Journal articles on the topic 'Methane emissions'

To see the other types of publications on this topic, follow the link: Methane emissions.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Methane emissions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

He, Jian, Vaishali Naik, Larry W. Horowitz, Ed Dlugokencky, and Kirk Thoning. "Investigation of the global methane budget over 1980–2017 using GFDL-AM4.1." Atmospheric Chemistry and Physics 20, no. 2 (January 23, 2020): 805–27. http://dx.doi.org/10.5194/acp-20-805-2020.

Full text
Abstract:
Abstract. Changes in atmospheric methane abundance have implications for both chemistry and climate as methane is both a strong greenhouse gas and an important precursor for tropospheric ozone. A better understanding of the drivers of trends and variability in methane abundance over the recent past is therefore critical for building confidence in projections of future methane levels. In this work, the representation of methane in the atmospheric chemistry model AM4.1 is improved by optimizing total methane emissions (to an annual mean of 580±34 Tg yr−1) to match surface observations over 1980–2017. The simulations with optimized global emissions are in general able to capture the observed trend, variability, seasonal cycle, and latitudinal gradient of methane. Simulations with different emission adjustments suggest that increases in methane emissions (mainly from agriculture, energy, and waste sectors) balanced by increases in methane sinks (mainly due to increases in OH levels) lead to methane stabilization (with an imbalance of 5 Tg yr−1) during 1999–2006 and that increases in methane emissions (mainly from agriculture, energy, and waste sectors) combined with little change in sinks (despite small decreases in OH levels) during 2007–2012 lead to renewed growth in methane (with an imbalance of 14 Tg yr−1 for 2007–2017). Compared to 1999–2006, both methane emissions and sinks are greater (by 31 and 22 Tg yr−1, respectively) during 2007–2017. Our tagged tracer analysis indicates that anthropogenic sources (such as agriculture, energy, and waste sectors) are more likely major contributors to the renewed growth in methane after 2006. A sharp increase in wetland emissions (a likely scenario) with a concomitant sharp decrease in anthropogenic emissions (a less likely scenario), would be required starting in 2006 to drive the methane growth by wetland tracer. Simulations with varying OH levels indicate that a 1 % change in OH levels could lead to an annual mean difference of ∼4 Tg yr−1 in the optimized emissions and a 0.08-year difference in the estimated tropospheric methane lifetime. Continued increases in methane emissions along with decreases in tropospheric OH concentrations during 2008–2015 prolong methane's lifetime and therefore amplify the response of methane concentrations to emission changes. Uncertainties still exist in the partitioning of emissions among individual sources and regions.
APA, Harvard, Vancouver, ISO, and other styles
2

Oda, Masato, and Nguyen Huu Chiem. "Rice cultivation reduces methane emissions in high-emitting paddies." F1000Research 7 (August 29, 2018): 1349. http://dx.doi.org/10.12688/f1000research.15859.1.

Full text
Abstract:
Background: Rice is typically understood to enhance methane emissions from paddy fields. However, rice actually has two separate functions related to methane: i) emission enhancement, such as by providing emission pathways (aerenchyma) and methanogenetic substrates; and ii) emission suppression by providing oxygen pathways, which suppress methanogenesis or enhance methane oxidation. The overall role of rice is thus determined by the balance between its enhancing and suppressing functions. Although existing studies have suggested that rice enhances total methane emissions, we aimed to demonstrate that the balance between rice’s emitting and suppressing functions changes according to overall methane emission levels, which have quite a large range (16‍–500 kg methane ha−1 crop−1). Methods: Using PVC chambers, we compared methane emissions emitted by rice paddy fields with and without rice plants in rice fields in the Mekong Delta, Vietnam. Samples were analyzed by gas chromatograph. Results: We found high overall methane emission levels and our results indicated that rice in fact suppressed methane emissions under these conditions. Emission reductions increased with the growth of rice, up to 60% of emission rate at the maximum tillering stage, then decreased to 20% after the heading stage, and finally recovering back to 60%. Discussion: It is known that methane is emitted by ebullition when the emission level is high, and methane emission reductions in rice-planted fields are thought to be due to oxidation and methanogenesis suppression. However, although many studies have found that the contribution of soil organic matter to methanogenesis is small, our results suggested that methanogenesis depended mainly on soil organic matter accumulated from past crops. The higher the methane emission level, the lower the contribution of rice-providing substrate. Conclusion: As a result, during the growing season, rice enhanced methane emissions in low-emission paddy fields but suppressed methane emissions in high-emission paddy fields.
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Jia, Florian Dietrich, Hossein Maazallahi, Andreas Forstmaier, Dominik Winkler, Magdalena E. G. Hofmann, Hugo Denier van der Gon, and Thomas Röckmann. "Methane emissions from the Munich Oktoberfest." Atmospheric Chemistry and Physics 20, no. 6 (March 27, 2020): 3683–96. http://dx.doi.org/10.5194/acp-20-3683-2020.

Full text
Abstract:
Abstract. This study presents the first investigation of the methane (CH4) emissions of a large festival. Munich Oktoberfest, the world's largest folk festival, is a potential source of CH4 as a large amount of natural gas for cooking and heating is used. In 2018 we measured the CH4 emissions of Oktoberfest using in situ measurements combined with a Gaussian plume dispersion model. Measurements were taken while walking and biking around the perimeter of the Oktoberfest premises (Theresienwiese) at different times of the day, during the week and at the weekend. The measurements showed enhancements of up to 100 ppb compared to background values and measurements after Oktoberfest. The average emission flux of Oktoberfest is determined as (6.7±0.6) µg (m2 s)−1. Additional analyses, including the daily emission cycle and comparisons between emissions and the number of visitors, suggest that CH4 emissions of Oktoberfest are not due solely to the human biogenic emissions. Instead, fossil fuel CH4 emissions, such as incomplete combustion or loss in the gas appliances, appear to be the major contributors to Oktoberfest emissions. Our results can help to develop CH4 reduction policies and measures to reduce emissions at festivals and other major events in cities. Furthermore, events with a limited duration have not yet been included in the state-of-the-art emission inventories, such as TNO-MACC, EDGAR or IER. Our investigations show that these emissions are not negligible. Therefore, these events should be included in future emission inventories.
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Bing Tao, Wei Sheng Chen, and Peng Ju Ding. "Methane Emissions in Wastewater Treatment Process and Emissions Calculation in Henan Province." Applied Mechanics and Materials 768 (June 2015): 553–60. http://dx.doi.org/10.4028/www.scientific.net/amm.768.553.

Full text
Abstract:
The process of wastewater treatment is one of the sources of greenhouse gas emissions from urban human activities and methane is a source of greenhouse gases can not be ignored. According to the method recommended by IPCC Guidelines for National Greenhouse Gas Inventories 2006,a calculation model was established to assess methane emissions of wastewater treatment in Henan.Then methane emissions from wastewater treatment in Henan province in the year of 2010 were estimated. The results showed that net methane emissions from the sewage treatment process was 21,764.1 tons, and methane from the industrial wastewater generated process was 98,609.33 tons. The results will provide a scientific basis for policy maker to mitigate the methane emission from the sewage treatment process of Henan province.
APA, Harvard, Vancouver, ISO, and other styles
5

Oda, Masato, and Nguyen Huu Chiem. "Rice plants reduce methane emissions in high-emitting paddies." F1000Research 7 (July 25, 2019): 1349. http://dx.doi.org/10.12688/f1000research.15859.3.

Full text
Abstract:
Background: Rice is understood to enhance methane emissions from paddy fields in IPCC guidelines. However, rice actually has two opposite functions related to methane: i) emission enhancement, such as by providing emission pathways (aerenchyma) and methanogenetic substrates; and ii) emission suppression by providing oxygen pathways, which suppress methanogenesis or enhance methane oxidation. The overall role of rice is thus determined by the balance between its enhancing and suppressing functions. Although previous studies have suggested that rice enhances total methane emissions, we aimed to demonstrate in high-emitting paddy fields that the overall methane emission is decreased by rice plants. Methods: We compared methane emissions with and without rice plants in triple cropping rice paddy fields in the Mekong Delta, Vietnam. The gas samples are collected using chamber method and ware analyzed by gas chromatography. Results: We found that rice, in fact, suppressed overall methane emissions in high-emitting paddies. The emission reductions increased with the growth of rice to the maximum tillering stage, then decreased after the heading stage, and finally recovered. Discussion: Our result indicates that the overall methane emission is larger than that of rice planted area. In addition, although many studies in standard-emitting paddies have found that the contribution of soil organic matter to methanogenesis is small, prior studies in high-emitting paddies suggest that methanogenesis depended mainly on soil organic matter accumulated from past crops. The higher the methane emission level, the lower the contribution of the rice-derived substrate; conversely, the higher the contribution of the rice providing oxygen. Finally, rice plants reduce methane emissions in high-emitting paddies. Conclusion: The present study demonstrates that during the growing season, rice is suppressing methane emissions in high-emitting paddies. This means the significance of using the rice variety which has high suppressing performance in high-emitting paddies.
APA, Harvard, Vancouver, ISO, and other styles
6

Buchwitz, Michael, Oliver Schneising, Maximilian Reuter, Jens Heymann, Sven Krautwurst, Heinrich Bovensmann, John P. Burrows, et al. "Satellite-derived methane hotspot emission estimates using a fast data-driven method." Atmospheric Chemistry and Physics 17, no. 9 (May 9, 2017): 5751–74. http://dx.doi.org/10.5194/acp-17-5751-2017.

Full text
Abstract:
Abstract. Methane is an important atmospheric greenhouse gas and an adequate understanding of its emission sources is needed for climate change assessments, predictions, and the development and verification of emission mitigation strategies. Satellite retrievals of near-surface-sensitive column-averaged dry-air mole fractions of atmospheric methane, i.e. XCH4, can be used to quantify methane emissions. Maps of time-averaged satellite-derived XCH4 show regionally elevated methane over several methane source regions. In order to obtain methane emissions of these source regions we use a simple and fast data-driven method to estimate annual methane emissions and corresponding 1σ uncertainties directly from maps of annually averaged satellite XCH4. From theoretical considerations we expect that our method tends to underestimate emissions. When applying our method to high-resolution atmospheric methane simulations, we typically find agreement within the uncertainty range of our method (often 100 %) but also find that our method tends to underestimate emissions by typically about 40 %. To what extent these findings are model dependent needs to be assessed. We apply our method to an ensemble of satellite XCH4 data products consisting of two products from SCIAMACHY/ENVISAT and two products from TANSO-FTS/GOSAT covering the time period 2003–2014. We obtain annual emissions of four source areas: Four Corners in the south-western USA, the southern part of Central Valley, California, Azerbaijan, and Turkmenistan. We find that our estimated emissions are in good agreement with independently derived estimates for Four Corners and Azerbaijan. For the Central Valley and Turkmenistan our estimated annual emissions are higher compared to the EDGAR v4.2 anthropogenic emission inventory. For Turkmenistan we find on average about 50 % higher emissions with our annual emission uncertainty estimates overlapping with the EDGAR emissions. For the region around Bakersfield in the Central Valley we find a factor of 5–8 higher emissions compared to EDGAR, albeit with large uncertainty. Major methane emission sources in this region are oil/gas and livestock. Our findings corroborate recently published studies based on aircraft and satellite measurements and new bottom-up estimates reporting significantly underestimated methane emissions of oil/gas and/or livestock in this area in EDGAR.
APA, Harvard, Vancouver, ISO, and other styles
7

Patyńska, Renata. "Methodology of Estimation of Methane Emissions from Coal Mines in Poland." Studia Geotechnica et Mechanica 36, no. 1 (March 1, 2014): 89–101. http://dx.doi.org/10.2478/sgem-2014-0011.

Full text
Abstract:
Abstract Based on a literature review concerning methane emissions in Poland, it was stated in 2009 that the National Greenhouse Inventory 2007 [13] was published. It was prepared firstly to meet Poland’s obligations resulting from point 3.1 Decision no. 280/2004/WE of the European Parliament and of the Council of 11 February 2004, concerning a mechanism for monitoring community greenhouse gas emissions and for implementing the Kyoto Protocol and secondly, for the United Nations Framework Convention on Climate Change (UNFCCC) and Kyoto Protocol. The National Greenhouse Inventory states that there are no detailed data concerning methane emissions in collieries in the Polish mining industry. That is why the methane emission in the methane coal mines of Górnośląskie Zagłębie Węglowe - GZW (Upper Silesian Coal Basin - USCB) in Poland was meticulously studied and evaluated. The applied methodology for estimating methane emission from the GZW coal mining system was used for the four basic sources of its emission. Methane emission during the mining and post-mining process. Such an approach resulted from the IPCC guidelines of 2006 [10]. Updating the proposed methods (IPCC2006) of estimating the methane emissions of hard coal mines (active and abandoned ones) in Poland, assumes that the methane emission factor (EF) is calculated based on methane coal mine output and actual values of absolute methane content. The result of verifying the method of estimating methane emission during the mining process for Polish coal mines is the equation of methane emission factor EF.
APA, Harvard, Vancouver, ISO, and other styles
8

Oda, Masato, and Nguyen Huu Chiem. "Rice plants reduce methane emissions in high-emitting paddies." F1000Research 7 (June 27, 2019): 1349. http://dx.doi.org/10.12688/f1000research.15859.2.

Full text
Abstract:
Background: Rice is understood to enhance methane emissions from paddy fields in IPCC guidelines. However, rice actually has two separate functions related to methane: i) emission enhancement, such as by providing emission pathways (aerenchyma) and methanogenetic substrates; and ii) emission suppression by providing oxygen pathways, which suppress methanogenesis or enhance methane oxidation. The overall role of rice is thus determined by the balance between its enhancing and suppressing functions. Although previous studies have suggested that rice enhances total methane emissions, we aimed to demonstrate in high-emitting paddy fields that the overall methane emission is decreased by rice plants. Methods: We compared methane emissions of with and without rice plants in triple cropping rice paddies in the Mekong Delta, Vietnam. The gas samples are collected using chamber method and ware analyzed by gas chromatography. Results: We found that rice, in fact, suppressed overall methane emissions in high-emitting paddies. The emission reductions increased with the growth of rice to the maximum tillering stage, then decreased after the heading stage, and finally recovered. Discussion: Our result indicates that the overall methane emission by ebullition is larger than the overall emission of rice planted area. In addition, although many studies in standard-emitting paddies have found that the contribution of soil organic matter to methanogenesis is small, our results in high-emitting paddies suggest that methanogenesis depended mainly on soil organic matter accumulated from past crops. The higher the methane emission level, the lower the contribution of the rice-derived substrate; therefore, the role of rice in high-emitting paddies is the opposite to in that of standard-emitting paddies. Conclusion: The present study demonstrates that during the growing season, rice is suppressing methane emissions in high-emitting paddies. This means the significance of using the rice variety which has high suppressing performance in high-emitting paddies.
APA, Harvard, Vancouver, ISO, and other styles
9

Johannisson, Jonas, and Michael Hiete. "A Structured Approach for the Mitigation of Natural Methane Emissions—Lessons Learned from Anthropogenic Emissions." C — Journal of Carbon Research 6, no. 2 (April 22, 2020): 24. http://dx.doi.org/10.3390/c6020024.

Full text
Abstract:
Methane is the second most important greenhouse gas. Natural methane emissions represent 35–50% of the global emissions budget. They are identified, measured and categorized, but, in stark contrast to anthropogenic emissions, research on their mitigation is largely absent. To explain this, 18 problems are identified and presented. This includes problems related to the emission characteristics, technological and economic challenges, as well as problems resulting from a missing framework. Consequently, strategies, methods and solutions to solve or circumvent the identified problems are proposed. The framework covers definitions for methane source categorization and for categories of emission types and mitigation approaches. Business cases for methane mitigation are discussed and promising mitigation technologies briefly assessed. The importance to get started with methane mitigation in the different areas is highlighted and avenues for doing so are presented.
APA, Harvard, Vancouver, ISO, and other styles
10

Meng, L., R. Paudel, P. G. M. Hess, and N. M. Mahowald. "Seasonal and interannual variability in wetland methane emissions simulated by CLM4Me' and CAM-chem and comparisons to observations of concentrations." Biogeosciences 12, no. 13 (July 3, 2015): 4029–49. http://dx.doi.org/10.5194/bg-12-4029-2015.

Full text
Abstract:
Abstract. Understanding the temporal and spatial variation of wetland methane emissions is essential to the estimation of the global methane budget. Our goal for this study is three-fold: (i) to evaluate the wetland methane fluxes simulated in two versions of the Community Land Model, the Carbon-Nitrogen (CN; i.e., CLM4.0) and the Biogeochemistry (BGC; i.e., CLM4.5) versions using the methane emission model CLM4Me' so as to determine the sensitivity of the emissions to the underlying carbon model; (ii) to compare the simulated atmospheric methane concentrations to observations, including latitudinal gradients and interannual variability so as to determine the extent to which the atmospheric observations constrain the emissions; (iii) to understand the drivers of seasonal and interannual variability in atmospheric methane concentrations. Simulations of the transport and removal of methane use the Community Atmosphere Model with chemistry (CAM-chem) model in conjunction with CLM4Me' methane emissions from both CN and BGC simulations and other methane emission sources from literature. In each case we compare model-simulated atmospheric methane concentration with observations. In addition, we simulate the atmospheric concentrations based on the TransCom wetland and rice paddy emissions derived from a different terrestrial ecosystem model, Vegetation Integrative Simulator for Trace gases (VISIT). Our analysis indicates CN wetland methane emissions are higher in the tropics and lower at high latitudes than emissions from BGC. In CN, methane emissions decrease from 1993 to 2004 while this trend does not appear in the BGC version. In the CN version, methane emission variations follow satellite-derived inundation wetlands closely. However, they are dissimilar in BGC due to its different carbon cycle. CAM-chem simulations with CLM4Me' methane emissions suggest that both prescribed anthropogenic and predicted wetlands methane emissions contribute substantially to seasonal and interannual variability in atmospheric methane concentration. Simulated atmospheric CH4 concentrations in CAM-chem are highly correlated with observations at most of the 14 measurement stations evaluated with an average correlation between 0.71 and 0.80 depending on the simulation (for the period of 1993–2004 for most stations based on data availability). Our results suggest that different spatial patterns of wetland emissions can have significant impacts on Northern and Southern hemisphere (N–S) atmospheric CH4 concentration gradients and growth rates. This study suggests that both anthropogenic and wetland emissions have significant contributions to seasonal and interannual variations in atmospheric CH4 concentrations. However, our analysis also indicates the existence of large uncertainties in terms of spatial patterns and magnitude of global wetland methane budgets, and that substantial uncertainty comes from the carbon model underlying the methane flux modules.
APA, Harvard, Vancouver, ISO, and other styles
11

Lim Kim Choo, Liza Nuriati, and Osumanu Haruna Ahmed. "Methane Emission from Pineapple Cultivation on a Tropical Peatland at Saratok, Malaysia." Sustainable Agriculture Research 6, no. 3 (June 18, 2017): 64. http://dx.doi.org/10.5539/sar.v6n3p64.

Full text
Abstract:
Information on methane emission in pineapple cultivation on peatlands is scarce. Methane emission in pineapple cultivation is important as 90% of pineapples are grown on the peat soils of Malaysia. It is essential to determine methane emission in pineapple cultivation because pineapples are Crassulacean acid metabolism plants whose effects on methane could be different from other crops grown on tropical peat soils. Methane emissions from root respiration, microbial respiration, and oxidative peat decomposition were determined in a lysimeter experiment. There were three treatments: peat soil cultivated with pineapple, bare peat soil, and bare peat soil fumigated with chloroform. Methane emissions from peat soil cultivated with pineapple, bare peat soil, and bare peat soil fumigated with chloroform were 0.65 t/ha/yr, 0.75 t/ha/yr, and 0.75 t/ha/yr, respectively. The lower methane emissions are consistent with the general believe that methane emission from cultivated peat soils is lower than those of anaerobic or water logged peat soils. Soil methane emission was affected by nitrogen fertilization under pineapple cultivation but the converse was true for soil temperature nor soil moisture.
APA, Harvard, Vancouver, ISO, and other styles
12

Gentner, D. R., T. B. Ford, A. Guha, K. Boulanger, J. Brioude, W. M. Angevine, J. A. de Gouw, et al. "Emissions of organic carbon and methane from petroleum and dairy operations in California's San Joaquin Valley." Atmospheric Chemistry and Physics Discussions 13, no. 10 (October 31, 2013): 28225–78. http://dx.doi.org/10.5194/acpd-13-28225-2013.

Full text
Abstract:
Abstract. Petroleum and dairy operations are prominent sources of gas-phase organic compounds in California's San Joaquin Valley. Ground site measurements in Bakersfield and aircraft measurements of reactive gas-phase organic compounds were made in this region as part of the CalNex (California Research at the Nexus of Air Quality and Climate Change) project to determine the sources contributing to regional gas-phase organic carbon emissions. Using a combination of near-source and downwind data, we assess the composition and magnitude of emissions from these prominent sources that are relatively understudied compared to motor vehicles We also developed a statistical modeling method with the FLEXPART-WRF transport and meteorological model using ground-based data to assess the spatial distribution of emissions in the San Joaquin Valley. We present evidence for large sources of paraffinic hydrocarbons from petroleum extraction/processing operations and oxygenated compounds from dairy (and other cattle) operations. In addition to the small straight-chain alkanes typically associated with petroleum operations, we observed a wide range of branched and cyclic alkanes that have limited previous in situ measurements or characterization in emissions from petroleum operations. Observed dairy emissions were dominated by ethanol, methanol, and acetic acid, and methane. Dairy operations were responsible for the vast majority of methane emissions in the San Joaquin Valley; observations of methane were well-correlated with non-vehicular ethanol, and multiple assessments of the spatial distribution of emissions in the San Joaquin Valley highlight the dominance of dairy operations for methane emissions. The good agreement of the observed petroleum operations source profile with the measured composition of non-methane hydrocarbons in unrefined natural gas associated with crude oil suggests a fugitive emissions pathway during petroleum extraction, storage, or processing with negligible coincident methane emissions Aircraft observations of emission hotspots from operations at oil wells and dairies are consistent with the statistical source footprint determined via transport modeling and ground-based data. At Bakersfield, petroleum and dairy operations each comprised 22–23% of anthropogenic non-methane organic carbon and were each responsible for ~12% of potential precursors to ozone, but their direct impacts as potential SOA precursors were estimated to be minor. A comparison with the California Air Resources Board emission inventory supports the current relative emission rates of reactive organic gases from these sources in the region.
APA, Harvard, Vancouver, ISO, and other styles
13

Sonderfeld, Hannah, Hartmut Bösch, Antoine P. R. Jeanjean, Stuart N. Riddick, Grant Allen, Sébastien Ars, Stewart Davies, et al. "CH<sub>4</sub> emission estimates from an active landfill site inferred from a combined approach of CFD modelling and in situ FTIR measurements." Atmospheric Measurement Techniques 10, no. 10 (October 25, 2017): 3931–46. http://dx.doi.org/10.5194/amt-10-3931-2017.

Full text
Abstract:
Abstract. Globally, the waste sector contributes to nearly a fifth of anthropogenic methane emitted to the atmosphere and is the second largest source of methane in the UK. In recent years great improvements to reduce those emissions have been achieved by the installation of methane recovery systems at landfill sites, and subsequently methane emissions reported in national emission inventories have been reduced. Nevertheless, methane emissions of landfills remain uncertain and quantification of emission fluxes is essential to verify reported emission inventories and to monitor changes in emissions. Here we present a new approach for methane emission quantification from a complex source such as a landfill site by applying a computational fluid dynamics (CFD) model to calibrated in situ measurements of methane as part of a field campaign at a landfill site near Ipswich, UK, in August 2014. The methane distribution for different meteorological scenarios is calculated with the CFD model and compared to methane mole fractions measured by an in situ Fourier-transform infrared (FTIR) spectrometer downwind of the prevailing wind direction. Assuming emissions only from the active site, a mean daytime flux of 0.83 mg m−2 s−1, corresponding to a spatially integrated emission of 53.3 kg h−1, was estimated. The addition of a secondary source area adjacent to the active site, where some methane hotspots were observed, improved the agreement between the simulated and measured methane distribution. As a result, the flux from the active site was reduced slightly to 0.71 mg m−2 s−1 (45.6 kg h−1), and at the same time an additional flux of 0.32 mg m−2 s−1 (30.4 kg h−1) was found from the secondary source area. This highlights the capability of our method to distinguish between different emission areas of the landfill site, which can provide more detailed information about emission source apportionment compared to other methods deriving bulk emissions.
APA, Harvard, Vancouver, ISO, and other styles
14

Pandey, Sudhanshu, Ritesh Gautam, Sander Houweling, Hugo Denier van der Gon, Pankaj Sadavarte, Tobias Borsdorff, Otto Hasekamp, et al. "Satellite observations reveal extreme methane leakage from a natural gas well blowout." Proceedings of the National Academy of Sciences 116, no. 52 (December 16, 2019): 26376–81. http://dx.doi.org/10.1073/pnas.1908712116.

Full text
Abstract:
Methane emissions due to accidents in the oil and natural gas sector are very challenging to monitor, and hence are seldom considered in emission inventories and reporting. One of the main reasons is the lack of measurements during such events. Here we report the detection of large methane emissions from a gas well blowout in Ohio during February to March 2018 in the total column methane measurements from the spaceborne Tropospheric Monitoring Instrument (TROPOMI). From these data, we derive a methane emission rate of 120 ± 32 metric tons per hour. This hourly emission rate is twice that of the widely reported Aliso Canyon event in California in 2015. Assuming the detected emission represents the average rate for the 20-d blowout period, we find the total methane emission from the well blowout is comparable to one-quarter of the entire state of Ohio’s reported annual oil and natural gas methane emission, or, alternatively, a substantial fraction of the annual anthropogenic methane emissions from several European countries. Our work demonstrates the strength and effectiveness of routine satellite measurements in detecting and quantifying greenhouse gas emission from unpredictable events. In this specific case, the magnitude of a relatively unknown yet extremely large accidental leakage was revealed using measurements of TROPOMI in its routine global survey, providing quantitative assessment of associated methane emissions.
APA, Harvard, Vancouver, ISO, and other styles
15

Shrivastava, Kush. "Breeding for Reduced Methane Emissions in Livestock Species." Open Access Journal of Veterinary Science & Research 3, no. 2 (2018): 1–2. http://dx.doi.org/10.23880/oajvsr-16000159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gao, Zhiling, Huijun Yuan, Wenqi Ma, Jianguo Li, Xuejun Liu, and Raymond L. Desjardins. "Diurnal and Seasonal Patterns of Methane Emissions from a Dairy Operation in North China Plain." Advances in Meteorology 2011 (2011): 1–7. http://dx.doi.org/10.1155/2011/190234.

Full text
Abstract:
In China, dairy cattle managed in collective feedlots contribute about 30% of the milk production and are believed to be an important contributor to national methane emissions. Methane emissions from a collective dairy feedlot in North China Plain (NCP) were measured during the winter, spring, summer, and fall seasons with open-path lasers in combination with an inverse dispersion technique. Methane emissions from the selected dairy feedlot were characterized by an apparent diurnal pattern with three peaks corresponding to the schedule of feeding activities. On a per capita basis, daily methane emission rates of these four seasons were 0.28, 0.32, 0.33, and 0.30 kg head−1 d−1, respectively. In summary, annual methane emission rate was 112.4 kg head−1 yr−1associated with methane emission intensity of 32.65 L CH4L−1of milk and potential methane conversion factor Ymof 6.66% of gross energy intake for mature dairy cows in North China Plain.
APA, Harvard, Vancouver, ISO, and other styles
17

Meng, L., R. Paudel, P. G. M. Hess, and N. M. Mahowald. "Seasonal and inter-annual variability in wetland methane emissions simulated by CLM4Me' and CAM-chem and comparisons to observations of concentrations." Biogeosciences Discussions 12, no. 3 (February 2, 2015): 2161–212. http://dx.doi.org/10.5194/bgd-12-2161-2015.

Full text
Abstract:
Abstract. Understanding the temporal and spatial variation of wetland methane emissions is essential to the estimation of the global methane budget. We examine the seasonal and inter-annual variability in wetland methane emissions simulated in the Community Land Model (CLM4Me'). Methane emissions from both the Carbon-Nitrogen (CN, i.e. CLM4.0) and the Biogeochemistry (BGC, i.e. CLM4.5) versions of the CLM are evaluated. We further conduct simulations of the transport and removal of methane using the Community Atmosphere Model (CAM-chem) model using CLM4Me' methane emissions from both CN and BGC along with other methane sources and compare model simulated atmospheric methane concentration with observations. In addition, we simulate the atmospheric concentrations based on the TransCom wetland and rice paddy emissions from a different terrestrial ecosystem model VISIT. Our analysis suggests CN wetland methane emissions are higher in tropics and lower in high latitudes than BGC. In CN, methane emissions decrease from 1993 to 2004 while this trend does not appear in the BGC version. In the CN versions, methane emission variations follow satellite-derived inundation wetlands closely. However, they are dissimilar in BGC due to its different carbon cycle. CAM-chem model simulations with CLM4Me' methane emissions suggest that both prescribed anthropogenic and predicted wetlands methane emissions contribute substantially to seasonal and inter-annual variability in atmospheric methane concentration. It also suggests that different spatial patterns of wetland emissions can have significant impacts on N–S atmospheric CH4 concentration gradients and growth rates. This study suggests that large uncertainties still exist in terms of spatial patterns and magnitude of global wetland methane budgets, and that substantial uncertainty comes from the carbon model underlying the methane flux modules.
APA, Harvard, Vancouver, ISO, and other styles
18

Jacob, Daniel J., Alexander J. Turner, Joannes D. Maasakkers, Jianxiong Sheng, Kang Sun, Xiong Liu, Kelly Chance, Ilse Aben, Jason McKeever, and Christian Frankenberg. "Satellite observations of atmospheric methane and their value for quantifying methane emissions." Atmospheric Chemistry and Physics 16, no. 22 (November 18, 2016): 14371–96. http://dx.doi.org/10.5194/acp-16-14371-2016.

Full text
Abstract:
Abstract. Methane is a greenhouse gas emitted by a range of natural and anthropogenic sources. Atmospheric methane has been measured continuously from space since 2003, and new instruments are planned for launch in the near future that will greatly expand the capabilities of space-based observations. We review the value of current, future, and proposed satellite observations to better quantify and understand methane emissions through inverse analyses, from the global scale down to the scale of point sources and in combination with suborbital (surface and aircraft) data. Current global observations from Greenhouse Gases Observing Satellite (GOSAT) are of high quality but have sparse spatial coverage. They can quantify methane emissions on a regional scale (100–1000 km) through multiyear averaging. The Tropospheric Monitoring Instrument (TROPOMI), to be launched in 2017, is expected to quantify daily emissions on the regional scale and will also effectively detect large point sources. A different observing strategy by GHGSat (launched in June 2016) is to target limited viewing domains with very fine pixel resolution in order to detect a wide range of methane point sources. Geostationary observation of methane, still in the proposal stage, will have the unique capability of mapping source regions with high resolution, detecting transient "super-emitter" point sources and resolving diurnal variation of emissions from sources such as wetlands and manure. Exploiting these rapidly expanding satellite measurement capabilities to quantify methane emissions requires a parallel effort to construct high-quality spatially and sectorally resolved emission inventories. Partnership between top-down inverse analyses of atmospheric data and bottom-up construction of emission inventories is crucial to better understanding methane emission processes and subsequently informing climate policy.
APA, Harvard, Vancouver, ISO, and other styles
19

Lassey, Keith R. "Livestock methane emission and its perspective in the global methane cycle." Australian Journal of Experimental Agriculture 48, no. 2 (2008): 114. http://dx.doi.org/10.1071/ea07220.

Full text
Abstract:
Over the past three centuries, the atmospheric methane burden has grown 2.5-fold, reaching levels unprecedented in at least 650 000 years. Agricultural expansion has played a large part in this anthropogenic signal, with enterically fermented methane emitted by farmed ruminant livestock accounting for about one quarter of all anthropogenic emissions. This paper summarises the range of measurements that give confidence in estimates of the emission per animal and per unit feed intake and in their extrapolation to national and global emission inventories, while noting also some of the inherent uncertainties. Global emissions are discussed in the context of the evolving global methane cycle.
APA, Harvard, Vancouver, ISO, and other styles
20

Török, Tibor, László Zoltán Szabó, and Sándor J. Zsarnóczai. "Methane reductions to moderate the global warming effects." Applied Studies in Agribusiness and Commerce 9, no. 4 (December 30, 2015): 59–64. http://dx.doi.org/10.19041/apstract/2015/4/8.

Full text
Abstract:
The case-study overviews the possible reduction for the methane gas emission in order to avoid of the more global warming effects and climate change caused by the human activity at latest decades. To collect international data base is for analysing and valuing methane gas emission based on the different country-groups, emphasizing responsibility of developing countries and highly developed countries for gas emission, also the methane emission based is on the economic sectors. China and India have share 8% of China and 2% of India respectively of cumulative CO2 emissions over the period 1900-2005, the US and the EU are responsible for more than half of emissions. Based on the estimation the global gas emissions of methane in the whole world has increased by 37% for period of 1990- 2030, as four decades, and this was 0,92% annual rate growth, while the OECD has increased the methane emission by 8,5% for this period, which means 0,21% growth rate annually. Scenario in developing countries for 2013-2020 the methane gas emission reduction could have been 8200 Mt of CO2e (Equivalent) and less than 10 US dollar per ton in more cost financing. Highly developed and developing economies (last one their methane emission share 56% in 1990, estimated 66,8% in 2030) increase their economic growth by mostly fossil energy resulted in increasing also methane gas emissions. The methane gas emission can be solved by those results-based-finance forms relevant to Kyoto Protocol, which can extend in the world by financial institutions.
APA, Harvard, Vancouver, ISO, and other styles
21

Nisbet, Euan G., Edward J. Dlugokencky, Rebecca E. Fisher, James L. France, David Lowry, Martin R. Manning, Sylvia E. Michel, and Nicola J. Warwick. "Atmospheric methane and nitrous oxide: challenges alongthe path to Net Zero." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, no. 2210 (September 27, 2021): 20200457. http://dx.doi.org/10.1098/rsta.2020.0457.

Full text
Abstract:
The causes of methane's renewed rise since 2007, accelerated growth from 2014 and record rise in 2020, concurrent with an isotopic shift to values more depleted in 13 C, remain poorly understood. This rise is the dominant departure from greenhouse gas scenarios that limit global heating to less than 2°C. Thus a comprehensive understanding of methane sources and sinks, their trends and inter-annual variations are becoming more urgent. Efforts to quantify both sources and sinks and understand latitudinal and seasonal variations will improve our understanding of the methane cycle and its anthropogenic component. Nationally declared emissions inventories under the UN Framework Convention on Climate Change (UNFCCC) and promised contributions to emissions reductions under the UNFCCC Paris Agreement need to be verified independently by top-down observation. Furthermore, indirect effects on natural emissions, such as changes in aquatic ecosystems, also need to be quantified. Nitrous oxide is even more poorly understood. Despite this, options for mitigating methane and nitrous oxide emissions are improving rapidly, both in cutting emissions from gas, oil and coal extraction and use, and also from agricultural and waste sources. Reductions in methane and nitrous oxide emission are arguably among the most attractive immediate options for climate action. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 1)'.
APA, Harvard, Vancouver, ISO, and other styles
22

Pittson, Jarrod, and Allie Convery. "Reducing methane losses across the gas value chain – Woodside journey to excellence." APPEA Journal 60, no. 2 (2020): 501. http://dx.doi.org/10.1071/aj19234.

Full text
Abstract:
Woodside is the first, and, to date, only, Australian listed company to be a signatory to the Methane Guiding Principles, an industry, non-Government organisation and educational institution collaboration aimed at reducing methane emissions across the natural gas value chain. Woodside’s methane emissions are ~0.04% of our total hydrocarbon production, or 400 kt CO2-eq per annum (Woodside Energy 2019). This is a relatively small methane emission footprint in comparison with other industrial and oil and gas operators; however, to ensure the greenhouse gas and environmental benefits of LNG over coal and other greenhouse intensive fossil fuels remain legitimate and substantial, we recognise the important role of minimising methane losses through the natural gas value chain. The global-warming potential of methane is 86 times more potent over a 20-year time frame than that of carbon dioxide (IPCC 2014). By tackling methane emissions, significant inroads can be made in reducing the impacts of greenhouse gases in the atmosphere. Woodside became a signatory to the Methane Guiding Principles in April 2018 and has commenced a program of work to deliver on the five principles, which are to (1) continually reduce methane emissions, (2) advance strong performance across gas value chains, (3) improve accuracy of methane emissions data, (4) advocate sound policy and regulations on methane emissions and (5) increase transparency. This paper will focus on the journey we are on, namely, understanding our methane emission footprint within our operational boundaries and setting in place an action plan to reduce these emissions. But it is also a lot broader as we start to look beyond our gates to the transport and distribution networks, through to the end user turning on their gas stove at home. It is about cradle to grave custody of our product for it to be a viable long-term solution in a lower-carbon economy.
APA, Harvard, Vancouver, ISO, and other styles
23

Oladejo, O. S., O. O. Elemile, A. O. Abiola, and A. A. Olanipekun. "Estimation of Methane Emission Potentials in Landmark University Open Dump Site, Omu-Aran, Kwara State Nigeria." LAUTECH Journal of Civil and Environmental Studies 5, no. 1 (September 27, 2020): 53–59. http://dx.doi.org/10.36108/laujoces/0202/50(0160).

Full text
Abstract:
Most of the increasing quantity of wastes in institutions of higher learning, are disposed of through open dumping. The decomposition of these wastes has been identified to be a source of methane emissions. This study estimated methane emissions from the open dumpsite in Landmark University. An exploratory study design was adopted. The study involved physical characterization of solid wastes at the Landmark University for a period of three months and the estimation of methane emission potentials of the dumpsite for the years 2011 to 2031 using IPCC Default Method (DM) and the Landfill Gas Emission (LandGEM) Model Version 3.02.The study revealed the percentage composition of waste to be 48, 16, 12, 10, 5 and 3% for plastics, garden trimmings, paper, metal, food waste and textile respectively. The maximum methane emission is 11.65 and 2.48 Mg/year for DM and LandGEM respectively in the year 2021 while the methane emissions will decline to 7.06 and 1.50 Mg/year for DM and LandGEM respectively in the year 2031. The contribution of methane emissions in the University is still little as reflected in the values of 11.65 and 2.48 Mg/year although there is a tendency to increase as population increases. Further studies should be carried out to provide methane specific properties of the solid waste generated in Omu-Aran in order to build an inventory of methane emission parameters.
APA, Harvard, Vancouver, ISO, and other styles
24

Saunois, Marielle, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, et al. "Variability and quasi-decadal changes in the methane budget over the period 2000–2012." Atmospheric Chemistry and Physics 17, no. 18 (September 20, 2017): 11135–61. http://dx.doi.org/10.5194/acp-17-11135-2017.

Full text
Abstract:
Abstract. Following the recent Global Carbon Project (GCP) synthesis of the decadal methane (CH4) budget over 2000–2012 (Saunois et al., 2016), we analyse here the same dataset with a focus on quasi-decadal and inter-annual variability in CH4 emissions. The GCP dataset integrates results from top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models (including process-based models for estimating land surface emissions and atmospheric chemistry), inventories of anthropogenic emissions, and data-driven approaches. The annual global methane emissions from top-down studies, which by construction match the observed methane growth rate within their uncertainties, all show an increase in total methane emissions over the period 2000–2012, but this increase is not linear over the 13 years. Despite differences between individual studies, the mean emission anomaly of the top-down ensemble shows no significant trend in total methane emissions over the period 2000–2006, during the plateau of atmospheric methane mole fractions, and also over the period 2008–2012, during the renewed atmospheric methane increase. However, the top-down ensemble mean produces an emission shift between 2006 and 2008, leading to 22 [16–32] Tg CH4 yr−1 higher methane emissions over the period 2008–2012 compared to 2002–2006. This emission increase mostly originated from the tropics, with a smaller contribution from mid-latitudes and no significant change from boreal regions. The regional contributions remain uncertain in top-down studies. Tropical South America and South and East Asia seem to contribute the most to the emission increase in the tropics. However, these two regions have only limited atmospheric measurements and remain therefore poorly constrained. The sectorial partitioning of this emission increase between the periods 2002–2006 and 2008–2012 differs from one atmospheric inversion study to another. However, all top-down studies suggest smaller changes in fossil fuel emissions (from oil, gas, and coal industries) compared to the mean of the bottom-up inventories included in this study. This difference is partly driven by a smaller emission change in China from the top-down studies compared to the estimate in the Emission Database for Global Atmospheric Research (EDGARv4.2) inventory, which should be revised to smaller values in a near future. We apply isotopic signatures to the emission changes estimated for individual studies based on five emission sectors and find that for six individual top-down studies (out of eight) the average isotopic signature of the emission changes is not consistent with the observed change in atmospheric 13CH4. However, the partitioning in emission change derived from the ensemble mean is consistent with this isotopic constraint. At the global scale, the top-down ensemble mean suggests that the dominant contribution to the resumed atmospheric CH4 growth after 2006 comes from microbial sources (more from agriculture and waste sectors than from natural wetlands), with an uncertain but smaller contribution from fossil CH4 emissions. In addition, a decrease in biomass burning emissions (in agreement with the biomass burning emission databases) makes the balance of sources consistent with atmospheric 13CH4 observations. In most of the top-down studies included here, OH concentrations are considered constant over the years (seasonal variations but without any inter-annual variability). As a result, the methane loss (in particular through OH oxidation) varies mainly through the change in methane concentrations and not its oxidants. For these reasons, changes in the methane loss could not be properly investigated in this study, although it may play a significant role in the recent atmospheric methane changes as briefly discussed at the end of the paper.
APA, Harvard, Vancouver, ISO, and other styles
25

Basarab, J. A., E. K. Okine, V. S. Baron, T. Marx, P. Ramsey, K. Ziegler, and K. Lyle. "Methane emissions from enteric fermentation in Alberta’s beef cattle population." Canadian Journal of Animal Science 85, no. 4 (December 1, 2005): 501–12. http://dx.doi.org/10.4141/a04-069.

Full text
Abstract:
This study determined methane emissions from enteric fermentation in Alberta’s beef cattle population by using three methodologies: (1) Intergovernmental Panel on Climate Change (IPCC), Tier 2 guidelines for cattle, (2) actual methane emission factors, expressed as a percentage of gross energy intake, from Canadian research trials and; (3) CowBytes© plus the basic equation developed by Blaxter and Clapperton (1965). Methane emissions, in carbon dioxide equivalents (CO2-E), from Alberta’s beef cattle were determined for 1990, 1996 and 2001. Census of Agriculture numbers for Alberta (Statistics Canada; www.statcan.com) were used and beef cattle were subdivided into 31 distinct categories based on animal type, physiological status, gender, weight, growth rate, activity level and age. Emission of greenhouse gases (GHG) from Alberta ’s beef cattle population, based on IPCC Tier 2 guidelines, were 4.93, 6.57 and 7.01 Mt CO2-E yr-1 in 1990, 1996 and 2001, respectively. Emissions based on methane emission factors from Canadian research trials were 6.23, 8.26 and 8.77 Mt CO2-E yr-1 in 1990, 1996 and 2001, respectively. Estimated methane emissions based on CowBytes© and Blaxter and Clapperton’s (1965) equation were 6.24, 8.35 and 8.94 Mt CO2-E yr-1 in 1990, 1996 and 2001, respectively. The IPCC Tier 2 values were 25.2–26.5% lower than the GHG emissions calculated using emission factors from western Canadian research and 26.7–27.6% lower than GHG emissions calculated from CowBytes© and Blaxter and Clapperton’s equation. IPCC Tier 1 values, which were calculated by multiplying total beef cattle in Alberta by four single value emission factors (beef cows = 72 kg CH4 yr-1; bulls = 75 kg CH4 yr-1; replacement heifers = 56 kg CH4 yr-1; calves, steer and heifer calves for slaughter = 47 kg CH4 yr-1), were 4.83, 6.40 and 6.83 Mt CO2-E in 1990, 1996 and 2001, respectively. Thus, IPCC Tier 1 GHG emissions from enteric fermentation in beef cattle were 2.0–2.7, 28.6–29.1 and 29.2–31.0% lower than those calculated from IPCC Tier 2, western Canadian research trials, and CowBytes© plus Blaxter and Clapperton’s equation, respectively. These results reflect the uncertainty associated with estimating methane emissions from enteric fermentation in cattle and suggest that further research is required to improve the accuracy of methane emissions, particularly for beef cows in their second and third trimester of pregnancy and fed in confinement. They also indicate that a more robust methodology may be to combine CowBytes© predicted dry matter intake with regional specific methane emission factors, where methane loss is expressed as a percentage of gross energy intake. Key words: Cattle, enteric fermentation, greenhouse gas, methane
APA, Harvard, Vancouver, ISO, and other styles
26

Gentner, D. R., T. B. Ford, A. Guha, K. Boulanger, J. Brioude, W. M. Angevine, J. A. de Gouw, et al. "Emissions of organic carbon and methane from petroleum and dairy operations in California's San Joaquin Valley." Atmospheric Chemistry and Physics 14, no. 10 (May 21, 2014): 4955–78. http://dx.doi.org/10.5194/acp-14-4955-2014.

Full text
Abstract:
Abstract. Petroleum and dairy operations are prominent sources of gas-phase organic compounds in California's San Joaquin Valley. It is essential to understand the emissions and air quality impacts of these relatively understudied sources, especially for oil/gas operations in light of increasing US production. Ground site measurements in Bakersfield and regional aircraft measurements of reactive gas-phase organic compounds and methane were part of the CalNex (California Research at the Nexus of Air Quality and Climate Change) project to determine the sources contributing to regional gas-phase organic carbon emissions. Using a combination of near-source and downwind data, we assess the composition and magnitude of emissions, and provide average source profiles. To examine the spatial distribution of emissions in the San Joaquin Valley, we developed a statistical modeling method using ground-based data and the FLEXPART-WRF transport and meteorological model. We present evidence for large sources of paraffinic hydrocarbons from petroleum operations and oxygenated compounds from dairy (and other cattle) operations. In addition to the small straight-chain alkanes typically associated with petroleum operations, we observed a wide range of branched and cyclic alkanes, most of which have limited previous in situ measurements or characterization in petroleum operation emissions. Observed dairy emissions were dominated by ethanol, methanol, acetic acid, and methane. Dairy operations were responsible for the vast majority of methane emissions in the San Joaquin Valley; observations of methane were well correlated with non-vehicular ethanol, and multiple assessments of the spatial distribution of emissions in the San Joaquin Valley highlight the dominance of dairy operations for methane emissions. The petroleum operations source profile was developed using the composition of non-methane hydrocarbons in unrefined natural gas associated with crude oil. The observed source profile is consistent with fugitive emissions of condensate during storage or processing of associated gas following extraction and methane separation. Aircraft observations of concentration hotspots near oil wells and dairies are consistent with the statistical source footprint determined via our FLEXPART-WRF-based modeling method and ground-based data. We quantitatively compared our observations at Bakersfield to the California Air Resources Board emission inventory and find consistency for relative emission rates of reactive organic gases between the aforementioned sources and motor vehicles in the region. We estimate that petroleum and dairy operations each comprised 22% of anthropogenic non-methane organic carbon at Bakersfield and were each responsible for 8–13% of potential precursors to ozone. Yet, their direct impacts as potential secondary organic aerosol (SOA) precursors were estimated to be minor for the source profiles observed in the San Joaquin Valley.
APA, Harvard, Vancouver, ISO, and other styles
27

Mahmoud, Eyas. "Mitigating Global Methane Emissions Using Metal-Organic Framework Adsorbents." Applied Sciences 10, no. 21 (October 31, 2020): 7733. http://dx.doi.org/10.3390/app10217733.

Full text
Abstract:
Global emission of methane reached a record high in 2020. Furthermore, it is expected that methane emissions will continue to rise in the coming years despite the economic slowdown stemming from the coronavirus pandemic. Adsorbents can be used to reduce methane emissions. However, the question remains as to which adsorbents perform best for enhanced methane capture. In this work, it is demonstrated that metal-organic frameworks (MOFs) exhibited the best methane uptakes at 1 bar and 298 K from experiments as compared to tested carbonaceous materials, polymers, and zeolites. In addition, the adsorption entropy, an important thermodynamic property indicating adsorption capacity and kinetics, is determined on well-defined MOFs using a global predictive equation for porous materials. A correlation was used to describe the effect of translation and rotation of methane in the porous material for methane emission abatement. This information and the entropy of adsorption of methane on MOFs has not been reported before. The predicted results were compared to experimental data obtained from adsorption isotherms. Optimum isosteric heats were calculated by the Bhatia and Myers correlation. Finally, the pre-exponential factor of desorption is determined to aid in the design of materials for global methane emissions mitigation.
APA, Harvard, Vancouver, ISO, and other styles
28

Arora, Vivek K., Joe R. Melton, and David Plummer. "An assessment of natural methane fluxes simulated by the CLASS-CTEM model." Biogeosciences 15, no. 15 (August 1, 2018): 4683–709. http://dx.doi.org/10.5194/bg-15-4683-2018.

Full text
Abstract:
Abstract. Natural methane emissions from wetlands and fire, and soil uptake of methane, simulated using the Canadian Land Surface Scheme and Canadian Terrestrial Ecosystem (CLASS-CTEM) modelling framework, over the historical 1850–2008 period, are assessed by using a one-box model of atmospheric methane burden. This one-box model also requires anthropogenic emissions and the methane sink in the atmosphere to simulate the historical evolution of global methane burden. For this purpose, global anthropogenic methane emissions for the period 1850–2008 were reconstructed based on the harmonized representative concentration pathway (RCP) and Emission Database for Global Atmospheric Research (EDGAR) data sets. The methane sink in the atmosphere is represented using bias-corrected methane lifetimes from the Canadian Middle Atmosphere Model (CMAM). The resulting evolution of atmospheric methane concentration over the historical period compares reasonably well with observation-based estimates (correlation = 0.99, root mean square error = 35 ppb). The modelled natural emissions are also assessed using an inverse procedure where the methane lifetimes required to reproduce the observed year-to-year increase in atmospheric methane burden are calculated based upon the specified global anthropogenic and modelled natural emissions that we have used here. These calculated methane lifetimes over the historical period fall within the uncertainty range of observation-based estimates. The present-day (2000–2008) values of modelled methane emissions from wetlands (169 Tg CH4 yr−1) and fire (27 Tg CH4 yr−1), methane uptake by soil (29 Tg CH4 yr−1), and the budget terms associated with overall anthropogenic and natural emissions are consistent with estimates reported in a recent global methane budget that is based on top-down approaches constrained by observed atmospheric methane burden. The modelled wetland emissions increase over the historical period in response to both increases in precipitation and in atmospheric CO2 concentration. This increase in wetland emissions over the historical period yields evolution of the atmospheric methane concentration that compares better with observation-based values than the case when wetland emissions are held constant over the historical period.
APA, Harvard, Vancouver, ISO, and other styles
29

Loh, Z. M., R. M. Law, K. D. Haynes, P. B. Krummel, L. P. Steele, P. J. Fraser, S. D. Chambers, and A. G. Williams. "Simulations of atmospheric methane for Cape Grim, Tasmania, to constrain southeastern Australian methane emissions." Atmospheric Chemistry and Physics 15, no. 1 (January 13, 2015): 305–17. http://dx.doi.org/10.5194/acp-15-305-2015.

Full text
Abstract:
Abstract. This study uses two climate models and six scenarios of prescribed methane emissions to compare modelled and observed atmospheric methane between 1994 and 2007, for Cape Grim, Australia (40.7° S, 144.7° E). The model simulations follow the TransCom-CH4 protocol and use the Australian Community Climate and Earth System Simulator (ACCESS) and the CSIRO Conformal-Cubic Atmospheric Model (CCAM). Radon is also simulated and used to reduce the impact of transport differences between the models and observations. Comparisons are made for air samples that have traversed the Australian continent. All six emission scenarios give modelled concentrations that are broadly consistent with those observed. There are three notable mismatches, however. Firstly, scenarios that incorporate interannually varying biomass burning emissions produce anomalously high methane concentrations at Cape Grim at times of large fire events in southeastern Australia, most likely due to the fire methane emissions being unrealistically input into the lowest model level. Secondly, scenarios with wetland methane emissions in the austral winter overestimate methane concentrations at Cape Grim during wintertime while scenarios without winter wetland emissions perform better. Finally, all scenarios fail to represent a~methane source in austral spring implied by the observations. It is possible that the timing of wetland emissions in the scenarios is incorrect with recent satellite measurements suggesting an austral spring (September–October–November), rather than winter, maximum for wetland emissions.
APA, Harvard, Vancouver, ISO, and other styles
30

Tauber, J., V. Parravicini, K. Svardal, and J. Krampe. "Quantifying methane emissions from anaerobic digesters." Water Science and Technology 80, no. 9 (November 1, 2019): 1654–61. http://dx.doi.org/10.2166/wst.2019.415.

Full text
Abstract:
Abstract In this research, sources of methane emissions of an anaerobic digester (AD) system at a municipal wastewater treatment plant (WWTP) with 260,000 population equivalent (PE) capacity were detected by a non-dispersive infrared (NDIR) camera. The located emissions were evaluated qualitatively and were documented with photographs and video films. Subsequently, the emission sources were quantified individually using different methods like the Flux-Chamber method and sampling from the digester's circulation pipe. The dissolved methane in the sludge digester was measured via gas chromatography-mass spectrometry (GC-MS) and 6.8% oversaturation compared to the equilibrium after Henry's law was found. Additionally, the residual gas potential of the digestate was measured using batch tests with 10 days' additional stabilisation time. The PE-specific residual gas production of the full-scale AD was calculated to 12.4 g CH4/(PE · y). An extended chemical oxygen demand (COD) balance including methane emissions for the whole digester system was calculated. Also the measured methane loads were calculated and summed up. The total methane loss of the AD was calculated at 24.6 g CH4/(PE · y), which corresponds to 0.4% of the produced biogas (4,913 g CH4/(PE · y)). PE-specific methane emission factors are presented for each investigated (point) source like the sludge outlet at the digester's head, a leaking manhole sealing and cracks in the concrete structure.
APA, Harvard, Vancouver, ISO, and other styles
31

Hempel, Sabrina, Diliara Willink, David Janke, Christian Ammon, Barbara Amon, and Thomas Amon. "Methane Emission Characteristics of Naturally Ventilated Cattle Buildings." Sustainability 12, no. 10 (May 25, 2020): 4314. http://dx.doi.org/10.3390/su12104314.

Full text
Abstract:
The mandate to limit global temperature rise calls for a reliable quantification of gaseous pollutant emissions as a basis for effective mitigation. Methane emissions from ruminant fermentation are of particular relevance in the context of greenhouse gas mitigation. The emission dynamics are so far insufficiently understood. We analyzed hourly methane emission data collected during contrasting seasons from two naturally ventilated dairy cattle buildings with concrete floor and performed a second order polynomial regression. We found a parabolic temperature dependence of the methane emissions irrespective of the measurement site and setup. The position of the parabola vertex varied when considering different hours of the day. The circadian rhythm of methane emissions was represented by the pattern of the fitted values of the constant term of the polynomial and could be well explained by feeding management and air flow conditions. We found barn specific emission minima at ambient temperatures around 10 °C to 15 °C. As this identified temperature optimum coincides with the welfare temperature of dairy cows, we concluded that temperature regulation of dairy cow buildings with concrete floor should be considered and further investigated as an emission mitigation measure. Our results further indicated that empirical modeling of methane emissions from the considered type of buildings with a second order polynomial for the independent variable air temperature can increase the accuracy of predicted long-term emission values for regions with pronounced seasonal temperature fluctuations.
APA, Harvard, Vancouver, ISO, and other styles
32

Loh, Z. M., R. M. Law, K. D. Haynes, P. B. Krummel, L. P. Steele, P. J. Fraser, S. Chambers, and A. Williams. "Simulations of atmospheric methane for Cape Grim, Tasmania, to constrain South East Australian methane emissions." Atmospheric Chemistry and Physics Discussions 14, no. 15 (August 19, 2014): 21189–221. http://dx.doi.org/10.5194/acpd-14-21189-2014.

Full text
Abstract:
Abstract. This study uses two climate models and six scenarios of prescribed methane emissions to compare modelled and observed atmospheric methane between 1994 and 2007, for Cape Grim, Australia (40.7° S, 144.7° E). The model simulations follow the TransCom-CH4 protocol and use the Australian Community Climate and Earth System Simulator (ACCESS) and the CSIRO Conformal-Cubic Atmospheric Model (CCAM). Radon is also simulated and used to reduce the impact of transport differences between the models and observations. Comparisons are made for air samples that have traversed the Australian continent. All six emission scenarios give modelled concentrations that are broadly consistent with those observed. There are three notable mismatches, however. Firstly, scenarios that incorporate interannually varying biomass burning emissions produce anomalously high methane concentrations at Cape Grim at times of large fire events in southeastern Australia, most likely due to the fire methane emissions being unrealistically input into the lowest model level. Secondly, scenarios with wetland methane emissions in the austral winter overestimate methane concentrations at Cape Grim during wintertime while scenarios without winter wetland emissions perform better. Finally, all scenarios fail to represent a methane source in austral spring implied by the observations. It is possible that the timing of wetland emissions in the scenarios is incorrect with recent satellite measurements suggesting an austral spring (September-October-November), rather than winter, maximum for wetland emissions.
APA, Harvard, Vancouver, ISO, and other styles
33

Höglund-Isaksson, L. "Global anthropogenic methane emissions 2005–2030: technical mitigation potentials and costs." Atmospheric Chemistry and Physics Discussions 12, no. 5 (May 3, 2012): 11275–315. http://dx.doi.org/10.5194/acpd-12-11275-2012.

Full text
Abstract:
Abstract. This paper presents estimates of current and future global anthropogenic methane emissions, their technical mitigation potential and associated costs for the period 2005 to 2030. The analysis uses the GAINS model framework to estimate emissions, mitigation potentials and costs for all major sources of anthropogenic methane for 83 countries/regions, which are aggregated to produce global estimates. Global anthropogenic methane emissions are estimated at 323 Mt methane in 2005, with an expected increase to 414 Mt methane in 2030. Major uncertainty sources in emission estimates are identified and discussed. Mitigation costs are estimated defining two different cost perspectives; the social planner cost perspective and the private investor cost perspective.
APA, Harvard, Vancouver, ISO, and other styles
34

Desvita, Yenny, Erwin Erwin, Yanuar Yanuar, and Zulfan Saam. "Emisi Metan Sektor Pertanian Kampung Iklim Desa Mukti Jaya Kecamatan Rimba Melintang Kabupaten Rokan Hilir Provinsi Riau." Dinamika Lingkungan Indonesia 6, no. 1 (January 9, 2019): 20. http://dx.doi.org/10.31258/dli.6.1.p.20-25.

Full text
Abstract:
Methane emissions of agriculture sector in Indonesia from year to year increase. To reduce the rate of methane emissions increase, the Indonesian government in 2012 through the Ministry of Environment launched the Kampung Iklim program. One of the villages included in Kampung Iklim Program is Mukti Jaya Village, Rimba Melintang Sub-district, Rokan Hilir Regency, Riau Province. This research aims to analyze methane emission model of agriculture. The research was conducted through survey by field research method. Research location in Mukti Village Rimba Melintang District Rokan Hilir Regency Riau Province. The value of methane rice land emissions in Mukti Jaya Village from 2011-2015 has increased due to changes in some methane producing parameters. The use of Cisadane varieties produced the highest methane emissions compared to the Ciherang and Dodokan varieties of 0.00029 Gg CH4/year/ ha.
APA, Harvard, Vancouver, ISO, and other styles
35

Luhar, Ashok K., David M. Etheridge, Zoë M. Loh, Julie Noonan, Darren Spencer, Lisa Smith, and Cindy Ong. "Quantifying methane emissions from Queensland's coal seam gas producing Surat Basin using inventory data and a regional Bayesian inversion." Atmospheric Chemistry and Physics 20, no. 23 (December 11, 2020): 15487–511. http://dx.doi.org/10.5194/acp-20-15487-2020.

Full text
Abstract:
Abstract. Methane (CH4) is a potent greenhouse gas and a key precursor of tropospheric ozone, itself a powerful greenhouse gas and air pollutant. Methane emissions across Queensland's Surat Basin, Australia, result from a mix of activities, including the production and processing of coal seam gas (CSG). We measured methane concentrations over 1.5 years from two monitoring stations established 80 km apart on either side of the main CSG belt located within a study area of 350 km × 350 km. Using an inverse modelling approach coupled with a bottom-up inventory, we quantify methane emissions from this area. The inventory suggests that the total emission is 173.2 × 106 kg CH4 yr−1, with grazing cattle contributing about half of that, cattle feedlots ∼ 25 %, and CSG processing ∼ 8 %. Using the inventory emissions in a forward regional transport model indicates that the above sources are significant contributors to methane at both monitors. However, the model underestimates approximately the highest 15 % of the observed methane concentrations, suggesting underestimated or missing emissions. An efficient regional Bayesian inverse model is developed, incorporating an hourly source–receptor relationship based on a backward-in-time configuration of the forward regional transport model, a posterior sampling scheme, and the hourly methane observations and a derived methane background. The inferred emissions obtained from one of the inverse model setups that uses a Gaussian prior whose averages are identical to the gridded bottom-up inventory emissions across the domain with an uncertainty of 3 % of the averages best describes the observed methane. Having only two stations is not adequate at sampling distant source areas of the study domain, and this necessitates a small prior uncertainty. This inverse setup yields a total emission of (165.8 ± 8.5) × 106 kg CH4 yr−1, slightly smaller than the inventory total. However, in a subdomain covering the CSG development areas, the inferred emissions are (63.6 ± 4.7) × 106 kg CH4 yr−1, 33 % larger than those from the inventory. We also infer seasonal variation of methane emissions and examine its correlation with climatological rainfall in the area.
APA, Harvard, Vancouver, ISO, and other styles
36

Dlugokencky, Edward J., Euan G. Nisbet, Rebecca Fisher, and David Lowry. "Global atmospheric methane: budget, changes and dangers." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, no. 1943 (May 28, 2011): 2058–72. http://dx.doi.org/10.1098/rsta.2010.0341.

Full text
Abstract:
A factor of 2.5 increase in the global abundance of atmospheric methane (CH 4 ) since 1750 contributes 0.5 Wm −2 to total direct radiative forcing by long-lived greenhouse gases (2.77 Wm −2 in 2009), while its role in atmospheric chemistry adds another approximately 0.2 Wm −2 of indirect forcing. Since CH 4 has a relatively short lifetime and it is very close to a steady state, reductions in its emissions would quickly benefit climate. Sensible emission mitigation strategies require quantitative understanding of CH 4 ’s budget of emissions and sinks. Atmospheric observations of CH 4 abundance and its rate of increase, combined with an estimate of the CH 4 lifetime, constrain total global CH 4 emissions to between 500 and 600 Tg CH 4 yr −1 . While total global emissions are constrained reasonably well, estimates of emissions by source sector vary by up to a factor of 2. Current observation networks are suitable to constrain emissions at large scales (e.g. global) but not at the regional to national scales necessary to verify emission reductions under emissions trading schemes. Improved constraints on the global CH 4 budget and its break down of emissions by source sector and country will come from an enhanced observation network for CH 4 abundance and its isotopic composition ( δ 13 C, δ D (D= 2 H) and δ 14 C). Isotopic measurements are a valuable tool in distinguishing among various sources that contribute emissions to an air parcel, once fractionation by loss processes is accounted for. Isotopic measurements are especially useful at regional scales where signals are larger. Reducing emissions from many anthropogenic source sectors is cost-effective, but these gains may be cancelled, in part, by increasing emissions related to economic development in many parts of the world. An observation network that can quantitatively assess these changing emissions, both positive and negative, is required, especially in the context of emissions trading schemes.
APA, Harvard, Vancouver, ISO, and other styles
37

Koloszko-Chomentowska, Zofia, Leszek Sieczko, and Roman Trochimczuk. "Production Profile of Farms and Methane and Nitrous Oxide Emissions." Energies 14, no. 16 (August 11, 2021): 4904. http://dx.doi.org/10.3390/en14164904.

Full text
Abstract:
The negative impact of agricultural production on the environment is manifested, above all, in the emission of greenhouse gases (GHG). The goals of this study were to estimate methane and nitrous oxide emissions at the level of individual farms and indicate differences in emissions depending on the type of production, and to investigate dependencies between greenhouse gas emissions and economic indicators. Methane and nitrous oxide emissions were estimated at three types of farms in Poland, based on FADN data: field crops, milk, and mixed. Data were from 2004–2018. Statistical analysis confirmed the relationship between greenhouse gas emissions and economic performance. On milk farms, the value of methane and nitrous oxide emissions increased with increased net value added and farm income. Milk farms reached the highest land productivity and the highest level of income per 1 ha of farmland. On field crops farms, the relationship between net value added and farm income and methane and nitrous oxide emissions was negative. Animals remain a strong determinant of methane and nitrous oxide emissions, and the emissions at milk farms were the highest. On mixed farms, emissions result from intensive livestock and crop production. In farms of the field crops type, emissions were the lowest and mainly concerned crops.
APA, Harvard, Vancouver, ISO, and other styles
38

Tutak, Magdalena, and Jarosław Brodny. "Forecasting Methane Emissions from Hard Coal Mines Including the Methane Drainage Process." Energies 12, no. 20 (October 11, 2019): 3840. http://dx.doi.org/10.3390/en12203840.

Full text
Abstract:
With regard to underground mining, methane is a gas that, on the one hand, poses a threat to the exploitation process and, on the other hand, creates an opportunity for economic development. As a result of coal exploitation, large amounts of coal enter the natural environment mainly through ventilation systems. Since methane is a greenhouse gas, its emission has a significant impact on global warming. Nevertheless, methane is also a high-energy gas that can be utilized as a very valuable energy resource. These different properties of methane prompted an analysis of both the current and the future states of methane emissions from coal seams, taking into account the possibilities of its use. For this reason, the following article presents the results of the study of methane emissions from Polish hard coal mines between 1993–2018 and their forecast until 2025. In order to predict methane emissions, research methodology was developed based on artificial neural networks and selected statistical methods. The multi-layer perceptron (MLP) network was used to make a prognostic model. The aim of the study was to develop a method to predict methane emissions and determine trends in terms of the amount of methane that may enter the natural environment in the coming years and the amount that can be used as a result of the methane drainage process. The methodology developed with the use of neural networks, the conducted research, and the findings constitute a new approach in the scope of both analysis and prediction of methane emissions from hard coal mines. The results obtained confirm that this methodology works well in mining practice and can also be successfully used in other industries to forecast greenhouse gas and other substance emissions.
APA, Harvard, Vancouver, ISO, and other styles
39

Hegarty, R. S., D. Alcock, D. L. Robinson, J. P. Goopy, and P. E. Vercoe. "Nutritional and flock management options to reduce methane output and methane per unit product from sheep enterprises." Animal Production Science 50, no. 12 (2010): 1026. http://dx.doi.org/10.1071/an10104.

Full text
Abstract:
The daily methane output of sheep is strongly affected by the quantity and digestibility of feed consumed. There are few widely applicable technologies that reduce the methane output of grazing ruminants without limiting feed intake per head or animal numbers. In contrast, there are many opportunities to increase the amount of animal product generated per unit of feed eaten. These include improving growth and reproductive rates of livestock and will reduce methane emission per unit of product (called emissions intensity) for individual animals. Producer responses to such improvements through changes to stocking rate and total area grazed will have a major effect on the total emission and profitability of the enterprise. First mating of ewes as lambs (~7 months of age) rather than as hoggets (~19 months of age) reduces the emissions intensity of self-replacing flocks but not that of flocks for which replacement ewes are purchased. Selection of sheep for improved residual feed intake reduces emissions intensity at the individual animal level as well as at the enterprise level. At present, emissions policies that motivate farm managers to consider generating fewer emissions rather than more profit or product are lacking.
APA, Harvard, Vancouver, ISO, and other styles
40

Garcia-Apaza, E., O. Paz, and I. Arana. "Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990 - 2000 and future projections." Australian Journal of Experimental Agriculture 48, no. 2 (2008): 255. http://dx.doi.org/10.1071/ea07247.

Full text
Abstract:
Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990–2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001–2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.
APA, Harvard, Vancouver, ISO, and other styles
41

Ye, Qing, Yan Pi, Zhen Zhen Jia, and Hai Zhen Wang. "Coal Mine Methane Drainage and Comprehensive Utilization in China." Applied Mechanics and Materials 295-298 (February 2013): 3023–26. http://dx.doi.org/10.4028/www.scientific.net/amm.295-298.3023.

Full text
Abstract:
According to situation of coal mine methane drainage and utilization, the five experienced development stages of coal mine methane drainage technology was summarized, the reasons of low rate of coal mine methane drainage were analyzed. Coal-seam methane utilization was analyzed from methane purification, methane generating electricity, chemical production, methane for civil utilization and utilization as automobile fuel etc. With the coal seam methane drainage quantity is more and more, the emissions requirements is more and more strict, so the emission reduction and effective utilization of this energy is important to accelerate efficient utilization of coal methane, reduce greenhouse gas emissions, protect environment, alleviate the supply contradiction of energy and realize sustainable development of coal mine etc.
APA, Harvard, Vancouver, ISO, and other styles
42

Dentener, F., M. van Weele, M. Krol, S. Houweling, and P. van Velthoven. "Trends and inter-annual variability of methane emissions derived from 1979-1993 global CTM simulations." Atmospheric Chemistry and Physics 3, no. 1 (February 3, 2003): 73–88. http://dx.doi.org/10.5194/acp-3-73-2003.

Full text
Abstract:
Abstract. The trend and interannual variability of methane sources are derived from multi-annual simulations of tropospheric photochemistry using a 3-D global chemistry-transport model. Our semi-inverse analysis uses the fifteen years (1979--1993) re-analysis of ECMWF meteorological data and annually varying emissions including photo-chemistry, in conjunction with observed CH4 concentration distributions and trends derived from the NOAA-CMDL surface stations. Dividing the world in four zonal regions (45--90 N, 0--45 N, 0--45 S, 45--90 S) we find good agreement in each region between (top-down) calculated emission trends from model simulations and (bottom-up) estimated anthropogenic emission trends based on the EDGAR global anthropogenic emission database, which amounts for the period 1979--1993 2.7 Tg CH4 yr-1. Also the top-down determined total global methane emission compares well with the total of the bottom-up estimates. We use the difference between the bottom-up and top-down determined emission trends to calculate residual emissions. These residual emissions represent the inter-annual variability of the methane emissions. Simulations have been performed in which the year-to-year meteorology, the emissions of ozone precursor gases, and the stratospheric ozone column distribution are either varied, or kept constant. In studies of methane trends it is most important to include the trends and variability of the oxidant fields. The analyses reveals that the variability of the emissions is of the order of 8Tg CH4 yr-1, and likely related to wetland emissions and/or biomass burning.
APA, Harvard, Vancouver, ISO, and other styles
43

Hausmann, P., R. Sussmann, and D. Smale. "Contribution of oil and natural gas production to renewed increase of atmospheric methane (2007–2014): top-down estimate from ethane and methane column observations." Atmospheric Chemistry and Physics Discussions 15, no. 24 (December 21, 2015): 35991–6028. http://dx.doi.org/10.5194/acpd-15-35991-2015.

Full text
Abstract:
Abstract. Harmonized time series of column-averaged mole fractions of atmospheric methane and ethane over the period 1999–2014 are derived from solar Fourier transform infrared (FTIR) measurements at the Zugspitze summit (47° N, 2964 m a.s.l.) and at Lauder (45° S, 370 m a.s.l.). Long-term trend analysis reveals a consistent renewed methane increase since 2007 of 6.2 [5.6, 6.9] ppb yr−1 at the Zugspitze and 6.0 [5.3, 6.7] ppb yr−1 at Lauder (95 % confidence intervals). Several recent studies provide pieces of evidence that the renewed methane increase is most likely driven by two main factors: (i) increased methane emissions from tropical wetlands, followed by (ii) increased thermogenic methane emissions due to growing oil and natural gas production. Here, we quantify the magnitude of the second class of sources, using long-term measurements of atmospheric ethane as tracer for thermogenic methane emissions. In 2007, after years of weak decline, the Zugspitze ethane time series shows the sudden onset of a significant positive trend (2.3 [1.8, 2.8] × 10-2 ppb yr−1 for 2007–2014), while a negative trend persists at Lauder after 2007 (−0.4 [−0.6, −0.1] × 10-2 ppb yr−1). Zugspitze methane and ethane time series are significantly correlated for the period 2007–2014 and can be assigned to thermogenic methane emissions with an ethane-to-methane ratio of 10–21 %. We present optimized emission scenarios for 2007–2014 derived from an atmospheric two-box model. From our trend observations we infer a total ethane emission increase over the period 2007–2014 from oil and natural gas sources of 1–11 Tg yr−1 along with an overall methane emission increase of 24–45 Tg yr−1. Based on these results, the oil and natural gas emission contribution C to the renewed methane increase is deduced using three different emission scenarios with dedicated ranges of methane-to-ethane ratios (MER). Reference scenario 1 assumes an oil and gas emission combination with MER = 3.3–7.6, which results in a minimum contribution C > 28 % (given as lower bound of 99 % confidence interval). For the limiting cases of pure oil-related emissions with MER = 1.7–3.3 (scenario 2) and pure natural gas sources with MER = 7.6–12.1 (scenario 3) the results are C > 13 % and C > 53 %, respectively. Our results suggest that long-term observations of column-averaged ethane provide a valuable constraint on the source attribution of methane emission changes and provide basic knowledge for developing effective climate change mitigation strategies.
APA, Harvard, Vancouver, ISO, and other styles
44

Park, Poong-Mo, Young-Kwon Park, and Jong-In Dong. "Reaction Characteristics of NOx and N2O in Selective Non-Catalytic Reduction Using Various Reducing Agents and Additives." Atmosphere 12, no. 9 (September 13, 2021): 1175. http://dx.doi.org/10.3390/atmos12091175.

Full text
Abstract:
Artificial nitrogen oxide (NOx) emissions due to the combustion of fossil fuels constitute more than 75% of the total NOx emissions. Given the continuous reinforcement of NOx emission standards worldwide, the development of environmentally and economically friendly NOx reduction techniques has attracted much attention. This study investigates the selective non-catalytic reduction (SNCR) of NOx by methane, ammonia, and urea in the presence of sodium carbonate and methanol and the concomitant generation of N2O. In addition, the SNCR mechanism is explored using a chemical modeling software (CHEMKIN III). Under optimal conditions, NOx reduction efficiencies of 80–85%, 66–68%, and 32–34% are achieved for ammonia, urea, and methane, respectively. The N2O levels generated using methane (18–21 ppm) were significantly lower than those generated using urea and ammonia. Addition of sodium carbonate and methanol increased the NOx reduction efficiency by methane to ≥40% and 60%, respectively. For the former, the N2O level and reaction temperature further decreased to 2–3 ppm and 850–900 °C, respectively. The experimental results were well consistent with simulations, and the minor discrepancies were attributed to microscopic variables. Thus, our work provides essential guidelines for selecting the best available NOx control technology.
APA, Harvard, Vancouver, ISO, and other styles
45

Atherton, Emmaline, David Risk, Chelsea Fougère, Martin Lavoie, Alex Marshall, John Werring, James P. Williams, and Christina Minions. "Mobile measurement of methane emissions from natural gas developments in northeastern British Columbia, Canada." Atmospheric Chemistry and Physics 17, no. 20 (October 19, 2017): 12405–20. http://dx.doi.org/10.5194/acp-17-12405-2017.

Full text
Abstract:
Abstract. North American leaders recently committed to reducing methane emissions from the oil and gas sector, but information on current emissions from upstream oil and gas developments in Canada are lacking. This study examined the occurrence of methane plumes in an area of unconventional natural gas development in northwestern Canada. In August to September 2015 we completed almost 8000 km of vehicle-based survey campaigns on public roads dissecting oil and gas infrastructure, such as well pads and processing facilities. We surveyed six routes 3–6 times each, which brought us past over 1600 unique well pads and facilities managed by more than 50 different operators. To attribute on-road plumes to oil- and gas-related sources we used gas signatures of residual excess concentrations (anomalies above background) less than 500 m downwind from potential oil and gas emission sources. All results represent emissions greater than our minimum detection limit of 0.59 g s−1 at our average detection distance (319 m). Unlike many other oil and gas developments in the US for which methane measurements have been reported recently, the methane concentrations we measured were close to normal atmospheric levels, except inside natural gas plumes. Roughly 47 % of active wells emitted methane-rich plumes above our minimum detection limit. Multiple sites that pre-date the recent unconventional natural gas development were found to be emitting, and we observed that the majority of these older wells were associated with emissions on all survey repeats. We also observed emissions from gas processing facilities that were highly repeatable. Emission patterns in this area were best explained by infrastructure age and type. Extrapolating our results across all oil and gas infrastructure in the Montney area, we estimate that the emission sources we located (emitting at a rate > 0.59 g s−1) contribute more than 111 800 t of methane annually to the atmosphere. This value exceeds reported bottom-up estimates of 78 000 t of methane for all oil and gas sector sources in British Columbia. Current bottom-up methods for estimating methane emissions do not normally calculate the fraction of emitting oil and gas infrastructure with thorough on-ground measurements. However, this study demonstrates that mobile surveys could provide a more accurate representation of the number of emission sources in an oil and gas development. This study presents the first mobile collection of methane emissions from oil and gas infrastructure in British Columbia, and these results can be used to inform policy development in an era of methane emission reduction efforts.
APA, Harvard, Vancouver, ISO, and other styles
46

O. Yusuf, Rafiu, Zainura Zainon Noor, Ahmad Halilu Abba, Mohd Ariffin Abu Hassan, Mohammed Rafee Majid, and Nasiru Idris Medugu. "Predicting methane emissions from livestock in Malaysia using the ARIMA model." Management of Environmental Quality: An International Journal 25, no. 5 (August 5, 2014): 585–99. http://dx.doi.org/10.1108/meq-01-2013-0001.

Full text
Abstract:
Purpose – The purpose of this paper is to compute the amount of methane generated from the waste of livestock from 1980 to 2008; then use the information in forecasting subsequent methane emissions by the sector in Malaysia from 2009 to 2020. Design/methodology/approach – The research study employed two approaches; computing methane emissions from 1980 to 2008 using the IPCC guidelines, and forecasting methane emissions for the animals from 2009 to 2020 using the autoregressive integrated moving average (ARIMA) model from the predictive analysis software (PASW-SPSS 18.0). Findings – Methane emissions from cattle, buffaloes and pigs accounted for over 95 per cent of total emissions and emissions from cattle are predicted to increase from 67.0 Gg in 2009 to 77.0 Gg by 2020. Emissions from the others will not be appreciable although poultry emissions will rise to 11.0 Gg by 2020. Attempt by the Malaysian Government to increase cattle production is not necessary at the moment as protein requirement has been met. Research limitations/implications – ARIMA model suffers from linear and data limitation: the future value of a variable assumed to be a linear function of several past observations in ARIMA is sometimes unrealistic. Large amounts of historical data are needed in ARIMA models in order to get desired results. The inventory of the animals was taken from 1980 to 2008.This needs to be improved upon by updating it to cover up to 2011 so that the forecast will start from 2012. Practical implications – The chosen ARIMA method has demonstrated its correctness in being adequate as a predicting tool for animal methane emissions. Policy makers can apply it so as to take practical steps to avoid these emissions. Originality/value – This is a novice idea as animal methane emission forecasting tool. This model will be of immense use and help in predicting methane emissions from livestock.
APA, Harvard, Vancouver, ISO, and other styles
47

Pelchen, A., and K. J. Peters. "Methane emissions from sheep." Small Ruminant Research 27, no. 2 (February 1998): 137–50. http://dx.doi.org/10.1016/s0921-4488(97)00031-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Johnson, K. A., and D. E. Johnson. "Methane emissions from cattle." Journal of Animal Science 73, no. 8 (August 1, 1995): 2483–92. http://dx.doi.org/10.2527/1995.7382483x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Nam, E. K., T. E. Jensen, and T. J. Wallington. "Methane Emissions from Vehicles." Environmental Science & Technology 38, no. 7 (April 2004): 2005–10. http://dx.doi.org/10.1021/es034837g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Rasmussen, Mark. "Methane Emissions and Ruminants." Microbe Magazine 4, no. 10 (October 1, 2009): 437. http://dx.doi.org/10.1128/microbe.4.437.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography