Academic literature on the topic 'Meteorology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Meteorology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Meteorology"
Lasher, Darlene. "Meteorology." Psychological Perspectives 55, no. 1 (January 2012): 126. http://dx.doi.org/10.1080/00332925.2012.650072.
Full textP., F., and R. G. "Meteorology." Res: Anthropology and Aesthetics 23 (March 1993): 5–6. http://dx.doi.org/10.1086/resv23n1ms20166863.
Full textRaja, Melita Emas Lumban, and Hadiyanto Hadiyanto. "Hubungan Karakteristik Pengguna dan Perilaku Penggunaan Portal Data BMKG dengan Tingkat Kepuasan Perolehan Data Iklim." Jurnal Sains Komunikasi dan Pengembangan Masyarakat [JSKPM] 4, no. 4 (August 4, 2020): 527. http://dx.doi.org/10.29244/jskpm.4.4.527-544.
Full textRaja, Melita Emas Lumban, and Hadiyanto Hadiyanto. "Hubungan Karakteristik Pengguna dan Perilaku Penggunaan Portal Data BMKG dengan Tingkat Kepuasan Perolehan Data Iklim." Jurnal Sains Komunikasi dan Pengembangan Masyarakat [JSKPM] 4, no. 4 (August 4, 2020): 535. http://dx.doi.org/10.29244/jskpm.4.4.535-552.
Full textLockwood, Mike, and Mat Owens. "Cosmic meteorology." Astronomy & Geophysics 62, no. 3 (June 1, 2021): 3.12–3.19. http://dx.doi.org/10.1093/astrogeo/atab065.
Full textCrenner, Jim. "Hammock Meteorology." Iowa Review 40, no. 1 (April 2010): 80. http://dx.doi.org/10.17077/0021-065x.6851.
Full textMANNOJI, Nobutaka. "GPS Meteorology." Journal of the Visualization Society of Japan 16, no. 61 (1996): 107–11. http://dx.doi.org/10.3154/jvs.16.61_107.
Full textNAITO, Isao. "GPS Meteorology." Journal of Geography (Chigaku Zasshi) 109, no. 6 (2000): 964–70. http://dx.doi.org/10.5026/jgeography.109.6_964.
Full textEsau, Igor, Stefania Argentini, Rajmund Przybylak, Irina Repina, and Anna Sjöblom. "Svalbard Meteorology." Advances in Meteorology 2012 (2012): 1–3. http://dx.doi.org/10.1155/2012/818473.
Full textEtling, D. "Dynamic Meteorology." Eos, Transactions American Geophysical Union 68, no. 46 (1987): 1595. http://dx.doi.org/10.1029/eo068i046p01595-01.
Full textDissertations / Theses on the topic "Meteorology"
Johansson, Cecilia. "Influence of External Factors on the Turbulence Structure in the Atmospheric Boundary Layer." Doctoral thesis, Uppsala University, Department of Earth Sciences, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3221.
Full textThe theory used in today’s weather- and climate models to describe processes near the earth’s surface, i.e. transport of heat, moisture and momentum between the ground and the atmosphere, is based on the idea that only local factors are important, such as temperature and wind speed near the ground. However, from measurements made at two sites, one agricultural and one marine, it has been found that large eddies, which are related to the convective boundary layer height, influence the turbulence structure near the ground during unstable conditions more than previously realized. Especially the momentum transport is affected. The large eddies have similar size over land and over the sea, typically 1000 m. The important difference being that over land diurnal variation plays a fundamental role; over the sea such variations are typically absent.
From the marine site it has also been found that the turbulence structure of the temperature field over the Baltic Sea is very different from over land. Instead of having a height dependence as expected from theory, the temperature structure seems to be constant with height within the surface layer.
Typically, the heat flux over the sea is smaller than over land during convective conditions. This gives rise to a turbulence transport regime which is fundamentally different from that observed during daytime convective conditions over land.
Collins, Matthew. "The meteorology of Mars." Thesis, University of Reading, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.359043.
Full textLarson, Ellis, and Nelly Åkerblom. "Spectral clustering for Meteorology." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297760.
Full textBjörklund, Elin. "Observed Ice Supersaturated Layers over Sweden and Implications for Aviation Induced Contrails over the Baltic Sea." Thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-153694.
Full textI atmosfären kan det uppkomma vertikalt utsträckta skikt som är övermättade med avseende på is; dessa lager har blivit benämnda som ice-supersaturated layers (ISSL). Om ett flygplan flyger igenom dessa ISSL luftmassor kan permanenta kondensationsstrimmor bildas.Dessa kondensationsstrimmor absorberar den långvågiga strålningen från jorden och reflekterar den inkommande kortvågiga strålningen från rymden. Den absorberande effekten är större än den reflekterande effekten, vilket bidrar till en förstärkning av växthuseffekten. Den här studien innehåller statistik för när dessa ISSL uppkommer i det Svenska luftrummet, baserat på data från ballongsonderingar som var utförda från Januari 2006 till December 2010. Resultatet från denna statistik visar att ISSL är mer vanliga i det Svenska luftrummet än förväntat. Lagren är i medeltal 42 hPa tjocka, placerade på 339 hPa höjd och förekommer i 44 % av sonderingarna.
Lindskog, Magnus. "On errors in meteorological data assimilation." Doctoral thesis, Stockholm : Department of Meteorology, Stockholm university, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-7258.
Full textEngström, Malin. "En studie av Uppsala stads värmeö." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-203057.
Full textSöder, Mats. "Growth and removal of inclusions during ladle refining." Doctoral thesis, KTH, Materials Science and Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-45.
Full textThe overall purpose of this thesis work has been to further our understanding of the growth and removal of inclusions in gas- and induction-stirred ladles. The primary focus has been on alumina inclusions.
Growth mechanisms were studied using data from fundamental mathematical models of gas- and induction-stirred ladles. The results showed the turbulence mechanism to be the most dominant in alumina inclusion growth. The dynamic growth and removal of inclusions in a gas-stirred ladle was studied using mathematical modelling. The model results showed concentration gradients of inclusions. The effect was most obvious in the steel flow past the removal sites: top slag, ladle refractory, and gas plume (bubble flotation). A new removal model was developed for large spherical caps bubbles.
In order to verify the predicted concentration gradients for the size population of inclusions, three experiments were carried out in production. The sampling equipment enabled sampling at five different positions and different locations at the same time. The results showed that concentration gradients of inclusions do exist both in induction-stirred and gas-stirred ladles. A theoretical analysis showed that the drag force on the inclusions to be the dominating force and that therefore inclusions follow the fluid flow.
The cluster behaviour of alumina inclusions were examined on steel samples taken in an industrial-scale deoxidation experiment in a ladle. The samples were examined by microscope and the results used to study cluster growth. It was found that there was rapid cluster growth due to collision during stirring and that at the end of the deoxidation experiment a majority of the small inclusions were bound in clusters. The cluster growth data determined using the microscopic results were compared with predicted cluster-growth data. A method was developed for converting the experimental data observed per unit area into data given per unit volume and vice versa. An expression for the collision diameter of the cluster was also developed. The results showed that the predicted cluster growth agreed well with the microscopic observations for the assumptions made in the growth model.
Tunved, Peter. "On the lifecycle of aerosol particles : Sources and dispersion over Scandinavia." Doctoral thesis, Stockholm : Meteorologiska institutionen (MISU), Univ, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-223.
Full textSjöström, Stina. "Numerical exploration of radiative-dynamic interactions in cirrus." Thesis, Uppsala University, Department of Earth Sciences, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8201.
Full textAn important factor in forecast models today is cirrus clouds, but not much are known about their dynamics which makes them hard to parameterize. In this study a new theory was derived to enable a more correct way to describe the interplay between radiative heating and dynamical motions in these clouds. This hypothesis was tested by performing three dimensional simulations of cirrus clouds, using the University of Utah Large Eddy Simulator (UULES). Eleven clouds of varying initial radius and ice water mixing ratio were examined, with the aim of finding a pattern in their dynamical features. The model was set up without short wave radiation from the sun, and without any precipitation affecting the clouds, leaving only terrestrial heating and atmospheric cooling to create motions in the clouds. Two categories of initial dynamics could be seen:
• Isentropic adjustment: The isentropes within the cloud are adjusting to the environment due to rising of the cloud. Causes horizontal spreading through continuity.
• Density current: A dominating initial feature is spreading in small mixed layers at the cloud top and bottom. Caused by the density difference between the cloud and its environment.
An interesting phenomenon showing up in the simulations was mammatus clouds, which were visible in two of the cases. The only instability available to create these clouds was the radiative heating difference, which does not agree with present theories for how they form.
Two dimensionless numbers S and C were derived to describe the nature of the spreading motions and convection in the cloud. Both these numbers agreed with results.
Cirrusmoln har en viktig roll i dagens prognosmodeller, men är svåra att parametrisera på ett bra sätt eftersom man inte har tillräcklig kunskap om deras dynamik och utveckling. I denna studie togs en ny teori fram för att göra det möjligt att på ett mer korrekt sätt beskriva samspelet mellan strålningsuppvärmning och dynamiska rörelser i dessa moln. Hypotesen testades sedan genom att utföra tredimensionella simuleringar av cirrus moln med hjälp av University of Utah Large Eddy Simulator (UULES). Elva moln med varierande initiella radier och isvatteninnehåll undersöktes, med målet att finna ett mönster i dynamik och utveckling. UULES ställdes in så att miljön där molnen simulerades varken innehöll kortvågsstrålning från solen eller nederbörd. Således fanns det bara en resterande faktor för att skapa rörelser i molnen; skillnaden i den infraröda strålningsuppvärmningen mellan molntopp och molnbas. Två kategorier av initiella rörelser uppstod i molnen:
• Justering av isotroper: Molnen stiger i höjd vilket gör att isotroperna inuti dem justeras till omgivningen. Detta orsakar horisontell spridning genom kontinuitet.
• Densitets ström: Horisontell spridning av molnen koncentrerad till mixade skikt i de övre och undre delarna. Orsakas av skillnad i densitet mellan moln och omgivning.
Ett intressant fenomen som visade sig i två av simuleringarna var mammatusmoln. Den enda instabiliteten tillgänglig för att skapa dessa moln var skillnaden i strålningsuppvärmning mellan molntopp och -bas. Detta stämmer inte överrens med nuvarande teorier för hur dessa moln skapas.
Två dimensionslösa tal, S och C togs fram för att indikera vilken av de initiella rörelserna som dominerar i molnet, samt vilken typ av konvektion som dominerar. Båda dessa tal stämde väl överrens med resultat.
Webber, Chris Paul. "Linking pollution, meteorology and climate change." Thesis, University of Reading, 2017. http://centaur.reading.ac.uk/73249/.
Full textBooks on the topic "Meteorology"
Ahrens, C. Donald. Essentials of meteorology: An invitation to the atmosphere. 4th ed. Belmont, CA: Thomson Brooks/Cole, 2005.
Find full textAhrens, C. Donald. Meteorology today: An introduction to weather, climate, and the environment. 2nd ed. St. Paul: West Pub. Co., 1985.
Find full textDanielson, Eric William. Meteorology. 2nd ed. Boston: McGraw-Hill, 2003.
Find full text1946-, Levin James, and Abrams Elliot 1947-, eds. Meteorology. Dubuque, IA: WCB/McGraw-Hill, 1998.
Find full textAnthes, Richard A. Meteorology. 6th ed. New York: Macmillan Pub. Co., 1992.
Find full textPanchev, S. Dynamic Meteorology. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5221-8.
Full textGrefen, K., and J. Löbel, eds. Environmental Meteorology. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2939-5.
Full textRaghavan, S. Radar Meteorology. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0201-0.
Full textRauber, Robert M., and Stephen W. Nesbitt. Radar Meteorology. Chichester, UK: John Wiley & Sons Ltd, 2018. http://dx.doi.org/10.1002/9781118432662.
Full textKrishnamurti, T. N., Lydia Stefanova, and Vasubandhu Misra. Tropical Meteorology. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7409-8.
Full textBook chapters on the topic "Meteorology"
Taub, Liba. "Meteorology." In A Companion to Science, Technology, and Medicine in Ancient Greece and Rome, 232–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781118373057.ch14.
Full textZiv, Baruch, Elad Shilo, Yury Lechinsky, and Alon Rimmer. "Meteorology." In Lake Kinneret, 81–96. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8944-8_6.
Full textWiin-Nielsen, Aksel C. "Meteorology." In Environmental Concerns, 91–107. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-2904-6_7.
Full textNagarajan, R. "Meteorology." In Drought Assessment, 28–76. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2500-5_2.
Full textŞen, Zekâi. "Meteorology." In Earth Systems Data Processing and Visualization Using MATLAB, 7–52. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01542-8_2.
Full textPollitt, Christopher, Colin Talbot, Janice Caulfield, and Amanda Smullen. "Meteorology." In Agencies, 147–82. London: Palgrave Macmillan UK, 2005. http://dx.doi.org/10.1057/9780230504868_8.
Full textHouse, David. "Meteorology." In Seamanship Techniques, 425–75. 5th edition. | New York : Routledge, [2018]: Routledge, 2018. http://dx.doi.org/10.4324/9781315560250-12.
Full textSeshadri, V. "Meteorology." In The Inverse Gaussian Distribution, 230–31. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1456-4_16.
Full textFoken, Thomas. "Applied Meteorology." In Micrometeorology, 315–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-642-25440-6_8.
Full textAhmad, Latief, Raihana Habib Kanth, Sabah Parvaze, and Syed Sheraz Mahdi. "Synoptic Meteorology." In Experimental Agrometeorology: A Practical Manual, 119–21. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69185-5_16.
Full textConference papers on the topic "Meteorology"
Li, Mengxuan, Kaihua Jiang, Guoqiang Zhang, Danyu Li, Jiangtao Shi, and Bin Liu. "Review of Power Meteorology Technology for New Power Systems." In 2024 3rd International Conference on Energy and Electrical Power Systems (ICEEPS), 663–68. IEEE, 2024. http://dx.doi.org/10.1109/iceeps62542.2024.10693238.
Full textMazurkin, Petr. "QUANTUM METEOROLOGY." In 19th SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings. STEF92 Technology, 2019. http://dx.doi.org/10.5593/sgem2019/5.1/s20.077.
Full textSingh, Ram Chandra, and Rajeev Bhatla. "Wavelets in meteorology." In EMERGING APPLICATIONS OF WAVELET METHODS: 7th International Congress on Industrial and Applied Mathematics - Thematic Minisymposia. AIP, 2012. http://dx.doi.org/10.1063/1.4740045.
Full textHOFFMANN, GEERD-R. "GRID COMPUTING FOR METEOROLOGY." In Proceedings of the Ninth ECMWF Workshop on the Use of High Performance Computing in Meteorology. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799685_0012.
Full textGuzzi, Rodolfo, Antonio Navarra, and Jagadish Shukla. "Meteorology and Environmental Sciences." In Course on Physical Climatology and Meteorology for Environmental Application. WORLD SCIENTIFIC, 1990. http://dx.doi.org/10.1142/9789814539722.
Full textPries, Thomas H. "High-energy laser meteorology." In OE/LASE '90, 14-19 Jan., Los Angeles, CA, edited by Peter B. Ulrich and LeRoy E. Wilson. SPIE, 1990. http://dx.doi.org/10.1117/12.18347.
Full textSemenova, Nataliya V., Maksim Y. Chervyakov, Nadezhda V. Korotkova, and Elena V. Demidova. "ADDITIONAL EDUCATION IN METEOROLOGY." In Treshnikov readings – 2022 Modern geographical global picture and technology of geographic education. Ulyanovsk State Pedagogical University named after I. N. Ulyanov, 2022. http://dx.doi.org/10.33065/978-5-907216-88-4-2022-135-136.
Full textBokal, Zhanna M., and Rustem B. Sinitsyn. "Random signal sodar for meteorology." In Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2009, edited by Ryszard S. Romaniuk and Krzysztof S. Kulpa. SPIE, 2009. http://dx.doi.org/10.1117/12.837997.
Full textPáta, Petr, Petr Janout, and Martin Blažek. "New generation of meteorology cameras." In Photonics Prague 2017, edited by Petr Páta and Karel Fliegel. SPIE, 2017. http://dx.doi.org/10.1117/12.2296846.
Full textSand, Wayne, and Cleon Biter. "Meteorology surrounding the Roselawn accident." In 37th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-496.
Full textReports on the topic "Meteorology"
Bruggeman, David, Marjorie Stockton, Kenneth Waight, Gregory Stanton, Melissa Coronado, and Jerome Quintana. Meteorology Program. Office of Scientific and Technical Information (OSTI), May 2022. http://dx.doi.org/10.2172/1868208.
Full textHoitink, D. J. Climate and meteorology. Office of Scientific and Technical Information (OSTI), June 1995. http://dx.doi.org/10.2172/433025.
Full textBruggeman, David Alan. LANL Meteorology Program. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1373533.
Full textDewart, Jean Marie. LANL Meteorology Program. Office of Scientific and Technical Information (OSTI), February 2015. http://dx.doi.org/10.2172/1169672.
Full textBruggeman, David, Kenneth Waight, Gregory Stanton, and Melissa Coronado. LANL Meteorology Program. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1776737.
Full textDewart, Jean Marie. LANL Meteorology Program FY15. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1211602.
Full textBruggeman, David Alan. Meteorology Tower Site Inspections. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1467188.
Full textKane, D. L. Arctic hydrology and meteorology. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5118378.
Full textKane, D. L. Arctic hydrology and meteorology. Office of Scientific and Technical Information (OSTI), January 1988. http://dx.doi.org/10.2172/5118405.
Full textKane, D. L. Arctic hydrology and meteorology. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/5142270.
Full text