Dissertations / Theses on the topic 'Méthode des champs de phase'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Méthode des champs de phase.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Lebbad, Hocine. "Modélisation de la croissance des structures de Widmanstätten par la méthode des champs de phase." Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS573.
Full textHe complex rearrangement of the phase domains in a metallic alloy, called microstructure, strongly impacts its mechanical properties. To optimize them, it is therefore important to understand the formation and evolution of the microstructures. The present work is devoted to a specific type of microstructures, called Widmanstätten. These acicular structures are observed in many metallic alloys (FeC, CuZn ...). Their growth, driven by the diffusion of alloying elements, occurs at constant velocity, in isothermal conditions. Yet, several aspects of this growth remain poorly understood, which justifies this study. Using phase-field models, we first show that the anisotropy of the elastic energy plays a key role on the growth, in both 2D and 3D. We observe that the tip radius of curvature does not depend on a dynamical process but relies on the competition between interfacial and elastic energy. Then, we illustrate the ability of our model to correctly describe the size of the tip. We have then developed two models to take into account two different mechanisms of relaxation by plastic deformation: misfit dislocations and plastic activity in the matrix. We have observed that plasticity does not change the singular growth at constant velocity but yet modifies the value of the growth velocity and the tip radius of curvature. Finally, we have developed a formalism at a thinner scale which is able to describe step nucleation and growth, which are often observed in Widmanstätten structures. Preliminary results, for a non-conserved field, are presented here
Boussinot, Guillaume. "Etude du vieillissement des superalliages à base nickel par la méthode de champs de phase." Paris 6, 2007. http://www.theses.fr/2007PA066575.
Full textAbourou, Ella Appolinaire. "Étude des solutions stationnaires d'un modèle de champs de phase cristallin." Thesis, Poitiers, 2013. http://www.theses.fr/2013POIT2273/document.
Full textThis thesis is devoted to the study of stationary solutions of a Phase Field Crystal model, in one spacedimension, introduced by Elder in 2002. Thus, we prove by the Lyapunov-Schmidt method of reductionand the multiparameter technique, the existence of the curves of bifurcating stationary solutions whenthe kernel of the linearized operator near to trivial solution is of two dimension. A parenthesis is open forcomparing the energies of the bifurcating solution and the trivial solution. Also, thanks to the principle ofreduced stability, we provide specific sets of parameter values for wich the obtained solutions are stable orunstable. These theoretical results are confirmed by several numerical tests.Moreover, in the classical case of a one dimensional kernel, we establish the phase diagrams allowing tounderstand the different orientations of non-trivial solutions curves near to of each bifurcation point
Ammar, Kais. "Modélisation et simulation du couplage changement de phases-mécanique par la méthode des champs de phases." Phd thesis, École Nationale Supérieure des Mines de Paris, 2010. http://tel.archives-ouvertes.fr/tel-00508677.
Full textHamma, Juba. "Modélisation par la méthode des champs de phase du maclage mécanique dans des alliages de titane β-métastables." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS381.
Full textBeta-metastable titanium alloys exhibit remarkable mechanical properties at room temperature, linked to the microstructure evolution under stress. A specific deformation mode plays an essential role: the {332}<11-3> twinning system. This thesis work thus concerns a modeling, by the phase field method, of {332} twin variants evolution under stress. The first part is devoted to an Allen-Cahn type phase field model with an elasticity taken into account in a geometrically linear formalism. This model is used with an isotropic or anisotropic interface energy in order to study the influence of the latter on the growth of twin variants. The role of an elasticity formulated in finite strain is then discussed and gives rise to the second part of this work. A mechanical equilibrium solver formulated in the geometrically non-linear formalism using a spectral method is then set up and validated. It is then used in the development of an Allen-Cahn type phase field model considering a geometrically non-linear elasticity. We then proceed to a fine comparative study of the microstructures obtained in linear and non-linear geometries. The results show a major difference between the microstructures obtained in the two elastic frameworks, concluding on the need for elasticity in finite strain formalism to reproduce the twin microstructures observed experimentally. Finally, we present a prospective study of a more general phase field formalism than the previous ones, based on a Lagrange reduction method, which would allow to fully take into account the reconstructive character of twinning and the hierarchical nature of the microstructures observed experimentally
Hansen, Hubert. "Méthodes non-perturbatives en théorie quantique des champs : au-delà du champ moyen, l'approximation de la phase aléatoire." Phd thesis, Université Claude Bernard - Lyon I, 2002. http://tel.archives-ouvertes.fr/tel-00003814.
Full textEn se plaçant au-delà du champ moyen où seules sont prises en compte les corrélations entre une particule et un potentiel "moyen" à un corps, la RPA va permettre de rajouter dans le calcul de l'état fondamental des corrélations entre particules.
Afin de mettre en place le formalisme, on applique la RPA, sons différentes formes (standard, renormalisée, en termes de fonctions de Green), à l'une des plus simples théories des champs en interaction, la théorie scalaire lambda x phi^4. On montre qu'il se produit une transition de phase due à une brisure dynamique de symétrie dont le paramètre critique se rapproche des résultats obtenus sur réseaux et par la technique des "clusters". Les résultats sont aussi présentés à température finie pour le champ moyen.
On étudie également un modèle effectif réaliste de la transition de phase chirale, le modèle sigma-linéaire et on montre que le théorème de Goldstone est restauré, contrairement à l'approximation gaussienne.
Enfin pour éclaircir quelques points de la RPA et, aller au-delà des corrélations obtenues dans la forme renormalisée, on considère l'oscillateur anharmonique en mécanique quantique, en introduisant les corrélations minimales au-delà du champ moyen et on montre que les corrélations RPA améliorent grandement le résultat obtenu en champ moyen.
Sarkis, Carole. "Modélisation de la solidification dendritique d’un alliage Al-4.5%pdsCu atomisé avec une méthode de champs de phase anisotrope adaptative." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEM048/document.
Full textDendritic growth is computed using a phase-field model with automatic adaptation of an anisotropic and unstructured finite element mesh. Unknowns are the phase-field function, a dimensionless temperature and a dimensionless composition, as proposed by [KAR1998] and [RAM2004]. Linear finite element interpolation is used for all variables, after discretization stabilization techniques that ensure convergence towards a correct non-oscillating solution. In order to perform quantitative computations of dendritic growth on a large domain, two additional numerical ingredients are necessary: automatic anisotropic unstructured adaptive meshing [COU2011], [COU2014] and parallel implementations [DIG2001], both made available with the numerical platform used (CimLib) based on C++ developments. Mesh adaptation is found to greatly reduce the number of degrees of freedom. Results of phase-field simulations for dendritic solidification of a pure material and a binary alloy in two and three dimensions are shown and compared with reference work. Discussion on algorithm details and the CPU time are outlined and a comparison with a macroscopic model are made
Bronchart, Quentin. "Développement de méthodes de champs de phase quantitatives et applications à la précipitation homogène dans les alliages binaires." Cergy-Pontoise, 2006. http://biblioweb.u-cergy.fr/theses/06CERG0302.pdf.
Full textIn this study, quantitative phase field modelings are developped. The quantitative aspect concerns the time and space scales. The aim is to predict at the mesoscale the microstructural evolutions of a homogeneous precipitation in a weakly supersaturated binary alloy. In a first part, the statistical basements of the phenomenological approaches are presented. In this phenomonological framework, we analyse two different cases. First, we calibrate the stochastic equation of evolution of the Allen-Cahn type on a Monte Carlo kinetic. Second, we calibrate the stochastic equation of evolution of the Cahn-Hilliard type on some experimental data that characterize the considered alloy. Finally, the purely phenomenological approach is abandoned and we present a coarse-graining procedure which allows to obtain, starting from a kinetic model defined at the atomic scale, a new formulation for the phase field modeling and its ingredients: density of free energy, mobilities, stochastic terms
Mellenthin, Jesper. "Modélisation de la solidification de matériaux polycristallins par la méthode du champ de phase." Palaiseau, Ecole polytechnique, 2007. http://www.theses.fr/2007EPXX0036.
Full textBayle, Raphaël. "Simulation des mécanismes de changement de phase dans des mémoires PCM avec la méthode multi-champ de phase." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX035.
Full textPhase change memories (PCM) exploit the variation of resistance of a small volume of phase change material: the binary information is coded through the amorphous or crystalline phase of the material. The phase change is induced by an electrical current, which heats the material by the Joule effect. Because of its fast and congruent crystallization, theGe2Sb2Te5 alloy is widely used for PCM. Nevertheless, to get a better reliability at high temperatures, which is required e.g. for automotive applications, STMicroelectronics uses a Ge-rich GeSbTe alloy. In this alloy, chemical segregation and appearance of a new crystalline phase occur during crystallization. The distribution of phases and alloy components are critical for the proper functioning of the memory cell; thus, predictive simulations would be extremely useful. Phase field models are used for tracking interfaces between areas occupied by different phases. In this work, a multi-phase field model allowing simulating the distribution of phases and species in Ge-rich GeSbTe has been developed. The parameters of the model have been determined using available data on this alloy. Two types of simulations have been carried out, firstly to describe crystallization during annealing of initially amorphous deposited thin layer; secondly to follow the evolution of phase distribution during memory operation using temperature fields that are typical for those operations. Comparisons between simulations and experiments show that they both exhibit the same features
Mellenthin, Jesper. "Modélisation de la croissance de matériaux polycristallins par la méthode du champ de phase." Phd thesis, Ecole Polytechnique X, 2007. http://pastel.archives-ouvertes.fr/pastel-00003136.
Full textZhao, Zhao. "Identification d'une nouvelle phase d'hydrure de zirconium et modélisation à l'échelle mésoscopique de sa précipitation." Thesis, Lille 1, 2008. http://www.theses.fr/2008LIL10166/document.
Full textLn pile, zirconium alloys in contact with the primary medium are submitted to hydrogen absorption that has significant consequences on their thermodynamic, mechanical and corrosion behaviors. Therefore, hydrogen in solid solution or hydrides precipitation can affect Zirconium alloys behaviors during service but also in long term storage and in accidental conditions. For both fundamentals aspects and safety reasons it is important te understand the precipitation process and to predict the influence various parameters like temperature, stresses, cooling rates and microstructure may have. Numerical modeling at the mesoscopic scale is an appealing approach to describe the precipitation and the "phase field" method appears to be particularly weil suited. The achievement of a realistic mesoscopic modeling should take into account an accurate kinetic, thermodynamic and structural data base in order to properly describe hydride nucleation, growth and coalescence as weil as hydride interaction with externat stresses. Such a data base relies on experimental data that are not always available; this is the reason why an accu rate structural characterization was performed. Therefore transmission electron microscopy observations were carried out on Zircaloy 4 specimens with various H contents. From this study, a new hydride phase called <, coherent with the matrix, was identified
De, Rancourt Victor. "Modélisation de l’oxydation des aciers inoxydables polycristallins par une approche en champs de phases couplée avec la mécanique." Thesis, Paris, ENMP, 2015. http://www.theses.fr/2015ENMP0021/document.
Full textAustenitic stainless steels and nickel based alloys are widely used for their mechanical properties at high temperatures.Their durability can be increased by the addition of chromium resulting in the formation of a protective oxide layer such as chromia (Cr2O3).Nevertheless, it is established from vacuum mechanical tests that oxidation significantly decreases their fatigue life.In fact, oxide growth can be followed with the injection of defects such as vacancies, deleterious chemical elements and residual stresses, etc., into the metal.The resulting cracking micromechanisms are therefore governed by complex interactions between the environment and the metal surface, implying the chemical composition and the microstructure of the metal.To date, materials life prediction is a necessity for the nuclear industry due to safety and economic issues.The enhancement of the model dimensionality allow to explicitly account for multi-physics interactions between oxide and metallic phases under mechanical loads.The thesis is in line with it and relies on the development of a phase field model coupled with mechanics that heavily relies on the principles of continuum thermodynamics.The effective behaviour of the interface is obtained by homogenisation methods allowing the mixture of separate behaviours, as it is the case on a ductile metallic substrate and its fragile oxide.Oxide growth residual stresses and mechanical load induced stresses can be relaxed by viscoplasticity, which is isotropic and anisotropic respectively for the oxide and the substrate.Full field finite element simulations are performed to study both generalised and intergranular oxidation under mechanical loads.The simulations highlight the possibility of triggering breakaway oxidation by the generation of tensile stresses in the fragile oxide, which can be localised along oxide intrusions at grain boundaries
Bertrand, Thierry. "Approximation des phases aléatoires self-consistante appliquée à un modèle schématique de la théorie des champs." Lyon 1, 1998. http://www.theses.fr/1998LYO10292.
Full textKneur, Jean-Loic. "Calculs perturbatifs variationnellement améliorés en théorie des champs; calcul du spectre et contraintes sur le modèle supersymétrique standard." Habilitation à diriger des recherches, Université Montpellier II - Sciences et Techniques du Languedoc, 2006. http://tel.archives-ouvertes.fr/tel-00265720.
Full textRobin, Éric. "Développement d'une méthode de démodulation de phase à partir d'une seule image de franges : applications des méthodes optiques de champ à la mesure en dynamique." Poitiers, 2005. http://www.theses.fr/2005POIT2321.
Full textThe recent progresses of the digital high speed cameras allows us to analyze very fast phenomena, such as cracks propagations, vibrations or impacts loading. These cameras give us a single frame of each time of experimental process. Optical methods in mechanics are widely used by researchers and engineers. The values of the quantities we are looking for are contained in the demodulated phase of the fringe pattern. Usually, in static, the phase extraction is performed by a phase shifting technique using several fringe patterns. But, this approach is unavailable for studies in dynamics. In this case, we have access to only one image for a given mechanical state. So we must extract the information from a single fringes pattern. We present two techniques of phase demodulation from a single real fringe pattern using the correlation technique. The behavior and the performances of both algorithms are presented with the help of examples
Ghmadh, Jihène. "Etude par la méthode du champ de phase à trois dimensions de la solidification dirigée dans des lames minces." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4368/document.
Full textWe report on a numerical study of directional solidification in thin samples of succinonitrile-based dilute alloy. This thesis is based on 3D phase-field simulations. Numerical results are compared qualitatively and quantitatively with experimental observations. The comparison gives a good confirmation of the experimental laws, while providing new information on the dynamics of microstructures. Growth direction of the microstructure is constrained by two axes : the main crystal axis and the direction of the thermal gradient. Simulations allow us to test the variations of the growth direction and the microstructure stability at various misorientation angles. Our results are directly compared with the experimental law that gives the microstructure orientation response in a large domain of Péclet numbers. We obtain a good agreement, both on qualitative and quantitative grounds, between experiments and 3D simulations.In the second part of this manuscript, an oscillatory instability (2λ − O mode) is numerically studied. This mode involves oscillations of both cell width and cell tip position. This instability is reproduced in numerical simulations with the aim of allowing a fine and relevant comparison with experiments of the domain of existence and the periods of oscillation. In particular, the forced oscillation regime is explored to obtain information on the frequency response of the system
Yu, Zhan. "Modélisation de l'endommagement et de la fissuration des roches argileuses sous sollicitations thermo-hydromécaniques avec la méthode de champ de phase." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I108.
Full textIn the general framework of research projects related to geological disposal of radioactive waste, shale gas production and acid gas sequestration, it is necessary to investigate damage and cracking in clayey rocks under coupled thermo-hydro-mechanical loads (THM).In the first part of the thesis, a new phase-field method is developed for rock-like materials. Two crack fields are introduced in order to describe both tensile and shear cracks. A proper thermodynamics framework is proposed to describe the evolution of two crack fields. The plastic deformation of rocks is also taken into account. An efficient numerical algorithm is adopted for the coupling between the crack fields and displacement field. This algorithm is then set up in the framework of the finite element method. The efficiency of the new phase-field method is illustrated through examples showing tensile and shear cracks.In the second part, the phase-field method is extended to problems with thermo-hydro-mechanical coupling. To this end, a specific procedure is developed for the coupling between the crack fields, mechanical field and hydraulic and thermal fields. The effects of THM coupling on cracking mechanisms are investigated.The last part is devoted to two representative examples of application. The first one is relevant to the study of excavation induced damage and cracking around an underground gallery. The second one is related to the thermally induced cracking. Both examples are based on in situ experiments performed in the underground research laboratory of Andra
Ouali, Taoufik. "Méthode cosmologique pour la détermination de la masse de Higgs." Montpellier 2, 1990. http://www.theses.fr/1990MON20046.
Full textDucousso, Tristan. "Etude de la solidification dirigée par la méthode du champ de phase : comparaison théorie - expérience pour un alliage binaire dilué." Aix-Marseille 3, 2009. http://www.theses.fr/2009AIX30043.
Full textThe growth direction of dendritic structures during directional solidification is bounded by crystal and imposed temperature gradient axes. An empirical scaling law has recently been proposed to describe the selected growth direction. These observations are compared to results obtained from a "one-sided" phase-field model including a phenomenological antitrapping current. We found a significant discrepancy between numerical and experimental results. One possible explanation may be found in the current form. First, a generalized expression for the antitrapping current is obtained in the framework of irreversible thermodynamics. Then, we present an analysis of the sharp-interface limit of our phase-field model with an arbitrary diffusion coefficient in the solid phase. We show that the current depends on a parameter X which cannot be determined directly with a diffuse-interface model. Finally, a level-set method based on sharp-interface model is developed to quantify this parameter. The level-set method indicates that X seems to be a very small parameter in free dendritic growth. However, the gradient temperature could increase this parameter in directional solidification, and so reduce the accuracy of the phase-field model. Numerical simulations remain to be done in order to test this point
Ricateau, Hugo. "Dynamique hors équilibre des théories classiques des champs et des modèles de spin d’Ising." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066189/document.
Full textThis thesis is made up of two independent parts. In the first chapter, we introduce a novel numerical method to integrate partial differential equations representing the Hamiltonian dynamics of field theories. It is a multi-symplectic integrator that locally conserves the stress-energy tensor with an excellent precision over very long periods. Its major advantage is that it is extremely simple (it is basically a centered box scheme) while remaining locally well defined. We put it to the test in the case of the non-linear wave equation (with quartic potential) in one spatial dimension, and we explain how to implement it in higher dimensions. A formal geometric presentation of the multi-symplectic structure is also given as well as a technical trick allowing to solve the degeneracy problem that potentially accompanies the multi-symplectic structure. In the second chapter, we address the issue of the influence of a finite cooling rate while performing a quench across a second order phase transition. We extend the Kibble-Zurek mechanism to describe in a more faithfully way the out-of-equilibrium regime of the dynamics before crossing the transition. We describe the time and cooling rate dependence of the typical growing size of the geometric objects, before and when reaching the critical point. These theoretical predictions are demonstrated through a numerical study of the emblematic kinetic ferromagnetic Ising model on the square lattice. A description of the geometric properties of the domains present in the system in the course of the annealing and when reaching the transition is also given
Gu, Hanfeng. "Multigrid methods for 3D composite material simulation and crack propagation modelling based on a phase field method." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI090/document.
Full textWith the development of imaging techniques like X-Ray tomography in recent years, it is now possible to take into account the microscopic details in composite material simulations. However, the composites' complex nature such as inclined and broken fibers, voids, requires rich data to describe these details and thus brings challenging problems in terms of computational time and memory when using traditional simulation methods like the Finite Element Method. These problems become even more severe in simulating failure processes like crack propagation. Hence, it is necessary to investigate more efficient numerical methods for this kind of large scale problems. The MultiGrid (MG) method is such an efficient method, as its computational cost is proportional to the number of unknowns. In this thesis, an efficient MG solver is developed for these problems. The MG method is applied to solve the static elasticity problem based on the Lame's equation and the crack propagation problem based on a phase field method. The accuracy of the MG solutions is validated with Eshelby's classic analytic solution. Then the MG solver is developed to investigate the composite homogenization process and its solutions are compared with existing solutions in the literature. After that, the MG solver is applied to simulate the free-edge effect in laminated composites. A real laminated structure using X-Ray tomography is first simulated. At last, the MG solver is further developed, combined with a phase field method, to simulate the brittle crack propagation. The MG method demonstrates its efficiency both in time and memory dimensions for solving the above problems
Rasheed, Amer. "Solidification Dendritique de Mélanges Binaires de Métaux sous l'Action de Champs Magnétique: Modélisation, Analyse Mathématique et Numérique." Phd thesis, INSA de Rennes, 2010. http://tel.archives-ouvertes.fr/tel-00565743.
Full textSimonin, Jean-Pierre. "Influence d'un champ sur la diffusion en milieu liquide : étude de quelques aspects stochastiques et expérimentaux." Paris 6, 1986. http://www.theses.fr/1986PA066611.
Full textZaim, Mohammed. "Modélisation numérique de la localisation de l'écoulement et des déformations dans les milieux poreux partiellement saturés." Electronic Thesis or Diss., Ecole centrale de Nantes, 2023. http://www.theses.fr/2023ECDN0024.
Full textFingering flow is a hydraulicinstability that occurs in partially saturatedporous media due to the displacement of thefluid in place in the pores by another fluidcharacterized by a different density andviscosity. When this instability is triggered, theinterface separating the two fluids becomesunstable, forming fingers. Traditional modelsdescribing flow in partially saturated porousmedia are unable to model this phenomenon, asthey are based on a constitutive law given bythe retention curve, which directly relatescapillary pressure to the degree of saturation. Inorder to account for fingering, a gradient modelbased on a phase field approach for deformablepartially saturated porous media is adopted inthis work.The numerical implementation of this newporomechanical model, using the finiteelement method, allows characterizing on theone hand the occurrence of fingering hydraulicinstabilities and on the other one to capturetheir effects on the irreversible, and possibleunstable, deformation of the solid skeleton. Theenvisaged application concerns the behavior offine-grained soils whose dilatant/contractantbehavior is more and more attracting theinterest of the scientific community both in thefields of experimental research and numericalmodeling
Younsi, Amina. "Simulations des effets des écoulements sur la croissance cristalline d'un mélange binaire. Approche par méthode de Boltzmann sur réseau." Palaiseau, Ecole polytechnique, 2015. https://theses.hal.science/tel-01221833/document.
Full textGmati, Hela. "Modélisation par champ de phase de la rupture des matériaux solides élastiques et élasto-viscoplastiques." Thesis, Paris, HESAM, 2020. http://www.theses.fr/2020HESAE010.
Full textThe Phase-Field Method (PFM), which has been designed for interfacial problems, provides an attractive framework for the modelling of fracture. The present work aims at developing some constitutive models within the framework of the PFM to model fracture in homogeneous and polycrystalline materials. For this purpose, two different situations have been examined. For the first situation, which is typical of brittle fracture, the development of damage is driven by the accumulation of elastic strain energy. The second situation is the one where damage is controlled by the development of plastic strains, which is quite common for ductile or fatigue fracture.The phase-field model for brittle fracture uses a scalar damage variable to represent the progressive degradation of mechanical resistance. The spatial gradient of the damage variable, which is treated as an additional external state variable, serves regularization purposes and allows considering the surface energy associated with cracks. The deviatoric/spherical decomposition of elastic strain energy is used to consider closure effects. Some material parameters have been introduced to control the impact of deviatoric and spherical contributions on the development of damage. Also, the proposed strategy is adapted to any class of material symmetry. Numerical implementation is undertaken via the finite element method, where nodal degrees of freedom are the displacement and the damage variable. For illustration purpose, the numerical simulations are carried out under both static and dynamic loading conditions.An extension of the above model to plasticity-driven fracture in polycrystalline materials is also proposed. The framework of crystal plasticity has been used for the construction of constitutive relations. To consider the role of plastic strains on the development of damage, the proposed strategy uses the coupling between damage and hardening. The consequence is that the driving force for damage contains some contributions from isotropic and kinematic hardening variables. According to the numerical results, the important features of ductile and fatigue fracture are correctly reproduced
Zhang, Qi. "Théorie et simulation de la conjugaison de phase magnéto-acoustique." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2008. http://tel.archives-ouvertes.fr/tel-00343775.
Full textLa base de la théorie développée dans cette thèse est une analyse directe par une méthode multi-échelle. Les résultats sont obtenues sous une formes simple à utiliser : le seuil du mode supercritique, les taux de croissance et sa relation avec les répartitions spatiales de contrainte dans le conjugateur sont donnés sous forme analytique.
Une approche du problème de focalisation est présentée par transposition des résultats 1D à la symétrie sphérique. Toutes les solutions analytiques sont comparées avec des résultats numériques. Enfin le problème de la conjugaison de phase en 2D est initié numériquement.
El, kettani Perla. "Équations d'évolution stochastiques locales et non locales dans des problèmes de transition de phase." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS494/document.
Full textThe aim of this thesis is to develop methods for proving the existence and uniqueness of solutionsof local and nonlocal stochastic evolution equations in phase transition problems. In chapter 1, we studyan initial value problem for a nonlocal stochastic reaction-diffusion equation with homogeneous Neumannboundary conditions in an open bounded set of ℝn, with a smooth boundary. We consider the case of ageneral nonlinear elliptic operator and we suppose that the noise is additive and induced by a Q-Wiener process.The deterministic problem with a linear diffusion term is used to model phase separation in a binarymixture. The proof of existence for the stochastic problem is based on a change of function which involvesthe solution of the stochastic heat equation with a nonlinear diffusion term. We obtain a problem withoutthe noise term. This simplifies the application of the monotonicity method, which we use to identify thelimit of the nonlinear terms. In chapter 2, we prove the existence and uniqueness of the solution for a phasefield problem with multiplicative noises induced by Q-Wiener processes. This problem models for instancethe process of melting and solidification. To that purpose we apply the Galerkin method and derive a prioriestimates for the approximate solutions. The last step is to identify the limit of the nonlinear terms whichwe do by the so-called stochastic monotonicity method. Finally, in chapter 3, we prove the existence anduniqueness of a pathwise solution in space dimension up to 6 for the stochastic nonlocal Allen-Cahn equationwith a multiplicative noise induced by a Q-Wiener process. The usual compactness method for deterministicproblems cannot be applied in a stochastic context because of the additional probability variable. Therefore,we apply the stochastic compactness method
Gong, Yang Hao. "Sur l'analyse multiéchelle du changement de morphologie du PET sous l'effet de la température ou des sollicitations mécaniques." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1003/document.
Full textIn this thesis work, we are interested in simulating the evolution of the microstructure of a polymer. In particular, we have studied in the morphology change of polyethylene terephthalate (PET) under different mechanisms. These simulations carried out by the phase field simulation. This method based on the Cahn-Hilliard equation or the Ginzburg-Landau equation. It uses an order parameter to describe the state of material, thermodynamic and kinetic variables. Thus we can describe the microstructure evolution without tracking the interface (which would require complex remeshing) and reproduce the evolution of the crystalline structure within the polymers, for example the growth of spherulites which appear during crystallization induced by temperature. Within the scope the morphology changing by the temperature, the evolution of phase field simulation is performed by the finite difference method and the finite element method. The kinetic coefficient is adjusted in order to fit the experiment data in of the literature. We introduce the multiphase field model (the MPF model) in order to simulate the evolution of several spherulites and to describe the junction of spherulites. The growth and junction of spherulites have been modeled by the finite element method and nicely reproduced in comparing the experimental evolution of isothermal crystallization of a polymer. Comparing these results with the Avrami macroscopic model, an evaluation of the Avrami constant, K (T), was discussed according to the fluctuations of the initial conditions (positions and size of the germs).In the following part, we study the crystallization induced by mechanical deformation. We are interested in the viscoelastic model to simulate the induced crystallization of PET in plane stress. The phase field model coupled to mechanics will be presented. Different viscoelastic behaviors have been considered for each phase. The influence on crystallization and orientation of the deformation, the stress velocity and the contrast between the phases are studied and compared qualitatively with the experimental observations. This is a preliminary study that will have to be continued in order to predict a more realistic morphology
Laporte, Eric. "Application de la méthode d'analyse en boucle ouverte à la conception d'oscillateurs à résonateur diélectrique et contrôlé en tension en bande X, à très faible bruit de phase." Limoges, 1997. http://www.theses.fr/1997LIMO0015.
Full textNguyen, Khac Lan. "Modèles de champ de phase et modèles Lattice Boltzmann pour la segmentation 3D de tumeurs en imagerie ultrasons hautes fréquences." Thesis, La Rochelle, 2019. http://www.theses.fr/2019LAROS011.
Full textIn this thesis, we are interested in the problem of 3D segmentation of skin tumors in high frequency ultrasound images. We focus mainly on two questions: how best to estimate the volume of tumors (in accordance with references produced by dermatologists) and how to produce algorithms whose computation times are close to real time? First, we describe a new model, log-likelihood Cahn-Hilliard (LLCH), based on a variational formulation coupling a data attachment term computed from non-parametric estimates and a regularization term derived from a phase transition dynamic (Allen Cahn reaction diffusion equation). This model is tested with a first multigrid implementation using exact solutions calculated with a Lie splitting. Secondly, we are interested in the possibility of implementing the LLCH model using lattice Boltzmann methods (LBM). The underlying dynamic is not physical in nature, so this implementation is not direct and is subject to instability problems. We show that, due to the specificities of the data attachment term, the BGK schemes, with simple relaxation time, do not ensure sufficient stability. We then use MRT schemes, with multiple relaxation times, which allow us to gain stability by introducing additional parameters. The adjustment of the so-called quartic parameters makes it possible to obtain fourth-order exact schemes that are numerically stable. Tests performed on a clinical database with ground truth provided by dermatologists show that the results obtained with the two proposed implementations are much better than those obtained with level sets methods and that our model is a good alternative to overcome the problem of underestimation of tumor volume. The computation times, for 3D images of about 70 million voxels, are very short and well adapted for practical use in medical environments
Schwaab, Marie-Émeline. "Growth of interacting cracks : numerical approach to "En-passant" fracture." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1276/document.
Full textMacroscopic failure of a material happens generally through the coalescence of micro-defects rather than the catastrophic propagation of a single crack. It is therefore advisable to study fracture problems in which many cracks interact. The case of en-passant crack pairs (EP-cracks), two parallel and offset cracks approaching each other by propagating through their inner tips, presents a marked interest as these cracks can be found in various natural (bones, oceanic rifts,..) or industrial (civil engineering,…) situations. Despite the large variety of scales and materials in which these cracks are observed, their trajectories present a remarkably self-similar hook-shape. This shape result from the crack-crack interaction, first repulsive before becoming attractive, and its origin is poorly understood. In particular, the initial repulsive behaviour seems to question the validity of linear elastic fracture mechanics (LEFM). In this thesis, we first studied EP-cracks in the LEFM framework. The study of the initial kink angle and the simulation of crack paths showed against all expectations that LEFM is able to reproduce qualitatively the hook-shaped paths. Precise predictions of specific characteristics, such as the magnitude of repulsion, requires a more refined model of the material behaviour. We then used a phase-field model to augment the material representation. As they are strongly influenced by the characteristic length scale of the phase-field, the new simulated trajectories indicate that it is possible to develop a more quantitatively correct model. An attractive prospect is to link this characteristic length to the material microstructure
Vaills, Yann. "Contribution à l'étude des transitions de phase structurales des pérovskites CsCaCl3 et CsPbCI3 par résonance paramagnétique électronique de l'ion Gd3+." Paris 6, 1986. http://www.theses.fr/1986PA066149.
Full textBorzacchiello, Domenico. "Three-dimensional numerical simulation of encapsulation in polymer coextrusion." Phd thesis, Université Jean Monnet - Saint-Etienne, 2012. http://tel.archives-ouvertes.fr/tel-00976093.
Full textTiwari, Vaishnvi. "A consistent approach for coupling lumped-parameter and phase-field models for in-vessel corium to thermodynamic databases." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX087.
Full textThis Ph.D. thesis is focused on ensuring a thermodynamically consistent representation of in-vessel corium (a high temperature mixture of molten reactor core and structural materials, described as a U-O-Zr-steel system) in the coupled thermohydraulic-thermochemical models that are used for performing Severe Accident (SA) analysis of nuclear Light Water Reactors (LWRs); in particular, the In-Vessel Melt Retention (IVMR) Strategy. In this context, the use of a thermodynamic database obtained by the CALPHAD method seems relevant by providing closures and inputs to the thermohydraulic and thermochemical models respectively. These databases consist of models for Gibbs energy functions of the possible phases for a system that can be used to obtain the equilibrium thermodynamic description for the system as well as material thermodynamic properties for out-of-equilibrium conditions.Through this work, a systematic approach for ensuring extensive utilization of CALPHAD data in the coupled models has been developed, and the associated questions have been answered for ‘mock-up’ macroscopic and mesoscopic models developed for describing some of the phenomena pertaining to in-vessel corium behaviour.As a first step, the feasibility of using CALPHAD based closures (in the form of enthalpy-temperature relations and local equilibrium conditions) has been tested on the macroscopic model developed using the lumped parameter approach. Considering the ternary U-O-Zr system, this model describes the plane front solidification process at the boundary of a molten corium pool. The second part of the work is focused on the development of a general formulation for diffuse interface models under the phase-field approach, which can be used to simulate the kinetics of various thermochemical processes under non-isothermal conditions such as solidification and phase segregation. The questions related to the thermodynamic consistency of the model as well as its parameterization (in particular with respect to the up-scaling of the interface thickness) have been addressed and the numerical results have been discussed for binary U-Zr and U-O systems under isothermal conditions
Paez, Espejo Miguel angel. "Modélisation et simulation du comportement spatiotemporel des transitions de phase dans les monocristaux moléculaires à transition de spin." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLV034/document.
Full textThis work is devoted to the multiscale modeling of the spin transition phenomena in Fe(II) spin crossover compounds. The development of a macroscopic reaction-diffusion-like model for the phase transition from the Ising-like Hamiltonian allowed the theoretical study of the spatio-temporal behavior of the high-spin fraction accompanying the first-order phase transition in switchable spin crossover single crystals. The comparison to experiments led to an excellent agreement for the dynamics of the high-spin/low-spin interface which improved the understanding of the optical microscopy measurements. Next, this work was extended to the study of photothermic effects due to the crystal heating by the light of the microscope leading to a coupled system of differential equations accounting for the thermal coupling with the bath temperature. These equations predict nonlinear behaviors for crystals in the bistable region, such as the autocatalytic effects, for which we established the conditions of their emergence. The last part of this thesis is devoted to an extension of the electro-elastic model. Here we prove that the elastic frustration is at the origin of the existence of two-step and of incomplete spin crossover transitions. Furthermore, this model allowed us to predict structures of complex patterns in high-spin fractions for intermediate phases. Several types of self-organisation were revealed such as the spatially-modulated structures of the high-spin fractions. Some of these behaviors have been experimentally observed, very recently, in spin crossover compounds
Michelet, Jordan. "Extraction du fouillis de mer dans des images radar marin cohérent : modèles de champ de phases, méthodes de Boltzmann sur réseau, apprentissage." Electronic Thesis or Diss., La Rochelle, 2022. http://www.theses.fr/2022LAROS048.
Full textWe focus on the problem of sea clutter extraction in marine radar images. The aim is to develop image processing methods allowing us to avoid assumptions about the nature of the sea clutter and the signal of interest. On the one hand, we propose an original algorithm based on a variational approach : a multiphase model with diffuse interface. The results obtained show that the algorithm is efficient when the signal of interest has a sufficiently large signal-to-clutter ratio. On the other hand, we focus on the implementation of lattice Boltzmann schemes for convection-diffusion problems with non-constant advection velocity and non-zero source term. We describe the computation of the consistency obtained by asymptotic analysis at the acoustic scale and with a multiple relaxation time collision operator, and study the stability of these schemes in a particular case. The obtained results show that the proposed schemes allow removing the residual noise and to enhance the signal of interest on the image obtained with the first method. Finally, we propose a learning method allowing us to avoid assumptions on the nature of the signal of interest. Indeed, in addition to the variational approach, we propose an algorithm based on pulse-Doppler processing when the signal of interest is exo-clutter and has a low signal-to-clutter ratio. The results obtained from the proposed double auto-encoder, being comparable to the results provided by each of the two methods, allow validating this approach
Riad, Soukaina. "Vers une modélisation de la corrosion sous contrainte assistée par l'irradiation du superalliage 718." Electronic Thesis or Diss., Ecole centrale de Nantes, 2022. http://www.theses.fr/2022ECDN0039.
Full textInconel 718 alloy is renowned for having excellent corrosion resistance, very high mechanical strength and good resistance to irradiation. Thus, it is a material of choice within a nuclear power reactor for parts subjected to extreme stresses (springs, retaining systems,...). However, failures in service have been observed in this material under irradiationassisted stress corrosion cracking phenomenon. This thesis aims to bring new elements of understanding of this complex phenomenon from the point of view of numerical modeling. The stress corrosion cracking process is modeled by the phase field fracture method. A unified implementation, able to deal with inter and intergranular fracture, is proposedand allows to couple efficiently different scales of work (from continuous medium to polycrystal) and different physics (mechanics of continuous and generalized media and internal oxidation). This modeling allows to propose simulations of the complex stages of stress corrosion cracking, namely initiation, coalescence and propagation
Fine, Georges. "Méthode de correction de sonde en mesures de champs proches." Paris 11, 1989. http://www.theses.fr/1989PA112172.
Full textFalgayrettes, Pascal. "Elaboration d'une méthode de mesure de champs de concentrations instantanés." Aix-Marseille 2, 1996. http://www.theses.fr/1996AIX22044.
Full textPicard, Dominique. "Mesure rapide de champs proches par la méthode de diffusion modulée." Paris 11, 1987. http://www.theses.fr/1987PA112220.
Full textArvanitis, Christos. "Méthodes variationnelles-perturbatives en théorie quantique des champs." Aix-Marseille 2, 1993. http://www.theses.fr/1993AIX22059.
Full textGeslin, Pierre-Antoine. "Contribution à la modélisation champs de phase des dislocations." Paris 6, 2013. http://www.theses.fr/2013PA066608.
Full textThe plastic behavior of metallic alloys is often influenced by the interactions between second phase precipitates and dislocations. The dynamics of these linear defects can be investigated by phase-field methods whose main advantage is their variational nature, which enables a natural coupling with the dynamics of other defects (solute atoms, vacancies, second phase precipitates. . . ). The purpose of this thesis is to develop phase field models able to study dislocations behavior, their interactions with second phase precipitates and climb mechanisms by vacancy absorption/emission. We first propose an elastically non-linear phase-field model that naturally accounts for dislocations glide, nucleation and cross-slip. Using this model, we confirm that coherency loss of precipitates can occur by prismatic punching mechanisms, as proposed in previous studies. Then, we propose a coupling between this approach and a phase field model for microstructural evolutions and apply it to the analysis of AlS_3SSc precipitates in an aluminum matrix. We show that dislocations can modify significantly the precipitate interface morphology, which in turn can influence the mechanical response of the alloy. Finally, we propose a phase-field model for dislocation climb by vacancy diffusion and absorption/emission. We specially investigate the limiting character of the absorption/emission mechanisms at the dislocation core
Li, Xi. "Solidification en présence de champs magnétiques intenses." Grenoble INPG, 2007. http://www.theses.fr/2007INPG0079.
Full textAI-Cu, AI-Ni, Bi-Mn hypo- and hypereutectic alloys are used to study effects of the magnetic field on the dendrites and cellular array, interface transformation and shape. Results indicate that the field causes the interface to be destabilized and irregular and promotes the planar-cellular and the cellular-dendritic transformation. The field has a great influence on the cellular and dendrite array morphology. Indeed, the field causes severe distortion in the cellular and dendritic array Investigations on growths of the lamellar eutectic (AI2Cu-AI and Pb-Sn) and rod eutectic (Bi-MnBi) alloy un der a high magnetic field show that a high magnetic field has degenerated the lamellar structure into a wavy one at a low growth speed and changed the preferred orientation relationship. However, the field has enhanced the growth of the MnBi fiber along the solidification direction and increased the fiber spacing
Wu, Yi. "Topology optimization in structural dynamics : vibrations, fracture resistance and uncertainties." Thesis, Paris Est, 2022. http://www.theses.fr/2022PESC2007.
Full textThe objective of this thesis is to develop density based-topology optimization methods for several challenging dynamic structural problems. First, we propose a normalization strategy for elastodynamics to obtain optimized material distributions of the structures that reduces frequency response and improves the numerical stabilities of the bi-directional evolutionary structural optimization (BESO). Then, to take into account uncertainties in practical engineering problems, a hybrid interval uncertainty model is employed to efficiently model uncertainties in dynamic structural optimization. A perturbation method is developed to implement an uncertainty-insensitive robust dynamic topology optimization in a form that greatly reduces the computational costs. In addition, we introduce a model of interval field uncertainty into dynamic topology optimization. The approach is applied to single material, composites and multi-scale structures topology optimization. Finally, we develop a topology optimization for dynamic brittle fracture structural resistance, by combining topology optimization with dynamic phase field fracture simulations. This framework is extended to design impact-resistant structures. In contrast to stress-based approaches, the whole crack propagation is taken into account into the optimization process
Notta, Delphine. "Méthode des Champs Virtuels pour la caractérisation de comportements viscoplastiques et d'endommagement, à partir de mesures de champs mécaniques hétérogènes." Phd thesis, Université de Valenciennes et du Hainaut-Cambresis, 2011. http://tel.archives-ouvertes.fr/tel-00649476.
Full textNotta-Cuvier, Delphine. "Méthode des Champs Virtuels pour la caractérisation de comportements viscoplastiques et d'endommagement, à partir de mesures de champs mécaniques hétérogènes." Valenciennes, 2011. http://ged.univ-valenciennes.fr/nuxeo/site/esupversions/845b29c3-db42-4fa3-ad43-c6d172e0eda1.
Full textThe behaviour of materials subjected to high-energy dynamic loadings (impacts, blasts…) is usually sensitive to strain-rate (viscoplastic) and/or damage. Conventional procedures for the characterization of corresponding models of behaviour use statically determined tests requiring restrictive hypotheses. So, it is impossible to deal with heterogeneous mechanical fields and the exploitation of tests is limited to small levels of strain. Moreover, several tests have to be performed, at constant strain rate, to characterize viscoplasticity. However, these limitations do not allow to take advantage of the large amount of information available thanks to full-field measurements. One solution is to use statically undetermined tests to deal with heterogeneous fields. Among available tools, the Virtual Fields Method (VFM) has undeniable advantages compared to classic FEMU methods. This study focuses on the development of the VFM for the characterization of Johnson-Cook's viscoplastic model of behaviour. An asset of the VFM is that it makes possible the characterization of the viscoplastic part of the model with only one testing, under dynamic conditions, thanks to a statically undetermined exploitation of heterogeneous strain and strain-rate fields. A short-term prospect is to use the VFM to identify parameters of elastoplastic models of behaviour coupled with damage (e. G. Lemaitre). The feasibility was demonstrated for numerical data
Syed, Muhammad Kashif. "Sur quelques aspects numériques de la Méthode des Champs Virtuels : optimisation de conditions d'essai et champs virtuels définis par sous-domaines." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2007. http://tel.archives-ouvertes.fr/tel-00158434.
Full textDeux aspects originaux sont développés dans ce travail. Le premier concerne des champs virtuels définis par sous-domaines. Le deuxième concerne l'optimisation des conditions d'essai vis-à-vis du bruit de mesure. La caractérisation d'une plaque endommagée est également examinée. Enfin, quelques essais ont permis de confirmer certains résultats trouvés dans la première partie du travail.
Promma, Nattawit. "Méthode des champs virtuels en grandes déformations : application à la caractérisation d'un matériau élastomère à partir de mesures de champs cinématiques." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2009. http://tel.archives-ouvertes.fr/tel-00725718.
Full text