Academic literature on the topic 'Methacrylic copolymer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Methacrylic copolymer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Methacrylic copolymer"
Makarewicz, Edwin, and Anna Zalewska. "Sedimentation of water dispersed systems of acrylate copolymers in xylene." Polish Journal of Chemical Technology 10, no. 3 (January 1, 2008): 29–34. http://dx.doi.org/10.2478/v10026-008-0032-4.
Full textChansatidkosol, Siraprapa, Praneet Opanasopit, and Prasert Akkaramongkolporn. "Tablet Disintegrant Derived from Crosslinked Methacrylic Acid and Divinylbenzene Copolymers." Advanced Materials Research 1060 (December 2014): 168–71. http://dx.doi.org/10.4028/www.scientific.net/amr.1060.168.
Full textGorelov, Y. P., I. A. Shalaginova, Y. V. Volosova, P. V. Kornienko, and K. V. Shirshin. "Heat and weather resistance of copolymer organic glasses." Plasticheskie massy, no. 7-8 (September 11, 2019): 20–22. http://dx.doi.org/10.35164/0554-2901-2019-7-8-20-22.
Full textRistic, Ivan, Ljubisa Nikolic, Vesna Nikolic, Jaroslava Budinski-Simendic, and Vladimir Zdravkovic. "The influence of monomer molar ratio on the properties of copolymers based on methyl methacrylate and methacrylic acid." Chemical Industry 63, no. 6 (2009): 611–19. http://dx.doi.org/10.2298/hemind0906611r.
Full textPark, Yu-Ri, Jeong-A. Yu, and Joon-Seop Kim. "Aggregation Behavior of Na-Neutralized Styrene-Ran-Methacrylic Acid Copolymers in Aqueous Solution." Journal of Nanoscience and Nanotechnology 7, no. 11 (November 1, 2007): 3920–25. http://dx.doi.org/10.1166/jnn.2007.088.
Full textKamorin, D. M., K. V. Shirshin, V. D. Kavtrova, Y. V. Sak, E. A. Timchenko, and A. S. Simagin. "Solution properties of amphiphilic amino- and oligoethylene glycol-containing methacrylic copolymers." Plasticheskie massy 1, no. 11-12 (January 20, 2022): 40–42. http://dx.doi.org/10.35164/0554-2901-2021-11-12-40-42.
Full textTang, Xiao Fen, Wei Li, and Xing Xiang Zhang. "New Approach to Fabricate Microcapsules with Comb-Like Copolymer Shell by Phase Separation Method." Advanced Materials Research 860-863 (December 2013): 577–81. http://dx.doi.org/10.4028/www.scientific.net/amr.860-863.577.
Full textHook, Thomas J., Joseph A. Gardella, and Lawrence Salvati. "Multitechnique surface spectroscopic studies of plasma-modified polymers II: H2O/Ar plasma-modified polymethylmethacrylate/polymethacrylic acid copolymers." Journal of Materials Research 2, no. 1 (February 1987): 132–42. http://dx.doi.org/10.1557/jmr.1987.0132.
Full textTuzar, Zdeněk, Pavel Kratochvíl, Karel Procházka, and Petr Munk. "Block Copolymer Micelles in Aqueous Media." Collection of Czechoslovak Chemical Communications 58, no. 10 (1993): 2362–69. http://dx.doi.org/10.1135/cccc19932362.
Full textNikolic, Vladimir, Sava Velickovic, Dusan Antonovic, and Aleksandar Popovic. "Biodegradation of starch–graft–polystyrene and starch–graft–poly(methacrylic acid) copolymers in model river water." Journal of the Serbian Chemical Society 78, no. 9 (2013): 1425–41. http://dx.doi.org/10.2298/jsc121216051n.
Full textDissertations / Theses on the topic "Methacrylic copolymer"
Tuzcu, Gozde. "2-acrylamido-2-methyl-1-propanesulfonic Acid -methacrylic Acid Copolymer And Its Polyethylene Glycol Methyl Ether Derivatives As Superplasticizers In Concrete." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12609380/index.pdf.
Full textFrenzel, Ralf, Christa Blank, Karina Grundke, Veneta Hein, Bernd Schmidt, Frank Simon, Michael Thieme, and Hartmut Worch. "Wettability of Methacrylate Copolymer Films Deposited on Anodically Oxidized and Roughened Aluminium Surfaces." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-107056.
Full textFrenzel, Ralf, Christa Blank, Karina Grundke, Veneta Hein, Bernd Schmidt, Frank Simon, Michael Thieme, and Hartmut Worch. "Wettability of Methacrylate Copolymer Films Deposited on Anodically Oxidized and Roughened Aluminium Surfaces." Technische Universität Dresden, 2009. https://tud.qucosa.de/id/qucosa%3A26713.
Full textDePorter, Craig Donald. "Synthesis and characterization of well-defined methacrylic-based block ionomers." Diss., This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-07282008-134318/.
Full textCavallo, Valentina. "Tailoring intermolecular interactions in methacrylate-based copolymers and nanocomposites : Effect on molecular dynamics and thermal properties." Electronic Thesis or Diss., Lyon, INSA, 2023. http://www.theses.fr/2023ISAL0103.
Full textA correlation between the strength of the intermolecular interactions and physical properties has been reported for amorphous polymers. In particular, an increment of thermal conductivity has been associated to the addition of stronger interactions compared with weak van der Walls, i.e. hydrogen and ionic bonds. In this work, an attempt to tailor thermal conductivity in amorphous polymers has been made by engineering intermolecular interactions. Poly(methylmethacrylate) PMMA was used as standard and poly(methylmethacrylate-co-methacrylic acid) (PMMA-co-MAA) copolymers were synthesised by free radical copolymerization in order to introduce inter-chain hydrogen bonds and, after neutralisation, ionic bonds. Copolymers were successfully obtained up to 30wt% of MAA and characterized. Also, different comonomers were used to evaluate the influence of a flexible unit bringing H-bonds, 2-hydroxyethylmethacrylate (HEMA) or 2-carboxyethylacrylate (CEA). Thermal conductivity slightly increased increasing MAA and HEMA content, while for CEA copolymers the presence of defects prevented the measurement. Later, PMMA-co-MAA was used as a matrix for cellulose-based nanocomposites to tailor filler compatibility, thanks to the presence of H-bonds between MAA unit and cellulose surface. Cellulose nanofibers (CNF) up to 15wt% were efficiently dispersed by solvent casting in a mixture of two solvents (tetrahydrofuran/methanol). Thermal conduction showed no significant changes following the introduction of CNF. Dynamic mechanical analysis (DMA) and broadband dielectric spectroscopy (BDS) were used in combination to fully characterize the macromolecular mobility of PMMA-co-MAA following the introduction of inter-chain H-bonds and the subsequent addition of CNF. An additional β’-relaxation, characterized by an activation energy (Ea) nearly four times higher than the Ea(β), was found for the nanocomposites and ascribed to the establishment of H-bonds between the -COOH groups of the matrix and the hydroxyl groups of CNF, as confirmed by the lower values found for the thermal expansion coefficient of the free volume and the fragility of the material. A deeper investigation about the α-relaxation was able to reveal the influence of CNF confirming the presence of interfacial H-bonds. Indeed, despite the similar glass transition temperatures characterising the matrix and the nanocomposites, a shift of their relaxation times to higher temperatures was observed following the addition of CNF. Results reported in this thesis evidenced that the enhancements of thermal conductivity obtainable by the modification of the interchain interactions between chains in amorphous matrices remains an extremely complex challenge
Kannan, Nirmal Balaji. "Poly(Pentafluorostyrene)-b-Poly(Methacrylic acid) Amphiphilic Block Copolymers via Nitroxide Mediated Polymerization." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35294.
Full textKalista, Stephen James Jr. "Self-Healing of Thermoplastic Poly(Ethylene-co-Methacrylic Acid) Copolymers Following Projectile Puncture." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/36186.
Full textMaster of Science
Miles, Andrew. "Copolymers of methacrylic acid and itaconic acid derivatives as thermally crosslinkable electron resists." Thesis, University of Stirling, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236050.
Full textAlshuiref, Abubaker. "Synthesis and characterization of two novel urethane macromonomers and their methacrylic/urethane graft copolymers." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4022.
Full textENGLISH ABSTRACT: Polymethacrylates are well known adhesives and can carry specific functionality, but have the disadvantage that their flexible backbones impart limited thermal stability and mechanical strength. Polyurethanes (PUs) are finding increasing application and use in many industries due to their advantageous properties, such as a wide range of flexibility combined with toughness, high chemical resistance and excellent weatherability. PUs do however have some disadvantages, for instance, PU is considered an expensive polymer, especially when considered for solvent based adhesives. the focus of this study was to consider a largely unstudied area of PU chemistry, namely combining PUs with polymethacrylates. Two types of linear urethane macromers (UMs) UM1 and UM2 were synthesized by the polyaddition polymerization of 4,4'-methylenediphenyl diisocyanate (MDI) with ethylene glycol (EG), and MDI with neopentylglycol (NPG), via a pre-polymer method, followed by termination with 2-hydroxy ethylacrylate (2-HEA) and methanol (MeOH) to yield UMs having specific urethane chain lengths, and which have to be predominantly monofunctional. Structural identification of the UMs was verified by MALDI-TOF-MS, FTIR, 13C-NMR and 1HNMR spectroscopy.Various percentages of the respective UMs (0_55 wt % of methacrylate monomers) were then incorporated into polymethyl methacrylate (PMMA) and poly n-butyl methacrylate (PnBMA) backbones via solution free-radical copolymerization. The resulting methyl methacrylate-g-urethane and n-butyl methacrylate-g-urethane copolymers were characterized by 1H-NMR,13C-NMR, FTIR, SEC with double detectors (UV and RI), light scattering, UV-Vis, HPLC, TGA, DSC, DMA and TEM. Weight percentages of UM incorporated into the methyl methacrylate-g-urethane copolymers were calculated using FTIR, UV-Vis and 1H-NMR techniques. Phase separation which occurred between the urethane segment and methacrylate segment in the graft copolymerization products was investigated by DMA, DSC and TEM analysis. Microphase separation occurred in all PMMA-g-UM1 and PnBMA-g-UM1 copolymers: two glass transitions temperatures corresponding to the PMMA or PnBMA and UM1 fractions, respectively, were observed. On the other hand, DMA and DSC results showed that in most graft copolymer products the two respective component parts PMMA-g-UM2 or PnBMA-g- UM2 were compatible, because only one Tg was observed. Two glass transitions occurred for PMMA or PnBMA and UM2 when the amount of UM was increased to 55 wt % during copolymerization and microphase separation was evident in DSC, DMA and TEM measurements. Thermal stability and storage modulus (stiffness) of all the synthesized PMMA-g-urethane and PnBMA-g-urethane copolymers increased as the concentration of urethane macromonomer in the copolymerization feed increased, as confirmed in TGA and DMA results. The surface and adhesive properties of the synthesized graft copolymer were studied by measuring the static contact angle and peel strength. Adhesion increased as the content of UMs increased in the graft copolymer. The graft copolymers prepared using a high UM2 feed for both PMMA and PnBMA showed improved in adhesion compared to the pure methacrylate polymers. The adhesion was better for both leather and for vinyl.
AFRIKAANSE OPSOMMING: Polimetakrilate is bekende kleefstowwe. Hulle het egter die tekortkoming dat hulle buigbare ruggraat beperkte termiese en meganiese stabliteit besit. Poliuretane (PUs) word deesdae al hoe meer gebruik in baie nywerhede as gevolg van hulle baie voordele, insluitend hul wye buigsaamheid tesame met sterkte, hoë chemiese weerstand en uitstekende weerbaarheid. PUs het egter ’n paar nadele: hulle is baie duur, veral wanneer hulle gebruik word in oplosmiddel-gebaseerde kleefstowwe. Die doel van hierdie studie is om die kombinering van PUs met polimetakrilate te bestudeer, 'n onderwerp wat tot dusver baie min aandag-getrek het. Twee tipes liniêre uretaanmakromere (UMs), UM1 en UM2, is gesintetiseer deur gebruik te maak van poliaddisiepolimerisasie van 4,4'-metileendifeniel diisosianaat (MDI) met etileenglikol (EG), en MDI met neopentielglikol (NPG), via ‘n prepolimeermetode, gevolg deur terminering met 2-hidroksiëtielakrilaat (2-HEA) en metanol (MeOH). Die produk hiervan is UMs met spesifieke kettinglengtes (hoofsaaklik monofunksioneel). Die samestelling van die UMs is met behulp van die volgende gevorderde analitiese tegnieke bepaal: MALDI-TOFMS, FTIR, 13C-NMR en 1H-NMR. Verskillende hoeveelhede van die UMs (0_55 gewIing% metakrilaatmonomere) is dan in die polimetielmetakrilaat (PMMA) en poli-n-butielmetakrilaat (PnBMA) ruggrate geïnkorporeer deur middel van oplossing-vryradikaalpolimerisasie. Die samestelling van die kopolimeerprodukte, metiel-metakrilaat-g-uretaan en n-butiel-metakrilaat-g-uretaan, is met behulp van die volgende gevorderde analitiese tegnieke bepaal: 1H-NMR, 13C-NMR, FTIR, SEC met dubbele detektors (UV en RI), ligverstrooiing UV-Vis, HPLC, TGA, DSC, DMA en TEM. Die hoeveelheid UM geïnkorporeer in die metielmetakrilaat-g-uretaan kopolimere is bereken deur gebruik te maak van FTIR, UV-Vis en 1H-NMR data. Die faseskeiding wat plaasgevind het tussen die uretaansegment en die metakrilaatsegment in die produkte van die entpolimerisasie is met behulp van DMA, DSC en TEM ondersoek. In alle PMMA-g-UM1 en PnBMA-g-UM1 kopolimere het mikrofaseskeiding plaasgevind: twee verskillende glasoorgangstemperature vir die PMMA of PnBMA en UM1 fraksies is waargeneem. Hierteenoor het DMA en DSC resultate getoon dat in die meeste entkopolimeerprodukte (PMMA-g-UM2 of PnBMA-g-UM2) was die twee komponente verenigbaar, aangesien net een Tg waargeneem is. In die geval van die kopolimere waar die hoeveelheid UM in die kopolimerisasiereaksies tot 55 gew% verhoog is, is twee glasoorgangstemperature vir PMMA of PnBMA, en UM2 waargeneem. Mikrofaseskeiding is met behulp van DSC, DMA en TEM bewys. Termiese stabiliteit en stoormodulus (styfheid) van alle gesintetiseerde PMMA-g uretaan en PnBMA-g-uretaan kopolimere het toegeneem namate die uretaankonsentrasie in die kopolimerisasiereaksie toegeneem het soos deur middel van TGA en DMA resultate bewys is. Die oppervlakte- en kleefeienskappe van die bereide entkopolimere is bestudeer deur die statiese-kontakhoek en skilkrag te meet. Adhesie het toegeneem namate die UMinhoud toegeneem het. Die entkopolimere berei met hoë PMMA en PnBMA inhoud het uiteindelik beter adhesie getoon as die suiwer metakrilaatpolimere. Die adhesie was beter vir beide leer en viniel.
Berndt, Andreas. "Synthese und Charakterisierung lösungsprozessierbarer und vernetzbarer Methacrylat-Copolymere für den Einsatz als Dielektrika in der organischen Elektronik." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-211995.
Full textBooks on the topic "Methacrylic copolymer"
Yang, Chiming. RAFT polymerization and characterization of block copolymers of poly(N-isopropylacrylamide) and poly(methacrylic acid). Ottawa: National Library of Canada, 2003.
Find full textBook chapters on the topic "Methacrylic copolymer"
Yano, Shinichi, Kenji Tadano, Takahito Sugiura, and Eisaku Hirasawa. "Structure and Molecular Motion in Complex Salts of Ethylene — Methacrylic Acid Copolymer With 1,3-Bis-Aminomethylcyclohexane and/or Zinc(II)." In Structure and Properties of Ionomers, 481–92. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3829-8_42.
Full textBai, Fenglian, Chia-Hu Chang, and S. E. Webber. "Alternating Copolymers of 2-Vinylnaphthalene and Methacrylic Acid in Aqueous Solution." In ACS Symposium Series, 384–411. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0358.ch029.
Full textBugner, Douglas E. "AB Block Copolymers Containing Methacrylic Acid and/or Metal Methacrylate Blocks." In ACS Symposium Series, 276–90. Washington, DC: American Chemical Society, 1988. http://dx.doi.org/10.1021/bk-1988-0364.ch020.
Full textMcNeil, I. C. "Degradation of Polymers of Methacrylic Acid Salts and Copolymers of these Salts with Methyl Methacrylate." In Developments in Polymer Degradation—7, 1–33. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3425-2_1.
Full textHallden-Abberton, Michael P. "The Preparation of Methyl Methacrylate/Methacrylic Anhydride Copolymers from PMMA and Dialkyl Amines via Reactive Extrusion." In Polymer Modification, 3–9. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-1477-4_1.
Full textVuković, Radivoje, Ana Erceg Kuzmić, Grozdana Bogdanić, and Dragutin Fleš. "Preparation of Molecularly Imprinted Cross-Linked Copolymers by Thermal Degradation of Poly(methacryl-N,N'-diisopropylurea-co-ethylene glycol dimethacrylate)." In ACS Symposium Series, 229–37. Washington, DC: American Chemical Society, 2005. http://dx.doi.org/10.1021/bk-2005-0916.ch017.
Full textMorris, Barry, John Pennias, and David Walsh. "Ethylene Acid Copolymer Metal Salts (Ionomers)." In Polymer Data Handbook, 152–54. Oxford University PressNew York, NY, 2009. http://dx.doi.org/10.1093/oso/9780195181012.003.0025.
Full textKarimov, M. U., A. T. Djalilov, and N. A. Samigov. "A Note on the Influence of Copolymer of Na-Methacrylic Acid and Methacrylic Acid Isobutyl Ester on the Physicmechanical Properties of Cement Systems." In Analytical Chemistry from Laboratory to Process Line, 21–25. Apple Academic Press, 2018. http://dx.doi.org/10.1201/9780429454356-4.
Full text"A Note on the Influence of Copolymer of Na-Methacrylic Acid and Methacrylic Acid Isobutyl Ester on the Physic-Mechanical Properties of Cement Systems." In Analytical Chemistry from Laboratory to Process Line, 41–46. Apple Academic Press, 2016. http://dx.doi.org/10.1201/b19596-11.
Full textKarimov, M., A. Djalilov, and N. Samigov. "A Note on the Influence of Copolymer of NA-Methacrylic Acid and Methacrylic Acid Isobutyl Ester on the Physic-Mechanical Properties of Cement Systems." In Analytical Chemistry from Laboratory to Process Line, 21–25. Apple Academic Press, 2015. http://dx.doi.org/10.1201/b19596-6.
Full textConference papers on the topic "Methacrylic copolymer"
Wu, Qinglin, Peng Tian, and Quang Cao. "Poly(N-Isopropylacrylamide-Co-Methacrylic Acid) Micro/Nanoparticles: Formulation, Size Distribution and Use for Cu++ Adsorption." In 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2008. http://dx.doi.org/10.1115/micronano2008-70019.
Full textIwashige, Yutaro, Yuko T. Ito, Takahiro Kozawa, Kazuo Sakamoto, and Makoto Muramatsu. "Dissolution dynamics of copolymer of poly(4-hydroxystyrene-co-methacrylic acid) in tetraalkylammonium hydroxide aqueous solutions." In Advances in Patterning Materials and Processes XLI, edited by Douglas Guerrero and Gilles R. Amblard. SPIE, 2024. http://dx.doi.org/10.1117/12.3011199.
Full textBrogan, J. A., C. C. Berndt, A. Claudon, and C. Coddet. "Mechanical Properties of Spray-Formed Composite Structures." In ITSC 1998, edited by Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p1173.
Full textRusu, Teodora, and Oana Marilena Gogan. "Artificial intelligence methods applied in the controlled synthesis of polydimethilsiloxane - poly (methacrylic acid) copolymer networks with imposed properties." In VIII INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES”: From Aerospace to Nanotechnology. Author(s), 2016. http://dx.doi.org/10.1063/1.4949736.
Full textSadeghi, Mohammad, Alireza Hamzeh, Alberto D’Amore, Domenico Acierno, and Luigi Grassia. "NOVEL CROSSLINKED GRAFT COPOLYMER OF METHACRYLIC ACID AND COLLAGEN AS A PROTEIN-BASED SUPERABSORBENT HYDROGEL WITH SALT AND PH-RESPONSIVENESS PROPERTIES." In IV INTERNATIONAL CONFERENCE TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2008. http://dx.doi.org/10.1063/1.2989060.
Full textArco, Susan, Mark Neil Tolentino, Caidric Gupit, and Eduardo Atayde Jr. "Thermo–Responsive Block Copolymers of Ethylene Glycol Derivatives and Methacrylic Acid." In Annual International Conference on Chemistry, Chemical Engineering and Chemical Process ( CCECP 2016 ). Global Science & Technology Forum ( GSTF ), 2016. http://dx.doi.org/10.5176/2301-3761_ccecp16.9.
Full textPodkoscielna, Beata, Karolina Fila, Marta Goliszek, Mateusz Gargol, Barbara Gawdzik, Małgorzata Gil, and Paweł Mergo. "Thermal and optical study of the new methacrylic copolymers useful in POF technology." In 13th Conference on Integrated Optics: Sensors, Sensing Structures and Methods, edited by Przemyslaw Struk and Tadeusz Pustelny. SPIE, 2018. http://dx.doi.org/10.1117/12.2502048.
Full textHarthcock, Matthew A. "Structural Analysis Of Ethylene/Acrylic And Methacrylic Acid Copolymers Using Fourier Self-Deconvolution Of Infrared Spectra." In 1985 International Conference on Fourier and Computerized Infrared Spectroscopy, edited by David G. Cameron and Jeannette G. Grasselli. SPIE, 1985. http://dx.doi.org/10.1117/12.970791.
Full textMukhtarov, Anvar, Maksim Smirnov, Marina Balakina, and Tatyana Vakhonina. "The study of dipolar relaxation in chromophore-containing methacrylic copolymers using thermally stimulated depolarization current measurements." In PROCEEDINGS OF THE XV INTERNATIONAL CONFERENCE «PHYSICS OF DIELECTRICS». AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0033790.
Full text