitalists participating in the financing of early stage ventures and the dimensions that count in this relationship
Harman-Clarke, Adam. "Contraintes Topologiques et Ordre dans les Systèmes Modèle pour le Magnétisme Frustré." Thesis, Lyon, École normale supérieure, 2011. http://www.theses.fr/2011ENSL0659.
Full textIn this thesis a series of model frustrated magnets have been investigated. Their common parent is the spin ice model, which is transformed into the kagome ice and square ice models in two-dimensions, and an Ising spin chain model in one-dimension. These models have been examined with particular interest in the spin ordering transitions induced by constraints on the system: a topological constraint leads, under appropriate conditions, to the Kasteleyn transition in kagome ice and a lattice freezing transition is observed in square ice which is due to a ferromagnetic ordering transition in an Ising chain induced solely by finite size effects. In all cases detailed Monte Carlo computational simulations have been carried out and compared with theoretical expressions to determine the characteristics of these transitions. In order to correctly simulate the kagome ice model a loop update algorithm has been developed which is compatible with the topological constraints in the system and permits the simulation to remain strictly on the groundstate manifold within the appropriate topological sector of the phase space. A thorough survey of the thermodynamic and neutron scattering response of the kagome ice model influenced by an arbitrary in-plane field has led to a deeper understanding of the Kasteleyn transition, and a computational model that can predict neutron scattering patterns for kagome ice materials under any experimental conditions. This model has also been shown to exhibit quantised thermodynamic properties under appropriate conditions and should provide a fertile testing ground for future work on the consequences of topological constraints and topological phase transitions. A combined investigation into the square ice and Ising chain models has revealed ordering behaviour within the lattice that may be decoupled from underlying ferro- magnetic ordering and is particularly relevant to magnetic nanoarrays
Gratien, Jean-Marc. "A Domain Specific Embedded Language in C++ for lowest-order methods for diffusive problem on general meshes." Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00926232.
Full textCisternino, Marco. "A parallel second order Cartesian method for elliptic interface problems and its application to tumor growth model." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2012. http://tel.archives-ouvertes.fr/tel-00690743.
Full textWendland, David. "The equation of state of the Hydrogen-Helium mixture with application to the Sun." Thesis, Lyon, École normale supérieure, 2015. http://www.theses.fr/2015ENSL1029/document.
Full textThe study of the thermodynamic properties of a multi-component quantum Coulomb system is of fundamental theoretical interest and has, beyond that, a wide range of applications. The Hydrogen-Helium mixture can be found in the interstellar nebulae and giant planets, however the most prominent example is the Sun. Here the interaction between the electrons and the nuclei is almost purely electrostatic.In this work we study the equation of state of the Hydrogen-Helium mixture starting from first principles, meaning the fundamental Coulomb interaction of its constituting particles. In this context we develop numerical methods to study the few-particle clusters appearing in the theory by using the path integral language. To capture the effects of the long-range Coulomb interaction between the fundamental particles, we construct a new version of Mayer-diagrammatic, which is appropriate for our purposes. In a first step, we ameliorate the scaled-low-temperature (SLT) equation of state, valid in the limit of low density and low temperature, by taking three-body terms into account and we compare the predictions to the well-established OPAL equation of state. Higher densities are accessed by direct inversion of the density equations and by the use of cluster functions that include screening effects. These cluster functions put the influence of screening on the ionization, unto now treated ad-hoc, on a theoretically well-grounded basis. We also inspect other equilibrium quantities such as the speed of sound and the inner energy. In the last part we calculate the equation of state of the Hydrogen-Helium mixture including the charged He+ ions in the screening process. Our work gives insights in the physical content of previous phenomenological descriptions and helps to better determine their range of validity. The equation of state derived in this thesis is expected to be very precise as well as reliable for conditions found in the Sun
Charles, Joseph. "Amélioration des performances de méthodes Galerkin discontinues d'ordre élevé pour la résolution numérique des équations de Maxwell instationnaires sur des maillages simplexes." Phd thesis, Université Nice Sophia Antipolis, 2012. http://tel.archives-ouvertes.fr/tel-00718571.
Full textObrecht, Christian. "High performance lattice Boltzmann solvers on massively parallel architectures with applications to building aeraulics." Phd thesis, INSA de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00776986.
Full textLachat, Cédric. "Conception et validation d'algorithmes de remaillage parallèles à mémoire distribuée basés sur un remailleur séquentiel." Phd thesis, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00932602.
Full text