To see the other types of publications on this topic, follow the link: Method analysis grids.

Dissertations / Theses on the topic 'Method analysis grids'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Method analysis grids.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Onay, Oguz Kaan. "Approximate Factorization Using Acdi Method On Hybrid Grids And Parallelization Of The Scheme." Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615589/index.pdf.

Full text
Abstract:
In this thesis study, a fast implicit iteration scheme called Alternating Cell Directions Imp licit method is combined with Approximate Factorization scheme. This application aims to offer a mathematically well defined version of the Alternating Cell Directions Implicit Method and increase the accuracy of the iteration scheme that is being used for the numerical solutions of the partial differential equations. The iteration scheme presented here is tested using unsteady diffusion equation, Laplace equation and advection-diffusion equation. The accuracy, convergence character and the stability character of the scheme compared with suitable iteration schemes for structured and unstructured quadrilateral grids. Besides, it is shown that the proposed scheme is applicable to triangular and hybrid polygonal grids. A transonic full potential solver is generated using the current scheme. The flow around a 2-D cylinder is solved for subcritical and supercritical cases. Axi-symmetric flow around cylinder is selected as a benchmark problem since the potential flow around bodies with a blunt leading edge is a more challenging problem than slender bodies. Besides, it is shown that, the method is naturally appropriate for parallelization using shared memory approach without using domain decomposition applications. The parallelization that is performed here is partially line, partially point parallelization. T he performance of the application is presented for a 3-D unsteady diffusion problem using Cartesian cells and 2-D unsteady diffusion problem using both structured and unstructured quadrilateral cells.
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Mianzhi. "Numerical Analysis of Transient Teflon Ablation with a Domain Decomposition Finite Volume Implicit Method on Unstructured Grids." Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-theses/284.

Full text
Abstract:
This work investigates numerically the process of Teflon ablation using a finite-volume discretization, implicit time integration and a domain decomposition method in three-dimensions. The interest in Teflon stems from its use in Pulsed Plasma Thrusters and in thermal protection systems for reentry vehicles. The ablation of Teflon is a complex process that involves phase transition, a receding external boundary where the heat flux is applied, an interface between a crystalline and amorphous (gel) phase and a depolymerization reaction which happens on and beneath the ablating surface. The mathematical model used in this work is based on a two-phase model that accounts for the amorphous and crystalline phases as well as the depolymerization of Teflon in the form of an Arrhenius reaction equation. The model accounts also for temperature-dependent material properties, for unsteady heat inputs and boundary conditions in 3D. The model is implemented in 3D domains of arbitrary geometry with a finite volume discretization on unstructured grids. The numerical solution of the transient reaction-diffusion equation coupled with the Arrhenius-based ablation model advances in time using implicit Crank-Nicolson scheme. For each time step the implicit time advancing is decomposed into multiple sub-problems by a domain decomposition method. Each of the sub-problems is solved in parallel by Newton-Krylov non-linear solver. After each implicit time-advancing step, the rate of ablation and the fraction of depolymerized material are updated explicitly with the Arrhenius-based ablation model. After the computation, the surface of ablation front and the melting surface are recovered from the scalar field of fraction of depolymerized material and the fraction of melted material by post-processing. The code is verified against analytical solutions for the heat diffusion problem and the Stefan problem. The code is validated against experimental data of Teflon ablation. The verification and validation demonstrates the ability of the numerical method in simulating three dimensional ablation of Teflon.
APA, Harvard, Vancouver, ISO, and other styles
3

Krinshnamurthy, R. "Kinetic Flux Vector Splitting Method On Moving Grids (KFMG) For Unsteady Aerodynamics And Aeroelasticity." Thesis, Indian Institute of Science, 2001. https://etd.iisc.ac.in/handle/2005/288.

Full text
Abstract:
Analysis of unsteady flows is a very challenging topic of research. A decade ago, potential flow equations were used to predict unsteady pressures on oscillating bodies. Recognising the fact that nonlinear aerodynamics is essential to analyse unsteady flows accurately, particularly in transonic and supersonic flows, different Euler formulations operating on moving grids have emerged recently as important CFD tools for unsteady aerodynamics. Numerical solution of Euler equations on moving grids based on upwind schemes such as the ones due to van Leer and Roe have been developed for the purpose of numerical simulation of unsteady transonic and supersonic flows. In the present work, Euler computations based on yet another recent robust upwind scheme (for steady flows) namely Kinetic Flux Vector Splitting (KFVS) scheme due to Deshpande and Mandal is chosen for further development of a time accurate Euler solver to operate on problems involving moving boundaries. The development of an Euler code based on this scheme is likely to be highly useful to analyse problems of unsteady aerodynamics and computational aeroelasiticity especially when it is noted that KFVS has been found to be an extremely robust scheme for computation of subsonic, transonic, supersonic and hypersonic flows. The KFVS scheme, basically exploits the connection between the linear scalar Boltzmann equation of kinetic theory of gases and the nonlinear vector conservation law, that is, Euler equations of fluid dynamics through moment method strategy. The KFVS scheme has inherent simplicity in splitting the flux even on moving grids due to underlying particle model. The inherent simplicity of KFVS for moving grid problems is due to its relationship with the Boltzmann equation. If a surface is moving with velocity w and a particle has velocity v, then it is quite reasonable to do the splitting based on (v-w)<0 or >0. Only particles having velocity v greater than w will cross the moving surface from left to right and similar arguments hold good for particles moving in opposite direction. It is therefore quite natural to extend KFVS by splitting the Maxwellian velocity distribution at Boltzmann level based on the sign of the normal component of the relative velocity. The relative velocity is the difference between the molecular velocity (v) and the velocity of the moving surface(w). This inherent simplicity of the Kinetic Flux Vector Splitting scheme on Moving Grids (KFMG) method has prompted us to extend the same ideas to 2-D and 3-D problems leading to the present KFMG method. If w is set to zero then KFMG formulation reduces to the one corresponding to KFVS. Thus KFMG formulations axe generalisation of the KFVS formulation. In 2-D and 3-D cases, in addition to the KFMG formulation, the method to move the grids, the appropriate boundary conditions for treating moving surfaces and techniques to improve accuracy in space and time are required to be developed. The 2-D and 3-D formulations based on Kinetic Flux Vector Splitting scheme on Moving Grids method have been developed for computing unsteady flows. Between two successive time steps, the body changes its orientation in case of an oscillation or it deforms when subjected to, aerodynamic loads. In either of these cases the grid corresponding to the first time step has to be moved or regenerated around the displaced or deformed body. There are several approaches available to generate grids around moving bodies. In the present work, the 'spring analogy method' is followed to obtain grid around deflected geometries within the frame work of structured grid. Using this method, the grids are moved from previous time to the current time. This method is capable of tackling any kind of aeroelastic deformation of the body. For oscillating bodies, a suitable boundary condition enforcing the flow tangency on the body needs to be developed. As a first attempt, the body surface has been treated as an 1-D piston undergoing compression and expansion. Then, a more general Kinetic Moving Boundary Condition(KMBC) has been developed. The KMBC uses specular reflection model of kinetic theory of gases. In order to treat fixed outer boundary, Kinetic Outer Boundary Condition(KOBC) has been applied. The KOBC is more general in the sense that, it can treat different type of boundaries (subsonic, supersonic, inflow or out flow boundary). A 2-D cell-centered finite volume KFMG Euler code to operate on structured grid has been developed. The time accuracy is achieved by incorporating a fourth order Runge-Kutta time marching method. The space accuracy has been enhanced by using high resolution scheme as well as second order scheme using the method of reconstruction of fluxes. First, the KFMG Euler code has been applied to standard test cases for computing steady flows around NACA 0012 and NACA 64AQ06 airfoils in transonic flow. For these two airfoils both computational and experimental results are available in literature. It is thus possible to verify (that is, prove the claim that code is indeed solving the partial differential equations + boundary conditions posed to the code) and validate(that is, comparison with experimental results) the 2-D KFMG Euler code. Having verified and validated the 2-D KFMG Euler code for the standard test cases, the code is then applied to predict unsteady flows around sinusoidally oscillating NACA 0012 and NACA 64A006 airfoils in transonic flow. The computational and experimental unsteady results are available in literature for these airfoils for verification and validation of the present results. The unsteady lift and normal force coefficients have been predicted fairly accurately by all the CFD codes. However there is some difficulty about accurate prediction of unsteady pitching moment coefficient. Even Navier-Stokes code could not predict pitching moment accurately. This issue needs further in depth study and probably intensive computation which have not been undertaken in the present study. Next, a two degrees of £reedom(2-DOF) structural dynamics model of an airfoil undergoing pitch and plunge motions has been coupled with the 2-D KFMG Euler code for numerical simulation of aeroelastic problems. This aeroelastic analysis code is applied to NACA 64A006 airfoil undergoing pitch and plunge motions in transonic flow to obtain aeroelastic response characteristics for a set of structural parameters. For this test case also computed results are available in literature for verification. The response characteristics obtained have showed three modes namely stable, neutrally stable and unstable modes of oscillations. It is interesting to compare the value of airfoil-to-air mass ratio (Formula) obtained by us for neutrally stable condition with similar values obtained by others and some differences between them are worth mentioning here. The values of \i for neutral stability are different for different authors. The differences in values of (Formula) predicted by various authors are primarily due to differences which can be due to grid as well as mathematical model used. For example, the Euler calculations, TSP calculations and full potential calculations always show differences in shock location for the same flow problem. Changes in shock location will cause change in pressure distribution on airfoil which in turn will cause changes in values of \L for conditions of neutral stability. The flutter speed parameter(U*) has also been plotted with free stream Mach number for two different values of airfoil - to - air mass ratio. These curves shown a dip when the free stream Mach number is close to 0.855. This is referred as "Transonic Dip Phenomenon". The shock waves play a dominant role in the mechanism of transonic dip phenomenon. Lastly, cell-centered finite volume KFMG 3-D Euler code has been developed to operate on structured grids. The time accuracy is achieved by incorporating a fourth order Runge-Kutta method. The space accuracy has been enhanced by using high resolution scheme. This code has 3-D grid movement module which is based on spring analogy method. The KMBC to treat oscillating 3-D configuration and KOBC for treating 3-D outer boundary have also been formulated and implemented in the code. The 3-D KFMG Euler code has been first verified and validated for 3-D steady flows around standard shapes such as, transonic flow past a hemisphere cylinder and ONERA M6 wing. This code has also been used for predicting hypersonic flow past blunt cone-eylinder-flare configuration for which experimental data are available. Also, for this case, the results are compared with a similar Euler code. Then the KFMG Euler code has been used for predicting steady flow around ogive-cylinder-ogive configuration with elliptical cross section. The aerodynamic coefficients obtained have been compared with those of another Euler code. Thus, the 3-D KFMG Euler code has been verified and validated extensively for steady flow problems. Finally, the 3-D KFMG based Euler code has been applied to an oscillating ogive-cylinder-ogive configuration in transonic flow. This test case has been chosen as it resembles the core body of a flight vehicle configuration of interest to DRDO,India. For this test case, the unsteady lift coefficients are available in literature for verifying the present results. Two grid sizes are used to perform the unsteady calculations using the present KFMG 3-D Euler code. The hysteresis loops of lift and moment coefficients confirmed the unsteady behaviour during the oscillation of the configuration. This has proved that, the 3-D formulations are capable of predicting the unsteady flows satisfactorily. The unsteady results obtained for a grid with size of 45x41x51 which is very close to the grid size chosen in the reference(Nixon et al.) are considered for comparison. It has been mentioned in the reference that, a phase lag of (Formula) was observed in lift coefficients with respect to motion of the configuration for a free stream Mach number of 0.3 with other conditions remaining the same. The unsteady lift coefficients obtained using KFMG code as well as those available in literature are plotted for the same flow conditions. Approximately the same phase lag of (Formula) is present (for (Formula)) between the lift coefficient curves of KFMG and due to Nixon et al. The phase lag corrected plot of lift coefficient obtained by Nixon et al. is compared with the lift coefficient versus time obtained by 3-D KFMG Euler code. The two results compare well except that the peaks are over predicted by KFMG code. It is nut clear at this stage whether our results should at all match with those due to Nixon et al. Further in depth study is obviously required to settle the issue. Thus the Kinetic Flux Vector Splitting on Moving Grids has been found to be a very good and a sound method for splitting fluxes and is a generalisation of earlier KFVS on fixed grids. It has been found to be very successful in numerical simulation of unsteady aerodynamics and computational aeroelasticity.
APA, Harvard, Vancouver, ISO, and other styles
4

Krinshnamurthy, R. "Kinetic Flux Vector Splitting Method On Moving Grids (KFMG) For Unsteady Aerodynamics And Aeroelasticity." Thesis, Indian Institute of Science, 2001. http://hdl.handle.net/2005/288.

Full text
Abstract:
Analysis of unsteady flows is a very challenging topic of research. A decade ago, potential flow equations were used to predict unsteady pressures on oscillating bodies. Recognising the fact that nonlinear aerodynamics is essential to analyse unsteady flows accurately, particularly in transonic and supersonic flows, different Euler formulations operating on moving grids have emerged recently as important CFD tools for unsteady aerodynamics. Numerical solution of Euler equations on moving grids based on upwind schemes such as the ones due to van Leer and Roe have been developed for the purpose of numerical simulation of unsteady transonic and supersonic flows. In the present work, Euler computations based on yet another recent robust upwind scheme (for steady flows) namely Kinetic Flux Vector Splitting (KFVS) scheme due to Deshpande and Mandal is chosen for further development of a time accurate Euler solver to operate on problems involving moving boundaries. The development of an Euler code based on this scheme is likely to be highly useful to analyse problems of unsteady aerodynamics and computational aeroelasiticity especially when it is noted that KFVS has been found to be an extremely robust scheme for computation of subsonic, transonic, supersonic and hypersonic flows. The KFVS scheme, basically exploits the connection between the linear scalar Boltzmann equation of kinetic theory of gases and the nonlinear vector conservation law, that is, Euler equations of fluid dynamics through moment method strategy. The KFVS scheme has inherent simplicity in splitting the flux even on moving grids due to underlying particle model. The inherent simplicity of KFVS for moving grid problems is due to its relationship with the Boltzmann equation. If a surface is moving with velocity w and a particle has velocity v, then it is quite reasonable to do the splitting based on (v-w)<0 or >0. Only particles having velocity v greater than w will cross the moving surface from left to right and similar arguments hold good for particles moving in opposite direction. It is therefore quite natural to extend KFVS by splitting the Maxwellian velocity distribution at Boltzmann level based on the sign of the normal component of the relative velocity. The relative velocity is the difference between the molecular velocity (v) and the velocity of the moving surface(w). This inherent simplicity of the Kinetic Flux Vector Splitting scheme on Moving Grids (KFMG) method has prompted us to extend the same ideas to 2-D and 3-D problems leading to the present KFMG method. If w is set to zero then KFMG formulation reduces to the one corresponding to KFVS. Thus KFMG formulations axe generalisation of the KFVS formulation. In 2-D and 3-D cases, in addition to the KFMG formulation, the method to move the grids, the appropriate boundary conditions for treating moving surfaces and techniques to improve accuracy in space and time are required to be developed. The 2-D and 3-D formulations based on Kinetic Flux Vector Splitting scheme on Moving Grids method have been developed for computing unsteady flows. Between two successive time steps, the body changes its orientation in case of an oscillation or it deforms when subjected to, aerodynamic loads. In either of these cases the grid corresponding to the first time step has to be moved or regenerated around the displaced or deformed body. There are several approaches available to generate grids around moving bodies. In the present work, the 'spring analogy method' is followed to obtain grid around deflected geometries within the frame work of structured grid. Using this method, the grids are moved from previous time to the current time. This method is capable of tackling any kind of aeroelastic deformation of the body. For oscillating bodies, a suitable boundary condition enforcing the flow tangency on the body needs to be developed. As a first attempt, the body surface has been treated as an 1-D piston undergoing compression and expansion. Then, a more general Kinetic Moving Boundary Condition(KMBC) has been developed. The KMBC uses specular reflection model of kinetic theory of gases. In order to treat fixed outer boundary, Kinetic Outer Boundary Condition(KOBC) has been applied. The KOBC is more general in the sense that, it can treat different type of boundaries (subsonic, supersonic, inflow or out flow boundary). A 2-D cell-centered finite volume KFMG Euler code to operate on structured grid has been developed. The time accuracy is achieved by incorporating a fourth order Runge-Kutta time marching method. The space accuracy has been enhanced by using high resolution scheme as well as second order scheme using the method of reconstruction of fluxes. First, the KFMG Euler code has been applied to standard test cases for computing steady flows around NACA 0012 and NACA 64AQ06 airfoils in transonic flow. For these two airfoils both computational and experimental results are available in literature. It is thus possible to verify (that is, prove the claim that code is indeed solving the partial differential equations + boundary conditions posed to the code) and validate(that is, comparison with experimental results) the 2-D KFMG Euler code. Having verified and validated the 2-D KFMG Euler code for the standard test cases, the code is then applied to predict unsteady flows around sinusoidally oscillating NACA 0012 and NACA 64A006 airfoils in transonic flow. The computational and experimental unsteady results are available in literature for these airfoils for verification and validation of the present results. The unsteady lift and normal force coefficients have been predicted fairly accurately by all the CFD codes. However there is some difficulty about accurate prediction of unsteady pitching moment coefficient. Even Navier-Stokes code could not predict pitching moment accurately. This issue needs further in depth study and probably intensive computation which have not been undertaken in the present study. Next, a two degrees of £reedom(2-DOF) structural dynamics model of an airfoil undergoing pitch and plunge motions has been coupled with the 2-D KFMG Euler code for numerical simulation of aeroelastic problems. This aeroelastic analysis code is applied to NACA 64A006 airfoil undergoing pitch and plunge motions in transonic flow to obtain aeroelastic response characteristics for a set of structural parameters. For this test case also computed results are available in literature for verification. The response characteristics obtained have showed three modes namely stable, neutrally stable and unstable modes of oscillations. It is interesting to compare the value of airfoil-to-air mass ratio (Formula) obtained by us for neutrally stable condition with similar values obtained by others and some differences between them are worth mentioning here. The values of \i for neutral stability are different for different authors. The differences in values of (Formula) predicted by various authors are primarily due to differences which can be due to grid as well as mathematical model used. For example, the Euler calculations, TSP calculations and full potential calculations always show differences in shock location for the same flow problem. Changes in shock location will cause change in pressure distribution on airfoil which in turn will cause changes in values of \L for conditions of neutral stability. The flutter speed parameter(U*) has also been plotted with free stream Mach number for two different values of airfoil - to - air mass ratio. These curves shown a dip when the free stream Mach number is close to 0.855. This is referred as "Transonic Dip Phenomenon". The shock waves play a dominant role in the mechanism of transonic dip phenomenon. Lastly, cell-centered finite volume KFMG 3-D Euler code has been developed to operate on structured grids. The time accuracy is achieved by incorporating a fourth order Runge-Kutta method. The space accuracy has been enhanced by using high resolution scheme. This code has 3-D grid movement module which is based on spring analogy method. The KMBC to treat oscillating 3-D configuration and KOBC for treating 3-D outer boundary have also been formulated and implemented in the code. The 3-D KFMG Euler code has been first verified and validated for 3-D steady flows around standard shapes such as, transonic flow past a hemisphere cylinder and ONERA M6 wing. This code has also been used for predicting hypersonic flow past blunt cone-eylinder-flare configuration for which experimental data are available. Also, for this case, the results are compared with a similar Euler code. Then the KFMG Euler code has been used for predicting steady flow around ogive-cylinder-ogive configuration with elliptical cross section. The aerodynamic coefficients obtained have been compared with those of another Euler code. Thus, the 3-D KFMG Euler code has been verified and validated extensively for steady flow problems. Finally, the 3-D KFMG based Euler code has been applied to an oscillating ogive-cylinder-ogive configuration in transonic flow. This test case has been chosen as it resembles the core body of a flight vehicle configuration of interest to DRDO,India. For this test case, the unsteady lift coefficients are available in literature for verifying the present results. Two grid sizes are used to perform the unsteady calculations using the present KFMG 3-D Euler code. The hysteresis loops of lift and moment coefficients confirmed the unsteady behaviour during the oscillation of the configuration. This has proved that, the 3-D formulations are capable of predicting the unsteady flows satisfactorily. The unsteady results obtained for a grid with size of 45x41x51 which is very close to the grid size chosen in the reference(Nixon et al.) are considered for comparison. It has been mentioned in the reference that, a phase lag of (Formula) was observed in lift coefficients with respect to motion of the configuration for a free stream Mach number of 0.3 with other conditions remaining the same. The unsteady lift coefficients obtained using KFMG code as well as those available in literature are plotted for the same flow conditions. Approximately the same phase lag of (Formula) is present (for (Formula)) between the lift coefficient curves of KFMG and due to Nixon et al. The phase lag corrected plot of lift coefficient obtained by Nixon et al. is compared with the lift coefficient versus time obtained by 3-D KFMG Euler code. The two results compare well except that the peaks are over predicted by KFMG code. It is nut clear at this stage whether our results should at all match with those due to Nixon et al. Further in depth study is obviously required to settle the issue. Thus the Kinetic Flux Vector Splitting on Moving Grids has been found to be a very good and a sound method for splitting fluxes and is a generalisation of earlier KFVS on fixed grids. It has been found to be very successful in numerical simulation of unsteady aerodynamics and computational aeroelasticity.
APA, Harvard, Vancouver, ISO, and other styles
5

Stern, Louis G. "An explicitly conservative method for time-accurate solution of hyperbolic partial differential equations on embedded Chimera grids /." Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/6758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bas, Onur. "Development Of An Incompressible Navier-stokes Solver With Alternating Cell Direction Implicit Method On Structured And Unstructured Quadrilateral Grids." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608775/index.pdf.

Full text
Abstract:
In this research, the Alternating Cell Direction Implicit method is used in temporal discretisation of the incompressible Navier-Stokes equations and compared with the well known and widely used Point Gauss Seidel scheme on structured and quadrilateral unstructured meshes. A two dimensional, laminar and incompressible Navier-Stokes solver is developed for this purpose using the artificial compressibility formulation. The developed solver is used to obtain steady-state solutions with implicit time stepping methods and a third order data reconstruction scheme (U-MUSCL) is added to obtain high order spatial accuracy. The Alternating Cell Directions Implicit method and Point Gauss Seidel scheme is compared in terms of convergence iteration number and total computation time using test cases with growing complexity, including laminar flat plate, single and multi-element airfoil calculations. Both structured and quadrilateral unstructured grids are used in single element airfoil calculations. In these test cases, it is seen that a reduction between 13% and 20% is obtained in total computation time by usage of Alternating Cell Directions Implicit method when compared with the Point Gauss Seidel method.
APA, Harvard, Vancouver, ISO, and other styles
7

Acikgoz, Nazmiye. "Adaptive and Dynamic Meshing Methods for Numerical Simulations." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/14521.

Full text
Abstract:
For the numerical simulation of many problems of engineering interest, it is desirable to have an automated mesh adaption tool. This is important especially for problems characterized by anisotropic features and require mesh clustering in the direction of high gradients. Another significant issue in meshing emerges in unsteady simulations with moving boundaries, where the boundary motion has to be accommodated by deforming the computational grid. Similarly, there exist problems where current mesh needs to be adapted to get more accurate solutions. To solve these problems, we propose three novel procedures. In the first part of this work, we present an optimization procedure for three-dimensional anisotropic tetrahedral grids based on metric-driven h-adaptation. Through the use of topological and geometrical operators, the mesh is iteratively adapted until the final mesh minimizes a given objective function. We propose an optimization process based on an ad-hoc application of the simulated annealing technique, which improves the likelihood of removing poor elements from the grid. Moreover, a local implementation of the simulated annealing is proposed to reduce the computational cost. Many challenging unsteady multi-physics problems are characterized by moving boundaries and/or interfaces. When the boundary displacements are large, degenerate elements are easily formed in the grid such that frequent remeshing is required. We propose a new r-adaptation technique that is valid for all types of elements (e.g., triangle, tet, quad, hex, hybrid) and deforms grids that undergo large imposed displacements at their boundaries. A grid is deformed using a network of linear springs composed of edge springs and a set of virtual springs. The virtual springs are constructed in such a way as to oppose element collapsing. Both frequent remeshing, and exact-pinpointing of clustering locations are great challenges of numerical simulations, which can be overcome by adaptive meshing algorithms. Therefore, we conclude this work by defining a novel mesh adaptation technique where the entire mesh is adapted upon application of a force field in order to comply with the target mesh or to get more accurate solutions. The method has been tested for two-dimensional problems of a-priori metric definitions as well as for oblique shock clusterings.
APA, Harvard, Vancouver, ISO, and other styles
8

Demir, H. Ozgur. "Computational Fluid Dynamics Analysis Of Store Separation." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605294/index.pdf.

Full text
Abstract:
In this thesis, store separation from two different configurations are solved using computational methods. Two different commercially available CFD codes
CFD-FASTRAN, an implicit Euler solver, and an unsteady panel method solver USAERO, coupled with integral boundary layer solution procedure are used for the present computations. The computational trajectory results are validated against the available experimental data of a generic wing-pylon-store configuration at Mach 0.95. Major trends of the separation are captured. Same configuration is used for the comparison of unsteady panel method with Euler solution at Mach 0.3 and 0.6. Major trends are similar to each other while some differences in lateral and longitudinal displacements are observed. Trajectories of a fueltank separated from an F-16 fighter aircraft wing and full aircraft configurations are found at Mach 0.3 using only the unsteady panel code. The results indicate that the effect of fuselage is to decrease the drag and to increase the side forces acting on the separating fueltank from the aircraft. It is also observed that the yawing and rolling directions of the separating fueltank are reversed when it is separated from the full aircraft configuration when compared to the separation from the wing alone configuration.
APA, Harvard, Vancouver, ISO, and other styles
9

Häggblom, Johan, and Jonathan Jerner. "Photovoltaic Power Production and Energy Storage Systems in Low-Voltage Power Grids." Thesis, Linköpings universitet, Fordonssystem, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-156875.

Full text
Abstract:
In recent years, photovoltaic (PV) power production have seen an increase and the PV power systems are often located in the distribution grids close to the consumers. Since the distributions grids rarely are designed for power production, investigation of its effects is needed. It is seen in this thesis that PV power production will cause voltages to rise, potentially to levels exceeding the limits that grid owners have to abide by. A model of a distribution grid is developed in MathWorks MATLAB. The model contains a transformer, cables, households, energy storage systems (ESS:s) and photovoltaic power systems. The system is simulated by implementing a numerical Forward Backward Sweep Method, solving for powers, currents and voltages in the grid. PV power systems are added in different configurations along with different configurations of ESS:s. The results are analysed, primarily concerning voltages and voltage limits. It is concluded that addition of PV power production in the distribution grid affects voltages, more or less depending on where in the grid the systems are placed and what peak power they have. It is also concluded that having energy storage systems in the grid, changing the power factor of the inverter for the PV systems or lowering the transformer secondary-side voltage can bring the voltages down.
På senare tid har det skett en ökning i antalet solcellsanläggningar som installeras i elnätet och dessa är ofta placerade i distributionsnäten nära hushållen. Eftersom distributionsnäten sällan är dimensionerade för produktion så behöver man utreda effekten av det. I det här arbetet visas det att solcellsproduktion kommer att öka spänningen i elnätet, potentiellt så mycket att de gränser elnätsägarna måste hålla nätet inom överstigs. En modell över lågspänningsnätet skapas i MathWorks MATLAB. Modellen innehåller transformator, kablar, hushåll, energilager och solcellsanläggningar. Systemet simuleras med hjälp av en numerisk Forward Backward Sweep-lösare som beräknar effekter, strömmar och spänningar i elnätet. Solcellanläggningarna placeras ut i elnätet i olika konfigurationer tillsammans med olika konfigurationer av energilager. Resultaten från simuleringarna analyseras främst med avseende på spänningen i elnätet utifrån dess gränser. De slutsatser som dras i arbetet är att solcellsproduktion kommer att påverka spänningen, mycket beroende på var i elnätet anläggningarna placeras och storleken hos dem. Det visas också att energilager, justering av effektfaktor hos solcellsanläggningarna eller en spänningssänkning på transformatorns lågspänningssida kan få ner spänningen i elnätet.

LiTH-ISY-EX--19/5194--SE

APA, Harvard, Vancouver, ISO, and other styles
10

Dai, Ruxin. "Richardson Extrapolation-Based High Accuracy High Efficiency Computation for Partial Differential Equations." UKnowledge, 2014. http://uknowledge.uky.edu/cs_etds/20.

Full text
Abstract:
In this dissertation, Richardson extrapolation and other computational techniques are used to develop a series of high accuracy high efficiency solution techniques for solving partial differential equations (PDEs). A Richardson extrapolation-based sixth-order method with multiple coarse grid (MCG) updating strategy is developed for 2D and 3D steady-state equations on uniform grids. Richardson extrapolation is applied to explicitly obtain a sixth-order solution on the coarse grid from two fourth-order solutions with different related scale grids. The MCG updating strategy directly computes a sixth-order solution on the fine grid by using various combinations of multiple coarse grids. A multiscale multigrid (MSMG) method is used to solve the linear systems resulting from fourth-order compact (FOC) discretizations. Numerical investigations show that the proposed methods compute high accuracy solutions and have better computational efficiency and scalability than the existing Richardson extrapolation-based sixth order method with iterative operator based interpolation. Completed Richardson extrapolation is explored to compute sixth-order solutions on the entire fine grid. The correction between the fourth-order solution and the extrapolated sixth-order solution rather than the extrapolated sixth-order solution is involved in the interpolation process to compute sixth-order solutions for all fine grid points. The completed Richardson extrapolation does not involve significant computational cost, thus it can reach high accuracy and high efficiency goals at the same time. There are three different techniques worked with Richardson extrapolation for computing fine grid sixth-order solutions, which are the iterative operator based interpolation, the MCG updating strategy and the completed Richardson extrapolation. In order to compare the accuracy of these Richardson extrapolation-based sixth-order methods, truncation error analysis is conducted on solving a 2D Poisson equation. Numerical comparisons are also carried out to verify the theoretical analysis. Richardson extrapolation-based high accuracy high efficiency computation is extended to solve unsteady-state equations. A higher-order alternating direction implicit (ADI) method with completed Richardson extrapolation is developed for solving unsteady 2D convection-diffusion equations. The completed Richardson extrapolation is used to improve the accuracy of the solution obtained from a high-order ADI method in spatial and temporal domains simultaneously. Stability analysis is given to show the effects of Richardson extrapolation on stable numerical solutions from the underlying ADI method.
APA, Harvard, Vancouver, ISO, and other styles
11

Marin, Manuel. "GPU-enhanced power flow analysis." Thesis, Perpignan, 2015. http://www.theses.fr/2015PERP0041.

Full text
Abstract:
Cette thèse propose un large éventail d'approches afin d'améliorer différents aspects de l'analyse des flux de puissance avec comme fils conducteur l'utilisation du processeurs graphiques (GPU). Si les GPU ont rapidement prouvés leurs efficacités sur des applications régulières pour lesquelles le parallélisme de données était facilement exploitable, il en est tout autrement pour les applications dites irrégulières. Ceci est précisément le cas de la plupart des algorithmes d'analyse de flux de puissance. Pour ce travail, nous nous inscrivons dans cette problématique d'optimisation de l'analyse de flux de puissance à l'aide de coprocesseur de type GPU. L'intérêt est double. Il étend le domaine d'application des GPU à une nouvelle classe de problème et/ou d'algorithme en proposant des solutions originales. Il permet aussi à l'analyse des flux de puissance de rester pertinent dans un contexte de changements continus dans les systèmes énergétiques, et ainsi d'en faciliter leur évolution. Nos principales contributions liées à la programmation sur GPU sont: (i) l'analyse des différentes méthodes de parcours d'arbre pour apporter une réponse au problème de la régularité par rapport à l'équilibrage de charge ; (ii) l'analyse de l'impact du format de représentation sur la performance des implémentations d'arithmétique floue. Nos contributions à l'analyse des flux de puissance sont les suivantes: (ii) une nouvelle méthode pour l'évaluation de l'incertitude dans l'analyse des flux de puissance ; (ii) une nouvelle méthode de point fixe pour l'analyse des flux de puissance, problème que l'on qualifie d'intrinsèquement parallèle
This thesis addresses the utilization of Graphics Processing Units (GPUs) for improving the Power Flow (PF) analysis of modern power systems. Currently, GPUs are challenged by applications exhibiting an irregular computational pattern, as is the case of most known methods for PF analysis. At the same time, the PF analysis needs to be improved in order to cope with new requirements of efficiency and accuracy coming from the Smart Grid concept. The relevance of GPU-enhanced PF analysis is twofold. On one hand, it expands the application domain of GPU to a new class of problems. On the other hand, it consistently increases the computational capacity available for power system operation and design. The present work attempts to achieve that in two complementary ways: (i) by developing novel GPU programming strategies for available PF algorithms, and (ii) by proposing novel PF analysis methods that can exploit the numerous features present in GPU architectures. Specific contributions on GPU computing include: (i) a comparison of two programming paradigms, namely regularity and load-balancing, for implementing the so-called treefix operations; (ii) a study of the impact of the representation format over performance and accuracy, for fuzzy interval algebraic operations; and (iii) the utilization of architecture-specific design, as a novel strategy to improve performance scalability of applications. Contributions on PF analysis include: (i) the design and evaluation of a novel method for the uncertainty assessment, based on the fuzzy interval approach; and (ii) the development of an intrinsically parallel method for PF analysis, which is not affected by the Amdahl's law
APA, Harvard, Vancouver, ISO, and other styles
12

von, Euler-Chelpin Jonas. "Distribution Grid Fault Location : An Analysis of Methods for Fault Location in LV and MV Power Distribution Grids." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-353710.

Full text
Abstract:
Outages and power interruptions are a common and unenviable part of power distribution system operations. Growing demands on reliability in distribution systems has opened up for new technological solutions for fault location at MV and LV level in distribution systems, previously reserved for transmission systems. This report compiles and compares available methods for fault location at distribution level and maps the current fault location process at the power distribution company Ellevio, with the aim of reaching a recommendation for a new fault location scheme. The advocated method is an impedance based method motivated by its reliability, applicability and affordability. The performance and implementation procedure is evaluated through a number of case studies where the methods impact on power reliability demonstrated as well as the need for grid analysis before implementation. Fault indicators and fault current, through relay communications, was identified as key factors for a successful implementation of the method.
APA, Harvard, Vancouver, ISO, and other styles
13

Erdem, Ayan. "Performance Analyses Of Newton Method For Multi-block Structured Grids." Thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613704/index.pdf.

Full text
Abstract:
In order to make use of Newton&rsquo
s method for complex flow domains, an Euler multi-block Newton solver is developed. The generated Newton solver uses Analytical Jacobian derivation technique to construct the Jacobian matrices with different flux discretization schemes up to the second order face interpolations. Constructed sparse matrices are solved by parallel and series matrix solvers. In order to use structured grids for complex domains, multi-block grid construction is needed. Each block has its own Jacobian matrices and during the iterations the communication between the blocks should be performed. Required communication is performed with &ldquo
halo&rdquo
nodes. Increase in the number of grids requires parallelization to minimize the solution time. Parallelization of the analyses is performed by using matrix solvers having parallelization capability. In this thesis, some applications of the multi-block Newton method to different problems are given. Results are compared by using different flux discretization schemes. Convergence, analysis time and matrix solver performances are examined for different number of blocks.
APA, Harvard, Vancouver, ISO, and other styles
14

Padmanabhan, Sanjeev. "Analysis using non-conforming structured grid and implicit boundary method." [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0015627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zhou, Jian Ming. "A multi-grid method for computation of film cooling." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29414.

Full text
Abstract:
This thesis presents a multi-grid scheme applied to the solution of transport equations in turbulent flow associated with heat transfer. The multi-grid scheme is then applied to flow which occurs in the film cooling of turbine blades. The governing equations are discretized on a staggered grid with the hybrid differencing scheme. The momentum and continuity equations are solved by a nonlinear full multi-grid scheme with the SIMPLE algorithm as a relaxation smoother. The turbulence k — Є equations and the thermal energy equation are solved on each grid without multi-grid correction. Observation shows that the multi-grid scheme has a faster convergence rate in solving the Navier-Stokes equations and that the rate is not sensitive to the number of mesh points or the Reynolds number. A significant acceleration of convergence is also produced for the k — Є and the thermal energy equations, even though the multi-grid correction is not applied to these equations. The multi-grid method provides a stable and efficient means for local mesh refinement with only little additional computational and.memory costs. Driven cavity flows at high Reynolds numbers are computed on a number of fine meshes for both the multi-grid scheme and the local mesh-refinement scheme. Two-dimensional film cooling flow is studied using multi-grid processing and significant improvements in the results are obtained. The non-uniformity of the flow at the slot exit and its influence on the film cooling are investigated with the fine grid resolution. A near-wall turbulence model is used. Film cooling results are presented for slot injection with different mass flow ratios.
Science, Faculty of
Mathematics, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
16

Howe, Bill. "Gridfields: Model-Driven Data Transformation in the Physical Sciences." PDXScholar, 2006. https://pdxscholar.library.pdx.edu/open_access_etds/2676.

Full text
Abstract:
Scientists' ability to generate and store simulation results is outpacing their ability to analyze them via ad hoc programs. We observe that these programs exhibit an algebraic structure that can be used to facilitate reasoning and improve performance. In this dissertation, we present a formal data model that exposes this algebraic structure, then implement the model, evaluate it, and use it to express, optimize, and reason about data transformations in a variety of scientific domains. Simulation results are defined over a logical grid structure that allows a continuous domain to be represented discretely in the computer. Existing approaches for manipulating these gridded datasets are incomplete. The performance of SQL queries that manipulate large numeric datasets is not competitive with that of specialized tools, and the up-front effort required to deploy a relational database makes them unpopular for dynamic scientific applications. Tools for processing multidimensional arrays can only capture regular, rectilinear grids. Visualization libraries accommodate arbitrary grids, but no algebra has been developed to simplify their use and afford optimization. Further, these libraries are data dependent—physical changes to data characteristics break user programs. We adopt the grid as a first-class citizen, separating topology from geometry and separating structure from data. Our model is agnostic with respect to dimension, uniformly capturing, for example, particle trajectories (1-D), sea-surface temperatures (2-D), and blood flow in the heart (3-D). Equipped with data, a grid becomes a gridfield. We provide operators for constructing, transforming, and aggregating gridfields that admit algebraic laws useful for optimization. We implement the model by analyzing several candidate data structures and incorporating their best features. We then show how to deploy gridfields in practice by injecting the model as middleware between heterogeneous, ad hoc file formats and a popular visualization library. In this dissertation, we define, develop, implement, evaluate and deploy a model of gridded datasets that accommodates a variety of complex grid structures and a variety of complex data products. We evaluate the applicability and performance of the model using datasets from oceanography, seismology, and medicine and conclude that our model-driven approach offers significant advantages over the status quo.
APA, Harvard, Vancouver, ISO, and other styles
17

Murali, Vasanth Kumar. "Code verification using the method of manufactured solutions." Master's thesis, Mississippi State : Mississippi State University, 2002. http://library.msstate.edu/etd/show.asp?etd=etd-11112002-121649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Congreve, Scott. "Two-grid hp-version discontinuous Galerkin finite element methods for quasilinear PDEs." Thesis, University of Nottingham, 2014. http://eprints.nottingham.ac.uk/13944/.

Full text
Abstract:
In this thesis we study so-called two-grid hp-version discontinuous Galerkin finite element methods for the numerical solution of quasilinear partial differential equations. The two-grid method is constructed by first solving the nonlinear system of equations stemming from the discontinuous Galerkin finite element method on a coarse mesh partition; then, this coarse solution is used to linearise the underlying problem so that only a linear system is solved on a finer mesh. Solving the complex nonlinear problem on a coarse enough mesh should reduce computational complexity without adversely affecting the numerical error. We first focus on the a priori and a posteriori error estimation for a scalar second-order quasilinear elliptic PDEs of strongly monotone type with respect to a mesh-dependent energy norm. We then devise an hp-adaptive mesh refinement algorithm, using the a posteriori error estimator, to automatically refine both the coarse and fine meshes present in the two-grid method. We then perform numerical experiments to validate the algorithm and demonstrate the improvements from utilising a two-grid method in comparison to a standard (single-grid) approach. We also consider deviation of the energy norm based a priori and a posteriori error bounds for both the standard and two-grid discretisations of a quasi-Newtonian fluid flow problem of strongly monotone type. Numerical experiments are performed to validate these bounds. We finally consider the dual weighted residual based a posteriori error estimate for both the second-order quasilinear elliptic PDE and the quasi-Newtonian fluid flow problem with generic nonlinearities.
APA, Harvard, Vancouver, ISO, and other styles
19

Tan, Zhijun. "Moving mesh finite volume method and its applications." HKBU Institutional Repository, 2005. http://repository.hkbu.edu.hk/etd_ra/592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Marco, Alacid Onofre. "Structural Shape Optimization Based On The Use Of Cartesian Grids." Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/86195.

Full text
Abstract:
As ever more challenging designs are required in present-day industries, the traditional trial-and-error procedure frequently used for designing mechanical parts slows down the design process and yields suboptimal designs, so that new approaches are needed to obtain a competitive advantage. With the ascent of the Finite Element Method (FEM) in the engineering community in the 1970s, structural shape optimization arose as a promising area of application. However, due to the iterative nature of shape optimization processes, the handling of large quantities of numerical models along with the approximated character of numerical methods may even dissuade the use of these techniques (or fail to exploit their full potential) because the development time of new products is becoming ever shorter. This Thesis is concerned with the formulation of a 3D methodology based on the Cartesian-grid Finite Element Method (cgFEM) as a tool for efficient and robust numerical analysis. This methodology belongs to the category of embedded (or fictitious) domain discretization techniques in which the key concept is to extend the structural analysis problem to an easy-to-mesh approximation domain that encloses the physical domain boundary. The use of Cartesian grids provides a natural platform for structural shape optimization because the numerical domain is separated from a physical model, which can easily be changed during the optimization procedure without altering the background discretization. Another advantage is the fact that mesh generation becomes a trivial task since the discretization of the numerical domain and its manipulation, in combination with an efficient hierarchical data structure, can be exploited to save computational effort. However, these advantages are challenged by several numerical issues. Basically, the computational effort has moved from the use of expensive meshing algorithms towards the use of, for example, elaborate numerical integration schemes designed to capture the mismatch between the geometrical domain boundary and the embedding finite element mesh. To do this we used a stabilized formulation to impose boundary conditions and developed novel techniques to be able to capture the exact boundary representation of the models. To complete the implementation of a structural shape optimization method an adjunct formulation is used for the differentiation of the design sensitivities required for gradient-based algorithms. The derivatives are not only the variables required for the process, but also compose a powerful tool for projecting information between different designs, or even projecting the information to create h-adapted meshes without going through a full h-adaptive refinement process. The proposed improvements are reflected in the numerical examples included in this Thesis. These analyses clearly show the improved behavior of the cgFEM technology as regards numerical accuracy and computational efficiency, and consequently the suitability of the cgFEM approach for shape optimization or contact problems.
La competitividad en la industria actual impone la necesidad de generar nuevos y mejores diseños. El tradicional procedimiento de prueba y error, usado a menudo para el diseño de componentes mecánicos, ralentiza el proceso de diseño y produce diseños subóptimos, por lo que se necesitan nuevos enfoques para obtener una ventaja competitiva. Con el desarrollo del Método de los Elementos Finitos (MEF) en el campo de la ingeniería en la década de 1970, la optimización de forma estructural surgió como un área de aplicación prometedora. El entorno industrial cada vez más exigente implica ciclos cada vez más cortos de desarrollo de nuevos productos. Por tanto, la naturaleza iterativa de los procesos de optimización de forma, que supone el análisis de gran cantidad de geometrías (para las se han de usar modelos numéricos de gran tamaño a fin de limitar el efecto de los errores intrínsecamente asociados a las técnicas numéricas), puede incluso disuadir del uso de estas técnicas. Esta Tesis se centra en la formulación de una metodología 3D basada en el Cartesian-grid Finite Element Method (cgFEM) como herramienta para un análisis numérico eficiente y robusto. Esta metodología pertenece a la categoría de técnicas de discretización Immersed Boundary donde el concepto clave es extender el problema de análisis estructural a un dominio de aproximación, que contiene la frontera del dominio físico, cuya discretización (mallado) resulte sencilla. El uso de mallados cartesianos proporciona una plataforma natural para la optimización de forma estructural porque el dominio numérico está separado del modelo físico, que podrá cambiar libremente durante el procedimiento de optimización sin alterar la discretización subyacente. Otro argumento positivo reside en el hecho de que la generación de malla se convierte en una tarea trivial. La discretización del dominio numérico y su manipulación, en coalición con la eficiencia de una estructura jerárquica de datos, pueden ser explotados para ahorrar coste computacional. Sin embargo, estas ventajas pueden ser cuestionadas por varios problemas numéricos. Básicamente, el esfuerzo computacional se ha desplazado. Del uso de costosos algoritmos de mallado nos movemos hacia el uso de, por ejemplo, esquemas de integración numérica elaborados para poder capturar la discrepancia entre la frontera del dominio geométrico y la malla de elementos finitos que lo embebe. Para ello, utilizamos, por un lado, una formulación de estabilización para imponer condiciones de contorno y, por otro lado, hemos desarrollado nuevas técnicas para poder captar la representación exacta de los modelos geométricos. Para completar la implementación de un método de optimización de forma estructural se usa una formulación adjunta para derivar las sensibilidades de diseño requeridas por los algoritmos basados en gradiente. Las derivadas no son sólo variables requeridas para el proceso, sino una poderosa herramienta para poder proyectar información entre diferentes diseños o, incluso, proyectar la información para crear mallas h-adaptadas sin pasar por un proceso completo de refinamiento h-adaptativo. Las mejoras propuestas se reflejan en los ejemplos numéricos presentados en esta Tesis. Estos análisis muestran claramente el comportamiento superior de la tecnología cgFEM en cuanto a precisión numérica y eficiencia computacional. En consecuencia, el enfoque cgFEM se postula como una herramienta adecuada para la optimización de forma.
Actualment, amb la competència existent en la industria, s'imposa la necessitat de generar nous i millors dissenys . El tradicional procediment de prova i error, que amb freqüència es fa servir pel disseny de components mecànics, endarrereix el procés de disseny i produeix dissenys subòptims, pel que es necessiten nous enfocaments per obtindre avantatge competitiu. Amb el desenvolupament del Mètode dels Elements Finits (MEF) en el camp de l'enginyeria en la dècada de 1970, l'optimització de forma estructural va sorgir com un àrea d'aplicació prometedora. No obstant això, a causa de la natura iterativa dels processos d'optimització de forma, la manipulació dels models numèrics en grans quantitats, junt amb l'error de discretització dels mètodes numèrics, pot fins i tot dissuadir de l'ús d'aquestes tècniques (o d'explotar tot el seu potencial), perquè al mateix temps els cicles de desenvolupament de nous productes s'estan acurtant. Esta Tesi se centra en la formulació d'una metodologia 3D basada en el Cartesian-grid Finite Element Method (cgFEM) com a ferramenta per una anàlisi numèrica eficient i sòlida. Esta metodologia pertany a la categoria de tècniques de discretització Immersed Boundary on el concepte clau és expandir el problema d'anàlisi estructural a un domini d'aproximació fàcil de mallar que conté la frontera del domini físic. L'utilització de mallats cartesians proporciona una plataforma natural per l'optimització de forma estructural perquè el domini numèric està separat del model físic, que podria canviar lliurement durant el procediment d'optimització sense alterar la discretització subjacent. A més, un altre argument positiu el trobem en què la generació de malla es converteix en una tasca trivial, ja que la discretització del domini numèric i la seua manipulació, en coalició amb l'eficiència d'una estructura jeràrquica de dades, poden ser explotats per estalviar cost computacional. Tot i això, estos avantatges poden ser qüestionats per diversos problemes numèrics. Bàsicament, l'esforç computacional s'ha desplaçat. De l'ús de costosos algoritmes de mallat ens movem cap a l'ús de, per exemple, esquemes d'integració numèrica elaborats per poder capturar la discrepància entre la frontera del domini geomètric i la malla d'elements finits que ho embeu. Per això, fem ús, d'una banda, d'una formulació d'estabilització per imposar condicions de contorn i, d'un altra, desevolupem noves tècniques per poder captar la representació exacta dels models geomètrics Per completar la implementació d'un mètode d'optimització de forma estructural es fa ús d'una formulació adjunta per derivar les sensibilitats de disseny requerides pels algoritmes basats en gradient. Les derivades no són únicament variables requerides pel procés, sinó una poderosa ferramenta per poder projectar informació entre diferents dissenys o, fins i tot, projectar la informació per crear malles h-adaptades sense passar per un procés complet de refinament h-adaptatiu. Les millores proposades s'evidencien en els exemples numèrics presentats en esta Tesi. Estes anàlisis mostren clarament el comportament superior de la tecnologia cgFEM en tant a precisió numèrica i eficiència computacional. Així, l'enfocament cgFEM es postula com una ferramenta adient per l'optimització de forma.
Marco Alacid, O. (2017). Structural Shape Optimization Based On The Use Of Cartesian Grids [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86195
TESIS
APA, Harvard, Vancouver, ISO, and other styles
21

Mohammed, Najla Abdullah. "Grid refinement and verification estimates for the RBF construction method of Lyapunov functions." Thesis, University of Sussex, 2016. http://sro.sussex.ac.uk/id/eprint/65711/.

Full text
Abstract:
Lyapunov functions are functions with negative orbital derivative, whose existence guarantee the stability of an equilibrium point of an ODE. Moreover, sub-level sets of a Lyapunov function are subsets of the domain of attraction of the equilibrium. In this thesis, we improve an established numerical method to construct Lyapunov functions using the radial basis functions (RBF) collocation method. The RBF collocation method approximates the solution of linear PDE's using scattered collocation points, and one of its applications is the construction of Lyapunov functions. More precisely, we approximate Lyapunov functions, that satisfy equations for their orbital derivative, using the RBF collocation method. Then, it turns out that the RBF approximant itself is a Lyapunov function. Our main contributions to improve this method are firstly to combine this construction method with a new grid refinement algorithm based on Voronoi diagrams. Starting with a coarse grid and applying the refinement algorithm, we thus manage to reduce the number of collocation points needed to construct Lyapunov functions. Moreover, we design two modified refinement algorithms to deal with the issue of the early termination of the original refinement algorithm without constructing a Lyapunov function. These algorithms uses cluster centres to place points where the Voronoi vertices failed to do so. Secondly, we derive two verification estimates, in terms of the first and second derivatives of the orbital derivative, to verify if the constructed function, with either a regular grid of collocation points or with one of the refinement algorithms, is a Lyapunov function, i.e., has negative orbital derivative over a given compact set. Finally, the methods are applied to several numerical examples up to 3 dimensions.
APA, Harvard, Vancouver, ISO, and other styles
22

Zhang, Hanzhou. "Mesh generation for voxel-based objects." Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4148.

Full text
Abstract:
Thesis (Ph. D.)--West Virginia University, 2005.
Title from document title page. Document formatted into pages; contains x, 121 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 110-121).
APA, Harvard, Vancouver, ISO, and other styles
23

Boubez, Toufic I. "Three-dimensional finite-element mesh generation using serial sections." Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Pinchuk, Amy Ruth. "Automatic adaptive finite element mesh generation and error estimation." Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

McDill, Jennifer Moyra Jeane Carleton University Dissertation Engineering Mechanical. "An adaptive mesh-management algorithm for three-dimensional finite element analysis." Ottawa, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
26

Calhoun, Donna. "A Cartesian grid method for solving the streamfunction vorticity equations in irregular geometries /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/6753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Napov, Artem. "Algebraic analysis of V-cycle multigrid and aggregation-based two-grid methods." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210175.

Full text
Abstract:
This thesis treats two essentially different subjects: V-cycle schemes are considered in Chapters 2-4, whereas the aggregation-based coarsening is analysed in Chapters 5-6. As a matter of paradox, these two multigrid ingredients, when combined together, can hardly lead to an optimal algorithm. Indeed, a V-cycle needs more accurate prolongations than the simple piecewise-constant one, associated to aggregation-based coarsening. On the other hand, aggregation-based approaches use almost exclusively piecewise constant prolongations, and therefore need more involved cycling strategies, K-cycle [Num.Lin.Alg.Appl. vol.15(2008), pp.473-487] being an attractive alternative in this respect.



Chapter 2 considers more precisely the well-known V-cycle convergence theories: the approximation property based analyses by Hackbusch (see [Multi-Grid Methods and Applications, 1985, pp.164-167]) and by McCormick [SIAM J.Numer.Anal. vol.22(1985), pp.634-643] and the successive subspace correction theory, as presented in [SIAM Review, vol.34(1992), pp.581-613] by Xu and in [Acta Numerica, vol.2(1993), pp.285-326.] by Yserentant. Under the constraint that the resulting upper bound on the convergence rate must be expressed with respect to parameters involving two successive levels at a time, these theories are compared. Unlike [Acta Numerica, vol.2(1993), pp.285-326.], where the comparison is performed on the basis of underlying assumptions in a particular PDE context, we compare directly the upper bounds. We show that these analyses are equivalent from the qualitative point of view. From the quantitative point of view,

we show that the bound due to McCormick is always the best one.



When the upper bound on the V-cycle convergence factor involves only two successive levels at a time, it can further be compared with the two-level convergence factor. Such comparison is performed in Chapter 3, showing that a nice two-grid convergence (at every level) leads to an optimal McCormick's bound (the best bound from the previous chapter) if and only if a norm of a given projector is bounded on every level.



In Chapter 4 we consider the Fourier analysis setting for scalar PDEs and extend the comparison between two-grid and V-cycle multigrid methods to the smoothing factor. In particular, a two-sided bound involving the smoothing factor is obtained that defines an interval containing both the two-grid and V-cycle convergence rates. This interval is narrow when an additional parameter α is small enough, this latter being a simple function of Fourier components.



Chapter 5 provides a theoretical framework for coarsening by aggregation. An upper bound is presented that relates the two-grid convergence factor with local quantities, each being related to a particular aggregate. The bound is shown to be asymptotically sharp for a large class of elliptic boundary value problems, including problems with anisotropic and discontinuous coefficients.



In Chapter 6 we consider problems resulting from the discretization with edge finite elements of 3D curl-curl equation. The variables in such discretization are associated with edges. We investigate the performance of the Reitzinger and Schöberl algorithm [Num.Lin.Alg.Appl. vol.9(2002), pp.223-238], which uses aggregation techniques to construct the edge prolongation matrix. More precisely, we perform a Fourier analysis of the method in two-grid setting, showing its optimality. The analysis is supplemented with some numerical investigations.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
28

Scott, Michael Andrew. "Interior node projection techniques in sweeping algorithms /." Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1121.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sinha, Bhaskar. "Surface mesh generation using curvature-based refinement." Master's thesis, Mississippi State : Mississippi State University, 2002. http://library.msstate.edu/etd/show.asp?etd=etd-09252002-141359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Martin, Daniel. "Analysis and Design of Phase Lock Loop Based Islanding Detection Methods." Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/32967.

Full text
Abstract:
As distributed generation penetrates the electric power grid at higher power levels, grid interface issues with distributed generation must be addressed. The current power system consists of central power generators, while the future power system will include many more distributed resources. The centralized power generation system is controlled by utility operators, but many distributed resources will not be controlled by utility operators. Distributed generation must use smart control techniques for high reliability and ideal grid interface. This thesis discusses the grid interface issue of anti-islanding. An electric island occurs when a circuit breaker in the electric power system trips. The distributed resource should disconnect from the electric grid for safety reasons. This thesis will give an overview of the possible methods. Each method will be analyzed using the ability to detect under the non-detection zone and the economic feasibility of the method. This thesis proposes two addition cases for analysis that exist in the electric power system: the effect of multiple methods in parallel in the non-detection zone and the possibility of a false trip caused by a load step. Multiple methods in parallel are possible because the islanding detection method is patentable, so each grid interface inverter company is likely to implement a different islanding detection method. The load step represents a load change when a load is switched on.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
31

Balsubramanian, Ravishankar. "Error estimation and grid adaptation for functional outputs using discrete-adjoint sensitivity analysis." Master's thesis, Mississippi State : Mississippi State University, 2002. http://library.msstate.edu/etd/show.asp?etd=etd-10032002-113749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Mi, Ning. "Statistical analysis for on-chip power grid networks and interconnects considering process variation." Diss., [Riverside, Calif.] : University of California, Riverside, 2009. http://proquest.umi.com/pqdweb?index=0&did=1957327591&SrchMode=2&sid=3&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1268428568&clientId=48051.

Full text
Abstract:
Thesis (Ph. D.)--University of California, Riverside, 2009.
Includes abstract. Available via ProQuest Digital Dissertations. Title from first page of PDF file (viewed March 12, 2010). Includes bibliographical references (p. 100-106). Also issued in print.
APA, Harvard, Vancouver, ISO, and other styles
33

Hall, Richard H. "CSG based automatic mesh generation using multiple element types /." Online version of thesis, 1993. http://hdl.handle.net/1850/11438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Pomerantz, Boaz. "Aerodynamic analysis of a modified, pylon-mounted JSOW/CATM using multi-grid CFD methods." Thesis, Monterey, California. Naval Postgraduate School, 1997. http://hdl.handle.net/10945/7859.

Full text
Abstract:
Approved for public release; distribution in unlimited.
Computational Fluid Dynamics (CFD) has become a major tool in aerodynamic analysis throughout the aerospace industries, complementary to traditional methods such as wind tunnel testing, and analytical calculations. In this research, an attempt was made to integrate the Similarity and Area Rules with CFD methods. Both tools, the Similarity/Area Rule and CFD are used to derive the characteristics of complicated aerodynamic shapes in the transonic Mach number regime. It was found that the Similarity Rule can only be verified qualitatively. On the other hand, the Area Rule can be more completely verified. The aim was to find ways to minimize the drag of the tralifrig configurations of the Arr-to-Ground (A/G) weapon, Joint-Standoff-Weapon GSO%Q), in its Captive- Air-Training-Missile (CAm4) configuration. By analyzing the combination of CAmI and Pylon, it was found that the drag of this configuration depends on the average slope of the area cross-section distribution of the afterbody. The CFD tools used were a state-of-the-art grid generation code, GRIDGEN, and a multi- grid integration code, PEGSUS; the configurations were run with the OVERFLOW solver using Euler, as well as Navier-Stokes solutions. For drag optimization, Euler solutions give adequate results, the need for NS solution can be restricted to more intensity viscous analysis
APA, Harvard, Vancouver, ISO, and other styles
35

Cavallo, Peter Angelo Cernansky N. P. "Automated parallel mesh adaptation methods for transient flowfield analyses with fixed or moving boundaries /." Philadelphia, Pa. : Drexel University, 2006. http://dspace.library.drexel.edu/handle/1860/750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Pattinson, John. "A cut-cell, agglomerated-multigrid accelerated, Cartesian mesh method for compressible and incompressible flow." Pretoria : [s.n.]m, 2006. http://upetd.up.ac.za/thesis/available/etd-07052007-103047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Blades, Eric Lindsay. "A sliding interface method for unsteady unstructured parallel flow simulations." Diss., Mississippi State : Mississippi State University, 2004. http://library.msstate.edu/etd/show.asp?etd=etd-10142004-165050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ren, Da Qi. "Analysis and design development of parallel 3-D mesh refinement algorithms for finite element electromagnetics with tetrahedra." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103003.

Full text
Abstract:
Optimal partitioning of three-dimensional (3-D) mesh applications necessitates dynamically determining and optimizing for the most time-inhibiting factors, such as load imbalance and communication volume. One challenge is to create an analytical model where the programmer can focus on optimizing load imbalance or communication volume to reduce execution time. Another challenge is the best individual performance of a specific mesh refinement demands precise study and the selection of the suitable computation strategy. Very-large-scale finite element method (FEM) applications require sophisticated capabilities for using the underlying parallel computer's resources in the most efficient way. Thus, classifying these requirements in a manner that conforms to the programmer is crucial.
This thesis contributes a simulation-based approach for the algorithm analysis and design of parallel, 3-D FEM mesh refinement that utilizes Petri Nets (PN) as the modeling and simulation tool. PN models are implemented based on detailed software prototypes and system architectures, which imitate the behaviour of the parallel meshing process. Subsequently, estimates for performance measures are derived from discrete event simulations. New communication strategies are contributed in the thesis for parallel mesh refinement that pipeline the computation and communication time by means of the workload prediction approach and task breaking point approach. To examine the performance of these new designs, PN models are created for modeling and simulating each of them and their efficiencies are justified by the simulation results. Also based on the PN modeling approach, the performance of a Random Polling Dynamic Load Balancing protocol has been examined. Finally, the PN models are validated by a MPI benchmarking program running on the real multiprocessor system. The advantages of new pipelined communication designs as well as the benefits of PN approach for evaluating and developing high performance parallel mesh refinement algorithms are demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
39

Wan, Ka-ho, and 溫家豪. "Transition finite elements for mesh refinement in plane and plate bending analyses." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B29478546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Schubert, Svenja [Verfasser], and Thomas [Akademischer Betreuer] Rung. "Analysis of coupling techniques for overset-grid finite-volume methods / Svenja Schubert ; Betreuer: Thomas Rung." Hamburg : Universitätsbibliothek der Technischen Universität Hamburg-Harburg, 2019. http://d-nb.info/1198932945/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Garg, Ajay. "Automatic mesh generation /." Online version of thesis, 1990. http://hdl.handle.net/1850/11022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Radebe, Thandwefika. "Are solar home systems a more financially viable method of electrifying Ghana households?" Master's thesis, Faculty of Commerce, 2021. http://hdl.handle.net/11427/33001.

Full text
Abstract:
Africa still has the lowest electrification rates in the world with over 600 million people estimated to be living without access to electricity. What makes the challenge even greater for Africa is that the continent is so sparsely populated that building grid infrastructure is not viable in many cases. However, “pay-as-you-go” solar home systems have provided the continent with the opportunity to correct its electrification deficit. These innovations are not new and many of the costs of operating these systems have reached grid parity when one considers the Levelized Cost of Energy Model. However, these projects still fail to meet institutional investors' bankability criteria. The aim of this study is to try and understand whether solar home systems provide the investor with an opportunity to make a larger risk-adjusted return versus existing grid-based power station projects being considered on the continent. This study uses Ghana's recently built Kpone power station as a case study to complete this analysis. The study also seeks to assess what viability criteria is employed by a broad base of investors if they were to consider funding off-grid power. The study makes use of the Net Present Value model to compare the returns for Kpone and Zola Electric's Infinity solar home system. The study also conducts inductive qualitative analysis to try and ascertain what criteria is assessed for project viability and then builds a conceptual framework for assessing future projects. The study found that Kpone provided a better risk-adjusted return to that of Zola Electric's solar home system, largely because of Kpone's project finance structure reducing the risk of the investment. Our findings also show that investment ticket size, company track record and management track record are among the most highly considered criteria for investments into off-grid companies.
APA, Harvard, Vancouver, ISO, and other styles
43

Oumouni, Mestapha. "Analyse numérique de méthodes performantes pour les EDP stochastiques modélisant l'écoulement et le transport en milieux poreux." Phd thesis, Université Rennes 1, 2013. http://tel.archives-ouvertes.fr/tel-00904512.

Full text
Abstract:
Ce travail présente un développement et une analyse des approches numériques déterministes et probabilistes efficaces pour les équations aux dérivées partielles avec des coefficients et données aléatoires. On s'intéresse au problème d'écoulement stationnaire avec des données aléatoires. Une méthode de projection dans le cas unidimensionnel est présentée, permettant de calculer efficacement la moyenne de la solution. Nous utilisons la méthode de collocation anisotrope des grilles clairsemées. D'abord, un indicateur de l'erreur satisfaisant une borne supérieure de l'erreur est introduit, il permet de calculer les poids d'anisotropie de la méthode. Ensuite, nous démontrons une amélioration de l'erreur a priori de la méthode. Elle confirme l'efficacité de la méthode en comparaison avec celle de Monte Carlo et elle sera utilisée pour accélérer la méthode par l'extrapolation de Richardson. Nous présentons aussi une analyse numérique d'une méthode probabiliste pour quantifier la migration d'un contaminant dans un milieu aléatoire. Nous considérons le problème d'écoulement couplé avec l'équation d'advection-diffusion, où on s'intéresse à la moyenne de l'extension et de la dispersion du soluté. Le modèle d'écoulement est discrétisé par une méthode des éléments finis mixtes, la concentration du soluté est une densité d'une solution d'une équation différentielle stochastique, qui sera discrétisée par un schéma d'Euler. Enfin, nous présentons une formule explicite de la dispersion et des estimations de l'erreur a priori optimales.
APA, Harvard, Vancouver, ISO, and other styles
44

Bilhaj, Hussain. "Enseignement du français langue étrangère en Libye : analyse des méthodes appliquées au lycée et propositions didactiques." Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0163.

Full text
Abstract:
La présente recherche porte sur l'enseignement-apprentissage du FLE dans le cycle secondaire en Libye. Elle a pour visée de remettre en question le programme suivi, mais aussi les manuels scolaires et les matériels didactiques utilisés au sein des écoles secondaires. Compte tenu de la nature cruciale du rôle joué par les MS/MD dans la réussite ou l'échec de l'enseignement-apprentissage (Mackey, 1972, p. 193), et des conditions difficiles qu'a traversées et que traverse encore, de nos jours, l'enseignement du FLE dans le cycle secondaire, la remise en question de l'ensemble didactique et de son contenu est devenue une nécessité. En effet, notre étude de ter-rain démontre qu'il est indispensable et même urgent de vérifier l'applicabilité de ce dispositif didactique, son efficacité, mais aussi sa conformité au public destinataire, à ses besoins et aux objectifs et aux recommandations du ministère de l'Éducation. Pour étudier cette question, notre thèse définit, dans une première partie, le cadre théorique de cette recherche en abordant les prin-cipaux courants méthodologiques de l'EA des langues étrangères et les théories psychologiques de l'apprentissage. Cette partie traite également des méthodologies d'analyse des MS/MD. La deuxième partie porte, en premier lieu, sur une présentation générale du contexte historico-géographique de la Libye mais également sur le statut du FLE en Libye. Par la suite, nous fai-sons le point sur les MS/MD, avec une présentation des MS/MD (Oasis 1, 2, 3) utilisé de 2007 à 2014. Puis, nous réalisons une analyse comparative de nature contrastive des deux méthodes de FLE : Le Nouveau Pixel 1 (Favret : 2016) et Le français pour la Libye/Pixel 1 (Favret : 2019). Enfin, nous présentons différentes pistes didactico-pédagogiques et méthodologiques, en nous fondant sur les résultats des analyses effectuées
This research focuses on the teaching-learning (EA) French as a foreign language (FLE) in sec-ondary school in Libya. It aims to question the program followed, but also the textbooks and teaching materials used in secondary schools. Given the critical nature of the role played by the MS / MD in the success or failure of EA (Mackey, 1972: 193), and the difficult conditions that the teaching of FLE in secondary school has gone through and still goes through today, ques-tioning the teaching set and its content has become a necessity. Indeed, our field study shows that it is essential and even urgent to verify the applicability of this didactic device, its effective-ness, but also its compliance with the intended audience, its needs and the objectives and rec-ommendations of the Ministry of Education. To study this question, our thesis defines, in a first part, the theoretical framework of this research by addressing the main methodological currents of the EA of foreign languages and the psychological theories of learning. This part also deals with methodologies of MS / MD analysis. The second part concerns, first, a general presenta-tion of the historical and geographical context of Libya but also on the status of FLE in Libya. Subsequently, we take stock of the MS / MD, with a presentation of the MS / MD (Oasis 1, 2, 3) used from 2007 until 2014. Then, we carry out a comparative analysis of a contrastive nature of the two methods of FLE: Le Nouveau Pixel 1 (Favret: 2016) and Le français pour la Libye/Pixel 1 (Favret: 2019). Finally, we present various didactico-pedagogical and methodolog-ical avenues, based on the results of the analyzes carried out
APA, Harvard, Vancouver, ISO, and other styles
45

Eriksson, Olle. "Sensitivity and Uncertainty Analysis Methods : with Applications to a Road Traffic Emission Model." Doctoral thesis, Linköping : Linköpings universitet, Deparment of Mathematics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Tilki, Susan. "A mixed methods exploration of the sense of self among people diagnosed with Asperger syndrome in adulthood." Thesis, University of Hertfordshire, 2015. http://hdl.handle.net/2299/15503.

Full text
Abstract:
Asperger syndrome is a relatively recent diagnostic classification. Several factors, including a high prevalence of mental illness, mean receiving a diagnosis in adulthood is a very unique experience but remarkably there is little literature about the impact on individuals. Instead the dominance of the medical/psychiatric paradigm pervades and limits understanding and possibilities. The main implication is a lack of clarity about what support services are needed and effective, and as such the needs of this population are often overlooked. This is the first study to explore the sense of self among a sample of males and females diagnosed with Asperger syndrome in adulthood using social constructionist and constructivist ideas. It was interested in whether personal construal of the self before diagnosis and self after diagnosis were differentiated. Given the importance in the development of self-concept of discriminations between the self and others, the research also sought to explore how people diagnosed with Asperger syndrome in adulthood construe other people with and without Asperger syndrome. Using the repertory grid and other techniques from Personal Construct Psychology (Kelly, 1955) in combination with a semi-structured interview, this study presents a novel exploration of idiosyncrasies and commonalities across a demographically diverse sample of eight participants. An extended analysis of a unique subsample of women diagnosed aged 50 years and over was undertaken. Both cognitively complex and simple construct systems were found across the sample. Findings indicated the self before diagnosis was construed critically and was more elaborated than the self after diagnosis. Several participants had a reduced sense of self following diagnosis. The diagnosis offered an explanation of symptoms but for some participants these symptoms were a way of life and accommodating the new label with the existing view of self posed challenges. An overarching and striking theme was the sense of difference felt by participants before and after diagnosis. This study offers a fresh insight into a virtually unexplored population which, through dissemination, may influence the way clinical psychologists and other practitioners work to support adults diagnosed with Asperger syndrome. Recommendations for clinical practice included approaches that target the need for individuality, commonality and sociality, and should be gender-specific where possible. Such approaches might elaborate multiple aspects of self, the diagnosis and related dilemmas. They should support people to widen their perceptual field to alternative ways of construing and explore change. The mixed method approach was assessed to be a strength of the study and a number of recommendations for future research are presented.
APA, Harvard, Vancouver, ISO, and other styles
47

Dunkelberg, John S. "FEM mesh mapping to a SIMD machine using genetic algorithms." Link to electronic version, 2001. http://www.wpi.edu/Pubs/ETD/Available/etd-0104101-102839/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Murphy, Patrick Mark. "A Method for Determining the Cost of Highly Available Electricity Considering Grid Unavailability| A case study and applied analysis in Uganda." Thesis, The George Washington University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10006255.

Full text
Abstract:

People in developing countries have limited access to electricity, especially in rural and remote areas. As electricity consumption is correlated with economic development, the lack of access to electricity is a key obstacle to achieving economic growth. Techniques for improving access to electricity include grid extension and distributed energy resources (DER), but analyzing the tradeoff between grid extension and distributed generation requires a better understanding of the impacts of grid unreliability. In this dissertation, a new method for simulating unreliable electric grids is presented. The method is then used to determine the cost of reliable electricity in areas where the grid is unreliable. The method is extended in order to calculate the distance at which grid extension of an unreliable grid and DER have the same cost, a point known as the economic distance limit (EDL). Finally, the method is applied to analyze the impact of grid sell-back prices on electricity cost and EDL. The methods are demonstrated for a village in Uganda, but hold universally. Results indicate that demand for increased availability increases cost, but now the cost per unit of availability can be calculated and used in decision making. Similarly, with fixed demand availability, we see increasing costs as grid availability decreases. This also results in EDL decreasing as grid availability decreases, as there is little value in extending a grid that functions poorly. From the simulation results, linear approximations of some of the key outputs are developed and are demonstrated to be consistent with results. These provide a method for rapidly calculating electricity costs and EDL without the need to perform numerous simulations. Simple calculations for cost of highly available electricity will enable more informed choices for grid-tied and stand-alone electricity generation for system operators and for policy makers.

APA, Harvard, Vancouver, ISO, and other styles
49

GONZáLEZ, GóMEZ Mauricio. "Jeux stochastiques sur des graphes avec des applications à l’optimisation des smart-grids." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLN064.

Full text
Abstract:
Au sein de la communauté scientifique, l’étude des réseaux d’énergie suscite un vif intérêt puisque ces infrastructures deviennent de plus en plus importantes dans notre monde moderne. Des outils mathématiques avancés et complexes sont nécessaires afin de bien concevoir et mettre en œuvre ces réseaux. La précision et l’optimalité sont deux caractéristiques essentielles pour leur conception. Bien que ces deux aspects soient au cœur des méthodes formelles, leur application effective reste largement inexplorée aux réseaux d’énergie. Cela motive fortement le travail développé dans cette thèse. Un accent particulier est placé sur le problème général de planification de la consommation d'énergie. Il s'agit d'un scénario dans lequel les consommateurs ont besoin d’une certaine quantité d’énergie et souhaitent que cette demande soit satisfaite dans une période spécifique (e.g., un Véhicule Électrique (VE) doit être rechargé dans une fenêtre de temps définie par son propriétaire). Par conséquent, chaque consommateur doit choisir une puissance de consommation à chaque instant (par un système informatisé), afin que l'énergie finale accumulée atteigne un niveau souhaité. La manière dont les puissances sont choisies est obtenue par l’application d’une « stratégie » qui prend en compte à chaque instant les informations pertinentes d'un consommateur afin de choisir un niveau de consommation approprié (e.g., l’énergie accumulée pour recharge le VE). Les stratégies peuvent être conçues selon une approche centralisée (dans laquelle il n'y a qu'un seul décideur qui contrôle toutes les stratégies des consommateurs) ou décentralisée (dans laquelle il y a plusieurs contrôleurs, chacun représentant un consommateur). Nous analysons ces deux scénarios dans cette thèse en utilisant des méthodes formelles, la théorie des jeux et l’optimisation. Plus précisément, nous modélisons le problème de planification de la consommation d'énergie à l'aide des processus de décision de Markov et des jeux stochastiques. Par exemple, l’environnement du système électrique, à savoir : la partie non contrôlable de la consommation totale (e.g., la consommation hors VEs), peut être représentée par un modèle stochastique. La partie contrôlable de la consommation totale peut s’adapter aux contraintes du réseau de distribution (e.g., pour ne pas dépasser la température maximale d'arrêt du transformateur électrique) et à leurs objectifs (e.g., tous les VEs soient rechargés). Cela peut être vu comme un système stochastique avec des multi-objectifs sous contraintes. Par conséquent, cette thèse concerne également une contribution aux modèles avec des objectives multicritères, ce qui permet de poursuivre plusieurs objectifs à la fois et une conception des stratégies qui sont fonctionnellement correctes et robustes aux changements de l'environnement
Within the research community, there is a great interest in exploring many applications of energy grids since these become more and more important in our modern world. To properly design and implement these networks, advanced and complex mathematical tools are necessary. Two key features for their design are correctness and optimality. While these last two properties are in the core of formal methods, their effective application to energy networks remains largely unexploited. This constitutes one strong motivation for the work developed in this thesis. A special emphasis is made on the generic problem of scheduling power consumption. This is a scenario in which the consumers have a certain energy demand and want to have this demand fulfilled before a set deadline (e.g., an Electric Vehicle (EV) has to be recharged within a given time window set by the EV owner). Therefore, each consumer has to choose at each time the consumption power (by a computerized system) so that the final accumulated energy reaches a desired level. The way in which the power levels are chosen is according to a ``strategy’’ mapping at any time the relevant information of a consumer (e.g., the current accumulated energy for EV-charging) to a suitable power consumption level. The design of such strategies may be either centralized (in which there is a single decision-maker controlling all strategies of consumers), or decentralized (in which there are several decision-makers, each of them representing a consumer). We analyze both scenarios by exploiting ideas originating from formal methods, game theory and optimization. More specifically, the power consumption scheduling problem can be modelled using Markov decision processes and stochastic games. For instance, probabilities provide a way to model the environment of the electrical system, namely: the noncontrollable part of the total consumption (e.g., the non-EV consumption). The controllable consumption can be adapted to the constraints of the distribution network (e.g., to the maximum shutdown temperature of the electrical transformer), and to their objectives (e.g., all EVs are recharged). At first glance, this can be seen as a stochastic system with multi-constraints objectives. Therefore, the contributions of this thesis also concern the area of multi-criteria objective models, which allows one to pursue several objectives at a time such as having strategy designs functionally correct and robust against changes of the environment
APA, Harvard, Vancouver, ISO, and other styles
50

Ranaboldo, Matteo. "Design of off-grid renewable energy community electrification projects : analysis of micro-scale resource variations and development of optimization methods." Doctoral thesis, Universitat Politècnica de Catalunya, 2015. http://hdl.handle.net/10803/286287.

Full text
Abstract:
Projects relying on renewable energies are a suitable and sustainable option to electrify isolated communities autonomously. These systems produce electricity in a clean and environmentally respectful way and their cost is often lower than national grid extension. Hybrid systems that combine different energy resources (wind and solar) and distribution through microgrids are the most efficient design configurations. When considering hybrid systems and microgrids, the design of rural electrification projects is referred to as the AVEREMS problem. The optimization of the AVEREMS problem is a complex task that requires the use of specific support tools. In this context, some shortcomings have been encountered in the current state-of-the-art in the design of off-grid electrification projects based on renewable energies, in specific: the lack of knowledge about detailed wind resource studies for this kind of projects and the need of procedures for solving the AVEREMS problem considering generation also far from the demand in order to take advantage of best resource areas. The main objective of this thesis is to tackle these limitations by means of: 1) defining a method for detailed wind resource assessment in rural electrification projects, 2) the development and 3) application of procedures to solve the AVEREMS problem considering micro-scale resource variations and generation in every point of a community (being a demand or a no-demand point). Firstly, a method for detailed wind resource assessment is presented relying on the use of micro-scale wind flow models: the method is validated in two mountainous communities and applied for the design of a real project in Cape Verde. Then, different solving procedures are developed: first some indicators are proposed to support algorithms¿ design, and then two procedures (a deterministic heuristic and a metaheuristic algorithm) are presented in order to solve the AVEREMS problem. Different algorithm versions are analyzed in order to select the ones that give best results. The proposed algorithms, besides considering generation in every point of a certain area (being a demand or a no-demand point), enhance the performance of the currently available tools. Finally, the design of a real electrification project in Nicaragua is carried out including a micro-scale wind resource assessment and the application of the developed metaheuristic procedure for design optimization. The wind resource assessment method and the solving procedures developed in this Thesis can be easily applied to support the design of off-grid rural electrification projects with renewable energies. Their utilization will improve projects efficiency and sustainability reducing some of the technical issues that still limit their implementation in isolated communities.
Los proyectos de electrificación basados en energías renovables han demostrado ser una opción adecuada y sostenible para abastecer comunidades aisladas de forma autónoma. Estos sistemas producen energía de manera limpia y respetuosa del medio ambiente y su coste es a menudo inferior al de extender la red eléctrica nacional. Las configuraciones de diseño más fiables y eficientes utilizan sistemas híbridos que combinan varios recursos (eólico y solar) y distribución mediante microrredes. El diseño de proyectos de electrificación rural considerando sistemas híbridos y microrredes se ha definido como el problema AVEREMS. La optimización del problema AVEREMS es una tarea compleja que requiere el uso de herramientas de soporte. Actualmente, el proceso de diseño de proyectos de electrificación basados en energía renovables presenta algunas limitaciones. Entre ellas, destacan la falta de conocimientos sobre estudios del recurso eólico y la necesidad de procedimientos para resolver el problema AVEREMS incluyendo la generación alejada de los puntos de consumo para aprovechar las áreas de mayor potencial. El principal objetivo de esta tesis es abordar dichas limitaciones, mediante: 1) la definición de un método para evaluar en detalle el recurso eólico en proyectos de electrificación rural; 2) el desarrollo y 3) la implementación de procedimientos para resolver el problema AVEREMS considerando la variación del recurso a micro-escala y generación en todos los puntos (sean estos de consumo o de no-consumo) de una determinada área. Primero se presenta un método para realizar estudios del recurso eólico mediante el uso de modelos de flujo de viento a micro-escala. El método se valida en dos comunidades montañosas y se aplica para el diseño de proyectos reales en Cabo Verde. Sucesivamente, se desarrollan diferentes procedimientos resolutivos: primero se definen unos indicadores de soporte al diseño, y sucesivamente se presentan dos algoritmos (uno heurístico y otro meta-heurístico) para resolver el problema AVEREMS. Se analizan diferentes versiones de los algoritmos para finalmente seleccionar las que obtienen los mejores resultados. Además de considerar generación en todos los puntos (de consumo o de no-consumo) de una cierta área, los algoritmos propuestos mejoran considerablemente las prestaciones de los métodos disponibles actualmente. Finalmente, se analiza el diseño de un proyecto de electrificación en una comunidad rural en Nicaragua incluyendo la evaluación de recurso a micro-escala y la aplicación del algoritmo meta-heurístico para la optimización del diseño. La metodología para la evaluación del recurso eólico y los algoritmos resolutivos desarrollados en esta tesis se pueden fácilmente aplicar para suportar el diseño de proyectos de electrificación rural con energías renovables. Su utilización permitirá mejorar la eficiencia y sostenibilidad de estos proyectos reduciendo algunos de los problemas técnicos que limitan su implementación en comunidades aisladas
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography