Journal articles on the topic 'Methane Reforming Catalysts'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Methane Reforming Catalysts.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Manan, Wan Nabilah, Wan Nor Roslam Wan Isahak, and Zahira Yaakob. "CeO2-Based Heterogeneous Catalysts in Dry Reforming Methane and Steam Reforming Methane: A Short Review." Catalysts 12, no. 5 (April 19, 2022): 452. http://dx.doi.org/10.3390/catal12050452.
Full textJiang, Hong Tao, Hui Quan Li, and Hao Fan. "Tri-Reforming of Methane over Pt Modified Ni/MgO Catalysts under Atmospheric Pressure – Thermal Distribution in the Catalyst Bed." Applied Mechanics and Materials 252 (December 2012): 255–58. http://dx.doi.org/10.4028/www.scientific.net/amm.252.255.
Full textMeloni, Eugenio, Marco Martino, and Vincenzo Palma. "A Short Review on Ni Based Catalysts and Related Engineering Issues for Methane Steam Reforming." Catalysts 10, no. 3 (March 22, 2020): 352. http://dx.doi.org/10.3390/catal10030352.
Full textTungatarova, Svetlana, Galina Xanthopoulou, George Vekinis, Konstantinos Karanasios, Tolkyn Baizhumanova, Manapkhan Zhumabek, and Marzhan Sadenova. "Ni-Al Self-Propagating High-Temperature Synthesis Catalysts in Dry Reforming of Methane to Hydrogen-Enriched Fuel Mixtures." Catalysts 12, no. 10 (October 18, 2022): 1270. http://dx.doi.org/10.3390/catal12101270.
Full textYu, Xiaopeng, Fubao Zhang, and Wei Chu. "Effect of a second metal (Co, Cu, Mn or Zr) on nickel catalysts derived from hydrotalcites for the carbon dioxide reforming of methane." RSC Advances 6, no. 74 (2016): 70537–46. http://dx.doi.org/10.1039/c6ra12335j.
Full textCho, Yohei, Akira Yamaguchi, and Masahiro Miyauchi. "Photocatalytic Methane Reforming: Recent Advances." Catalysts 11, no. 1 (December 25, 2020): 18. http://dx.doi.org/10.3390/catal11010018.
Full textOsaki, Toshihiko, and Toshiaki Mori. "The Catalysis of NiO-Al2O3 Aerogels for the Methane Reforming by Carbon Dioxide." Advances in Science and Technology 45 (October 2006): 2137–42. http://dx.doi.org/10.4028/www.scientific.net/ast.45.2137.
Full textSivasangar, S., and Yun Hin Taufiq-Yap. "The Effect of CeO2 and Fe2O3 Dopants on Ni/ Alumina Based Catalyst for Dry Reforming of Methane to Hydrogen." Advanced Materials Research 364 (October 2011): 519–23. http://dx.doi.org/10.4028/www.scientific.net/amr.364.519.
Full textGarbarino, Gabriella, Federico Pugliese, Tullio Cavattoni, Guido Busca, and Paola Costamagna. "A Study on CO2 Methanation and Steam Methane Reforming over Commercial Ni/Calcium Aluminate Catalysts." Energies 13, no. 11 (June 1, 2020): 2792. http://dx.doi.org/10.3390/en13112792.
Full textO'Malley, Alexander J., Stewart F. Parker, and C. Richard A. Catlow. "Neutron spectroscopy as a tool in catalytic science." Chemical Communications 53, no. 90 (2017): 12164–76. http://dx.doi.org/10.1039/c7cc05982e.
Full textGomes, Ruan, Denilson Costa, Roberto Junior, Milena Santos, Cristiane Rodella, Roger Fréty, Alessandra Beretta, and Soraia Brandão. "Dry Reforming of Methane over NiLa-Based Catalysts: Influence of Synthesis Method and Ba Addition on Catalytic Properties and Stability." Catalysts 9, no. 4 (March 30, 2019): 313. http://dx.doi.org/10.3390/catal9040313.
Full textDedov, A. G., A. S. Loktev, V. A. Arkhipova, M. A. Bykov, A. A. Sadovnikov, K. A. Cherednichenko, and G. A. Shandryuk. "A New Approach to the Preparation of Stable Oxide-Composite Cobalt–Samarium Catalysts for the Production of Hydrogen by Dry Reforming of Methane." Processes 11, no. 8 (July 31, 2023): 2296. http://dx.doi.org/10.3390/pr11082296.
Full textItkulova, Sholpan S. "Carbon Dioxide Reforming of Methane over Zeolite-containing Catalysts." Eurasian Chemico-Technological Journal 11, no. 3 (April 4, 2016): 231. http://dx.doi.org/10.18321/ectj285.
Full textRavil Mustafin and Igor Karpilov. "Effect of the Catalyst Shapes and the Packed Bed Structure on the Efficiency of Steam Methane Reforming." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 104, no. 1 (April 3, 2023): 124–40. http://dx.doi.org/10.37934/arfmts.104.1.124140.
Full textImada, Syota, Xiaobo Peng, Zexing Cai, Abdillah Sani Bin Mohd Najib, Masahiro Miyauchi, Hideki Abe, and Takeshi Fujita. "NiYAl-Derived Nanoporous Catalysts for Dry Reforming of Methane." Materials 13, no. 9 (April 27, 2020): 2044. http://dx.doi.org/10.3390/ma13092044.
Full textKuang, Xiao-Gang, Li Zhang, Yan-Lun Ren, and Xing-Wei Wang. "Process intensification of hydrogen production by steam reforming of methane over structured channel packing catalysts." E3S Web of Conferences 385 (2023): 02018. http://dx.doi.org/10.1051/e3sconf/202338502018.
Full textHu, Yun Hang, and Eli Ruckenstein. "Comment on “Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO”." Science 368, no. 6492 (May 14, 2020): eabb5459. http://dx.doi.org/10.1126/science.abb5459.
Full textZhang, Chengyang, Renkun Zhang, Hui Liu, Qinhong Wei, Dandan Gong, Liuye Mo, Hengcong Tao, Sha Cui, and Luhui Wang. "One-Step Synthesis of Highly Dispersed and Stable Ni Nanoparticles Confined by CeO2 on SiO2 for Dry Reforming of Methane." Energies 13, no. 22 (November 15, 2020): 5956. http://dx.doi.org/10.3390/en13225956.
Full textSaavedra Lopez, Johnny, Vanessa Lebarbier Dagle, Chinmay A. Deshmane, Libor Kovarik, Robert S. Wegeng, and Robert A. Dagle. "Methane and Ethane Steam Reforming over MgAl2O4-Supported Rh and Ir Catalysts: Catalytic Implications for Natural Gas Reforming Application." Catalysts 9, no. 10 (September 25, 2019): 801. http://dx.doi.org/10.3390/catal9100801.
Full textKhan, Wasim Ullah, Mohammad Rizwan Khan, Rosa Busquets, and Naushad Ahmad. "Contribution of Oxide Supports in Nickel-Based Catalytic Elimination of Greenhouse Gases and Generation of Syngas." Energies 14, no. 21 (November 4, 2021): 7324. http://dx.doi.org/10.3390/en14217324.
Full textYuan, Bo, Tao Zhu, Yiwei Han, Xueli Zhang, Meidan Wang, and Chen Li. "Deactivation Mechanism and Anti-Deactivation Measures of Metal Catalyst in the Dry Reforming of Methane: A Review." Atmosphere 14, no. 5 (April 23, 2023): 770. http://dx.doi.org/10.3390/atmos14050770.
Full textHua, Wei, Yong Chuan Dai, and Hong Tao Jiang. "Noble Metal Catalysts for Methane Reforming in Material Application Engineering." Advanced Materials Research 648 (January 2013): 83–87. http://dx.doi.org/10.4028/www.scientific.net/amr.648.83.
Full textLanre, Mahmud S., Ahmed E. Abasaeed, Anis H. Fakeeha, Ahmed A. Ibrahim, Abdulrahman S. Al-Awadi, Abdulrahman bin Jumah, Fahad S. Al-Mubaddel, and Ahmed S. Al-Fatesh. "Lanthanum–Cerium-Modified Nickel Catalysts for Dry Reforming of Methane." Catalysts 12, no. 7 (June 29, 2022): 715. http://dx.doi.org/10.3390/catal12070715.
Full textMacario, A., P. Frontera, S. Candamano, F. Crea, P. De Luca, and P. L. Antonucci. "Nanostructured Catalysts for Dry-Reforming of Methane." Journal of Nanoscience and Nanotechnology 19, no. 6 (June 1, 2019): 3135–47. http://dx.doi.org/10.1166/jnn.2019.16651.
Full textWysocka, Izabela, Jan Hupka, and Andrzej Rogala. "Catalytic Activity of Nickel and Ruthenium–Nickel Catalysts Supported on SiO2, ZrO2, Al2O3, and MgAl2O4 in a Dry Reforming Process." Catalysts 9, no. 6 (June 17, 2019): 540. http://dx.doi.org/10.3390/catal9060540.
Full textAsencios, Yvan J. O., Kariny F. M. Elias, Andressa de Zawadzki, and Elisabete M. Assaf. "Synthesis-Gas Production from Methane over Ni/CeO2 Catalysts Synthesized by Co-Precipitation Method in Different Solvents." Methane 1, no. 2 (March 23, 2022): 72–81. http://dx.doi.org/10.3390/methane1020007.
Full textMierczynski, Pawel, Natalia Stępińska, Magdalena Mosinska, Karolina Chalupka, Jadwiga Albinska, Waldemar Maniukiewicz, Jacek Rogowski, Magdalena Nowosielska, and Malgorzata I. Szynkowska. "Hydrogen Production via the Oxy-Steam Reforming of LNG or Methane on Ni Catalysts." Catalysts 10, no. 3 (March 20, 2020): 346. http://dx.doi.org/10.3390/catal10030346.
Full textGonçalves, Juliana F., and Mariana M. V. M. Souza. "Ni/x%Nb2O5/Al2O3 Catalysts Prepared via Coprecipitation-Wet Impregnation Method for Methane Steam Reforming." Current Catalysis 9, no. 1 (September 10, 2020): 80–89. http://dx.doi.org/10.2174/2211544708666190423130340.
Full textSellam, Djamila, Kahina Ikkour, Sadia Dekkar, Hassiba Messaoudi, Taous Belaid, and Anne Cécile Roger. "CO2 Reforming of Methane over LaNiO3 Perovskite Supported Catalysts: Influence of Silica Support." Bulletin of Chemical Reaction Engineering & Catalysis 14, no. 3 (December 1, 2019): 568. http://dx.doi.org/10.9767/bcrec.14.3.3472.568-578.
Full textAzeem, Subhan, Rabya Aslam, and Mahmood Saleem. "Dry Reforming of Methane with Mesoporous Ni/ZrO2 Catalyst." International Journal of Chemical Engineering 2022 (December 16, 2022): 1–13. http://dx.doi.org/10.1155/2022/3139696.
Full textFasolini, Andrea, Silvia Ruggieri, Cristina Femoni, and Francesco Basile. "Highly Active Catalysts Based on the Rh4(CO)12 Cluster Supported on Ce0.5Zr0.5 and Zr Oxides for Low-Temperature Methane Steam Reforming." Catalysts 9, no. 10 (September 25, 2019): 800. http://dx.doi.org/10.3390/catal9100800.
Full textSaad, M. A., N. H. Abdurahman, Rosli Mohd Yunus, Mohammed Kamil, and Omar I. Awad. "An Overview of Reforming Technologies and the Effect of Parameters on the Catalytic Performance of Mesoporous Silica/Alumina Supported Nickel Catalysts for Syngas Production by Methane Dry Reforming." Recent Innovations in Chemical Engineering (Formerly Recent Patents on Chemical Engineering) 13, no. 4 (June 2, 2020): 303–22. http://dx.doi.org/10.2174/2405520413666200313130420.
Full textRakib, Abdelmajid, Cédric Gennequin, Thierry Dhainaut, Sylvain Ringot, Antoine Aboukaïs, and Edmond Abi-Aad. "Promoting Effect of CeO2 Addition on Activity and Catalytic Stability in Steam Reforming of Methane over Ni/Al2O3." Advanced Materials Research 324 (August 2011): 153–56. http://dx.doi.org/10.4028/www.scientific.net/amr.324.153.
Full textA. Ibrahim, Ahmed, Ashraf Amin, Ahmed S. Al-Fatesh, Nadavala Siva Kumar, Samsudeen Olajide Kasim, Abdulrhman S. Al-Awadi, Ahmed M. El-Toni, Ahmed Elhag Abasaeed, and Anis H. Fakeeha. "Nanosized Ni/SBA-15 Catalysts for CO2 Reforming of CH4." Applied Sciences 9, no. 9 (May 10, 2019): 1926. http://dx.doi.org/10.3390/app9091926.
Full textHossain, M. Anwar, Bamidele Victor Ayodele, Chin Kui Cheng, and Maksudur R. Khan. "Syngas Production from Catalytic CO2 Reforming of CH4 over CaFe2O4 Supported Ni and Co Catalysts: Full Factorial Design Screening." Bulletin of Chemical Reaction Engineering & Catalysis 13, no. 1 (April 2, 2018): 57. http://dx.doi.org/10.9767/bcrec.13.1.1197.57-73.
Full textSingh, Satyapaul A., Yaddanapudi Varun, Priyanka Goyal, I. Sreedhar, and Giridhar Madras. "Feed Effects on Water–Gas Shift Activity of M/Co3O4-ZrO2 (M = Pt, Pd, and Ru) and Potassium Role in Methane Suppression." Catalysts 13, no. 5 (May 4, 2023): 838. http://dx.doi.org/10.3390/catal13050838.
Full textYang, Hui, Hui Wang, Lisha Wei, Yong Yang, Yong-Wang Li, Xiao-dong Wen, and Haijun Jiao. "Simple mechanisms of CH4 reforming with CO2 and H2O on a supported Ni/ZrO2 catalyst." Physical Chemistry Chemical Physics 23, no. 46 (2021): 26392–400. http://dx.doi.org/10.1039/d1cp04048k.
Full textFakeeha, A. H., A. S. Al–Fatesh, and A. E. Abasaeed. "Ni/Y- Zeolite Catalysts for Carbon Dioxide Reforming of Methane." Advanced Materials Research 550-553 (July 2012): 325–28. http://dx.doi.org/10.4028/www.scientific.net/amr.550-553.325.
Full textEwbank, Jessica L., Libor Kovarik, Christian C. Kenvin, and Carsten Sievers. "Effect of preparation methods on the performance of Co/Al2O3 catalysts for dry reforming of methane." Green Chem. 16, no. 2 (2014): 885–96. http://dx.doi.org/10.1039/c3gc41782d.
Full textSamojeden, Bogdan, Marta Kamienowska, Armando Izquierdo Colorado, Maria Elena Galvez, Ilona Kolebuk, Monika Motak, and Patrick Da Costa. "Novel Nickel- and Magnesium-Modified Cenospheres as Catalysts for Dry Reforming of Methane at Moderate Temperatures." Catalysts 9, no. 12 (December 14, 2019): 1066. http://dx.doi.org/10.3390/catal9121066.
Full textLyu, Linghui, Yunxing Han, Qingxiang Ma, Shengene Makpal, Jian Sun, Xinhua Gao, Jianli Zhang, Hui Fan, and Tian-Sheng Zhao. "Fabrication of Ni-Based Bimodal Porous Catalyst for Dry Reforming of Methane." Catalysts 10, no. 10 (October 20, 2020): 1220. http://dx.doi.org/10.3390/catal10101220.
Full textShi, Yu, Shiwei Wang, Yiming Li, Fan Yang, Hongbo Yu, Yuting Chu, Tong Li, and Hongfeng Yin. "Improving Anti-Coking Properties of Ni/Al2O3 Catalysts via Synergistic Effect of Metallic Nickel and Nickel Phosphides in Dry Methane Reforming." Materials 15, no. 9 (April 22, 2022): 3044. http://dx.doi.org/10.3390/ma15093044.
Full textAbdelsadek, Z., S. Gonzalez-Cortes, O. Cherifi, D. Halliche, and PJ Masset. "Reduction effect on the catalytic performances of NiAl-SPC takovite catalysts in syngas synthesis process." IOP Conference Series: Earth and Environmental Science 1167, no. 1 (May 1, 2023): 012031. http://dx.doi.org/10.1088/1755-1315/1167/1/012031.
Full textYakovenko, R. E., V. B. Ilyin, A. P. Savostyanov, I. N. Zubkov, A. V. Dulnev, and O. A. Semyonov. "Conversion of Liquefied Hydrocarbon Gases on Commercial Nickel Catalysts." Kataliz v promyshlennosti 19, no. 6 (November 14, 2019): 455–64. http://dx.doi.org/10.18412/1816-0387-2019-6-455-464.
Full textAbiev, Rufat Sh, Dmitry A. Sladkovskiy, Kirill V. Semikin, Dmitry Yu Murzin, and Evgeny V. Rebrov. "Non-Thermal Plasma for Process and Energy Intensification in Dry Reforming of Methane." Catalysts 10, no. 11 (November 22, 2020): 1358. http://dx.doi.org/10.3390/catal10111358.
Full textLee, Jong-Heon, Seongbin Jo, Tae-Young Kim, Jin-Hyeok Woo, Yeji Lee, Min-Seok Kim, Hye-Ok Park, Soo-Chool Lee, and Jae-Chang Kim. "Preparation of Eggshell-Type Ru/Al2O3 Catalysts for Hydrogen Production Using Steam-Methane Reforming on PEMFC." Catalysts 11, no. 8 (August 9, 2021): 951. http://dx.doi.org/10.3390/catal11080951.
Full textAraújo, L. C. B. de, D. M. de A. Melo, M. A. de F. Melo, J. M. de F. Barros, R. M. Braga, C. de C. Costa, and G. Rodrigues. "Nickel catalyst supported on magnesium and zinc aluminates (MgAl2O4 and ZnAl2O4) spinels for dry reforming of methane." Cerâmica 63, no. 365 (March 2017): 77–81. http://dx.doi.org/10.1590/0366-69132017633652056.
Full textWei, Ning, Jia Zhang, Hexiang Zhong, Liwei Pan, Zeyu Wang, Juan Wang, and Yi Zhou. "Methane Steam Reforming Over NiO/CexZryO2-Sil-1 Catalyst Prepared by In-Situ Self-Assembly." Journal of Nanoscience and Nanotechnology 19, no. 11 (November 1, 2019): 7416–20. http://dx.doi.org/10.1166/jnn.2019.16620.
Full textRusdan, Nisa Afiqah, Sharifah Najiha Timmiati, Wan Nor Roslam Wan Isahak, Zahira Yaakob, Kean Long Lim, and Dalilah Khaidar. "Recent Application of Core-Shell Nanostructured Catalysts for CO2 Thermocatalytic Conversion Processes." Nanomaterials 12, no. 21 (November 2, 2022): 3877. http://dx.doi.org/10.3390/nano12213877.
Full textMundhwa, Mayur, and Christopher P. Thurgood. "Improved performance of a catalytic plate reactor coated with distributed layers of reforming and combustion catalysts for hydrogen production." Reaction Chemistry & Engineering 3, no. 4 (2018): 487–514. http://dx.doi.org/10.1039/c8re00013a.
Full text