Academic literature on the topic 'Métaux de transition – Surfaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Métaux de transition – Surfaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Métaux de transition – Surfaces"
Lefebvre, Gaétan, Patrick D’Hugues, and Christophe Poinssot. "Transition énergétique, « intensité matières » et criticité." Revue Générale Nucléaire, no. 4 (July 2021): 22–25. http://dx.doi.org/10.1051/rgn/20214022.
Full textBoucekkine, A., A. Le Beuze, JY Saillard, and R. Lissillour. "Structure électronique de phosphures de métaux de transition." Journal de Chimie Physique 88 (1991): 2107–21. http://dx.doi.org/10.1051/jcp/1991882107.
Full textMérenne-Schoumaker, Bernadette. "Métaux rares et métaux précieux : une multiplicité de productions, d’acteurs et de besoins." Questions internationales 117, no. 1 (March 14, 2023): 56–68. http://dx.doi.org/10.3917/quin.117.0056.
Full textMarie, Xavier, Bernhard Urbaszek, and Thierry Amand. "Les dichalcogénures de métaux de transition, nouveaux matériaux bidimensionnels." Reflets de la physique, no. 50 (September 2016): 21–25. http://dx.doi.org/10.1051/refdp/201650021.
Full textVARENNES, E., D. BLANC, A. AZAÏS, L. GUERET, C. LAGARRIGUE, and J. M. CHOUBERT. "Opportunités de récupération des métaux en station d’épuration." Techniques Sciences Méthodes 9, no. 9 (September 20, 2021): 85–100. http://dx.doi.org/10.36904/tsm/202109085.
Full textLamblin, Véronique. "La demande de métaux critiques liés à la mobilité électrique." Futuribles N° 460, no. 3 (April 15, 2024): 84–92. http://dx.doi.org/10.3917/futur.460.0084.
Full textBotella, Hélène, Gustavo Stadthagen, Chantal de Chastellier, and Olivier Neyrolles. "Un rôle nouveau des métaux de transition dans l’immunité antimicrobienne." médecine/sciences 28, no. 1 (January 2012): 18–21. http://dx.doi.org/10.1051/medsci/2012281006.
Full textElkamel, K., M. Elidrissi, A. Yacoubi, A. Nadiri, and S. Abouarnadasse. "Déshydrogénation de l'isopropanol catalysée par quelques oxynitrures de métaux de transition." Journal de Chimie Physique 94 (1997): 522–34. http://dx.doi.org/10.1051/jcp/1997940522.
Full textCastel, A., P. Riviére, J. Satgé, and M. Ahbala. "Complexes de métaux de transition (Cr, W) a ligande germyléne fonctionnel." Journal of Organometallic Chemistry 331, no. 1 (September 1987): 11–21. http://dx.doi.org/10.1016/s0022-328x(00)98909-5.
Full textGreenough, John D., and Kevin MacKenzie. "Igneous Rock Associations 18. Transition Metals in Oceanic Island Basalt: Relationships with the Mantle Components." Geoscience Canada 42, no. 3 (July 29, 2015): 351. http://dx.doi.org/10.12789/geocanj.2015.42.071.
Full textDissertations / Theses on the topic "Métaux de transition – Surfaces"
Barreteau, Cyrille. "Morphologie et énérgetique des surfaces vicinales de métaux de transition." Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2004. http://tel.archives-ouvertes.fr/tel-00006882.
Full textelecrtonique et de potentiels empiriques. Une attention particuliere
est dediee a l'etude de la stabilite des surfaces vicinales vis a vis du facettage.
Vivek, Manali. "Etats topologiques aux surfaces de perovskites d'oxydes de métaux de transition." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS216/document.
Full textThe subject of topology in oxides, in particular at the surfaces of perovskite oxides like SrTiO₃, or at the interface of LaA1O₃/SrTiO₃ will be investigated in this thesis. Both compounds, at their (001) oriented surfaces, contain a metallic state confined to a few nanometers at the surface. In addition, we will show that there exist certain three band crossings around which perturbations will cause an inverted and gapped band spectrum to appear. These will lead to topological edge states which can be detected via induced superconductivity as in the case of topological quantum wells or superconductor-semiconductor nanowires. Next, the (111) oriented surface of LaA1O₃/SrTiO₃ will be studied where Hall transport measurements reveal a one to two carrier transition via electrostatic doping. An explanation based on a tight binding modelling including Hubbard U correlations, will be proposed which will give rise to band crossings between sub-bands promoting topological states. Finally, an ab-initio study of CaTiO₃ will be performed to explain the metallic state which exists at its (001) oriented surface and to predict magnetism in the system. CaTiO₃ is different from the other compounds studied previously, due to the large rotation and tilting of the oxygen octahedra surrounding the Ti, which complicates the picture. The structure with and without oxygen vacancies will be studied in-depth to provide details about the conduction band and their orbital characters
Mesboua, Nouara. "Caractérisation de surfaces solides par adsorption : physisorption sur solides lamellaires et métaux, chimisorption d'oxygène sur métaux de transition." Vandoeuvre-les-Nancy, INPL, 1987. http://www.theses.fr/1987NAN10215.
Full textBruneel, Pierre. "Electronic and spintronic properties of the interfaces between transition metal oxides." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASP047.
Full textThe anomalous transport properties of transition metal oxides, in particular the surface of SrTiO₃ or at the interface between SrTiO₃ and LaAlO₃ is investigated in this thesis. These systems host two-dimensional electron gases. Nonlinear Hall Effect measurements suggest that several species of carriers are present in these systems, and that their population is varying on a nontrivial manner upon electrostatic doping. The role of the electrostatics properties of the electron gas and of the electronic correlations are discussed in this light. Next we discuss the spin to charge conversion of these systems thanks to tight-binding modeling and linear response theory. The complex interplay between atomic spin-orbit coupling and the inversion symmetry breaking at the interface leads to a complex spin-orbital-momentum locking of the electrons, inducing spin textures. These spin textures are responsible for the appearance of the Edelstein and Spin Hall Effect in these heterostructures and are characteristic of the multi-orbital character of these electronic systems. Finally an ab initio study of STO/LAO/STO heterostructures is performed to explain experimental evidence of new ways to produce an electron gas at this interface. The respective roles of the chemistry, electrostatics and defects are discussed
Lutsen, Laurent. "Polycarbosilanes fonctionnels précurseurs de céramiques. Activation par des complexes de métaux de transition." Montpellier 2, 1994. http://www.theses.fr/1994MON20198.
Full textSoukiassian, Patrick. "Contribution à l'étude des propriétés électroniques des systèmes alcalins-métaux de transition : application à l'adsorption de Cs et de O+ Cs sur les surfaces de W (100), Mo (100),Ta (100) et Mo (110)." Paris 11, 1985. http://www.theses.fr/1985PA112047.
Full textCesium adsorption on (100) faces of tungsten, molybdenum and tantalum for coverages between 0 and 1 monolayer is studied by angle resolved ultraviolet photoemission spectroscopy (ARUPS° using synchrotron radiation and by electron energy loss spectroscopy (EELS). The electronic surface states located near the Fermi level, are not destroyed under césiation, and are shifted by 1 eV for W(100), 0. 9 eV for Mo(100) and 0. 8 eV for Ta(100) to higher binding energies. These results are in very good agreements with theoretical ab-initio calculations performed by FLAPW method. These results are understood by the formation of a strongly polarized covalent bond between d-like surface states and Cs-6s derived valence states. The man electron energy loss peaks are interpreted as 6s → 6p interband transition. On Mo(110), the bonding between Cs and substrate is similar to this observed on Mo(100). ARUPS study of cesium chemisorption reveals the existence, near the Fermi level, of a surface state not affected either by oxygen or carbon monoxide. The study of Cs 5p levels in the coadsorption of oxygen and cesium on Mo(100) and W(100) indicates a charge transfer from Cs to oxygen. On O + Cs/Mo(110), the charge transfer is weaker. Finally, on the 4f core levels of W(100) and Ta(100), a donor adsorbate (Cs) induces surface states shifts to lower binding energies
Morin, Cédric. "Etude quantique de l'activité des surfaces de métaux de transition pour la transformation des molécules aromatiques par catalyse hétérogène." Lyon, École normale supérieure (sciences), 2004. http://www.theses.fr/2004ENSL0278.
Full textTran, Quang Thuan. "Amination, phosphorylation spontanée ou électro assistée de surface de carbone vitreux pour l'élaboration de nouvelles électrode ligands." Rennes 1, 2011. http://www.theses.fr/2011REN1S122.
Full textThe objective of this thesis is to graft ligands on a support for facilitating the recovering and recycling of the catalyst. Furthermore, by using the electrode as a support, the redox state of the catalyst can be easily modulated by controlling the applied potential. We can therefore utilize one catalyst system for many reactions. The phosphine ligands, highly efficient in catalysis, were grafted on the surface of glassy carbon electrode using free radical electro-grafting methods. These methods are convenient procedure allowing the formation of robust linkage between the surface and the phosphine ligand moiety. These radicals are electrochemically generated by electro-oxidation amine or by electro-reduction of aryl diazonium salt generated from the diazotization in-situ of the aromatic amine. In this work, a major drawback which is the sensitivity of the phosphine ligand toward the chemical and electrochemical oxidation, was solved by the introduction of a borane moiety as a phosphines protecting group. We synthesized different aminophosphine-borane ligands and their corresponding organometallic complexes (Mo, Mn, Ru) both in solution and in solid-state, when grafted onto surfaces. These complexes were characterized by different techniques including NMR (¹H, ¹³C, ³¹P), X-ray diffraction, X-ray photoelectron spectroscopy and cyclic voltammetry. A promising preliminary result was obtained in the electro-catalysis of the oxidation reaction of an alcohol
Raouafi, Faical. "Etude de la stabilité des surfaces vicinales des métaux de transition à partir de leur structure électronique et vibrationnelle." Phd thesis, Université Paris Sud - Paris XI, 2002. http://tel.archives-ouvertes.fr/tel-00002142.
Full textRaouafi, Fayçal. "Etude de la stabilité des surfaces vicinales des métaux de transition à partir de leurs structures électronique et vibrationnelle." Paris 11, 2002. https://tel.archives-ouvertes.fr/tel-00002142.
Full textThis theoretical work is dedicated to the study of vicinal surfaces of Rh, Pd and Cu and, in particular, of their stability with respect to faceting. The manuscript includes three parts. It starts with the calculation of their surface energies, on a rigid lattice at 0K, using a tight-binding method with a basis set including s, p and d atomic valence orbitals. The energies of isolated steps are deduced from this calculation. They allow to determine the shape of adislands built by homoepitaxy on low-index surfaces, as well as step-step interactions which exhibit an oscillatory behaviour. This behaviour is strongly depending on the types of steps and surfaces. Kink energies are also computed by the same method. The electronic structure is briefly described. Then the vibrational properties of vicinal surfaces of Copper are studied using a semi-empirical potential which leads to good results for the relaxation of surfaces and describes correctly, in the harmonic approximation, their projected phonon band structure. It is thus possible to determine vibrational thermodynamical quantities, such as the root mean square displacement and the free energy. Finally, the stability of vicinal surfaces is discussed with semi-empirical potentials and with the calculation of electronic structure. It is shown that the stability can be inverted as a function of the potential range and that the atomic relaxation plays in favour of the stabilization of the surface but does not change qualitatively the results. Contrary to the semi-empirical potentials, electronic structure calculations open up the possibility of a large variety of behaviours, including a possible faceting of a vicinal surface into other vicinal surfaces. This phenomenon is due to electronic oscillatory step-step interactions. Finally, it is proven that the temperature has a minor effect on the stability of vicinal surfaces, at least up to room temperature
Books on the topic "Métaux de transition – Surfaces"
Mathey, F. Introduction à la chimie moléculaire de transition. Paris: Edition Marketing, 1991.
Find full textStephan, Loskutov, and Wiley online library, eds. Strained metallic surfaces: Theory, mechanical behavior and fatigue strength. Weinheim: Wiley-VCH, 2009.
Find full textH, Yersin, and Bray K. L, eds. Transition metal and rare earth compounds. Berlin: Springer, 2001.
Find full textJ, Pesek Joseph, Leigh Ivan E, Royal Society of Chemistry (Great Britain)., and Symposium on Chemically Modified Surfaces (5th : 1993 : Malvern, Penn.), eds. Chemically modified surfaces. Cambridge: Royal Society of Chemistry, 1994.
Find full text1946-, Salahub Dennis R., Russo Nino 1947-, North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Study Institute on Metal-Ligand Interactions: from Atoms, to Clusters, to Surfaces (1991 : Cetraro, Italy), eds. Metal-ligand interactions: From atoms, to clusters, to surfaces. Dordrecht: Kluwer Academic, 1992.
Find full textVasilʹev, M. A. Struktura i dinamika poverkhnosti perekhodnykh metallov. Kiev: Nauk. dumka, 1988.
Find full textR, Moser William, Slocum D. W. 1933-, and American Chemical Society. Catalysis and Surface Science Secretariat., eds. Homogeneous transition metal catalyzed reactions: Developed from a symposium. Washington, DC: The Society, 1992.
Find full textDonaldson type invariants for algebraic surfaces: Transition of moduli stacks. Berlin: Springer, 2009.
Find full textPrince, N. P. SEXAFS and NISXW studies of adsorbates on transition metal surfaces. [s.l.]: typescript, 1989.
Find full textFundamental transition metal organometallic chemistry. Monterey, Calif: Brooks/Cole, 1985.
Find full textBook chapters on the topic "Métaux de transition – Surfaces"
Lannoo, Michel, and Paul Friedel. "Transition Metal Surfaces." In Atomic and Electronic Structure of Surfaces, 56–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-02714-1_3.
Full textBertoni, C. M., G. Cappellini, F. Finocchi, and P. Monachesi. "7.2.2 Transition metals." In Physics of Solid Surfaces, 311–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47736-6_96.
Full textWoods, R. "Characterization of Sulfide Mineral Surfaces." In Electrochemistry in Transition, 561–73. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-9576-2_35.
Full textWollschläger, J. "Phase transition: metals: Au." In Physics of Solid Surfaces, 346–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_79.
Full textWollschläger, J. "Phase transition: metals: Ga." In Physics of Solid Surfaces, 353–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_80.
Full textWollschläger, J. "Phase transition: metals: Ir." In Physics of Solid Surfaces, 355–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_81.
Full textWollschläger, J. "Phase transition: metals: Mo." In Physics of Solid Surfaces, 357. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_82.
Full textWollschläger, J. "Phase transition: metals: Pt." In Physics of Solid Surfaces, 358–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_83.
Full textWollschläger, J. "Phase transition: metals: W." In Physics of Solid Surfaces, 362–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_84.
Full textvan Beijeren, H., and I. Nolden. "The Roughening Transition." In Structure and Dynamics of Surfaces II, 259–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-46591-8_7.
Full textConference papers on the topic "Métaux de transition – Surfaces"
Dris, Antonis, and Mark W. Johnson. "Transition on Concave Surfaces." In ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53352.
Full textJohnson, Mark W. "Predicting Transition on Concave Surfaces." In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90455.
Full textEmerson, Preston, Matthew Searle, Julie Crockett, and Daniel Maynes. "Poster: Transition Boiling on Superhydrophobic Surfaces." In 69th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, 2016. http://dx.doi.org/10.1103/aps.dfd.2016.gfm.p0042.
Full textSAKANIWA, Y., I. HASEGAWA, and H. SHIMA. "ISING PHASE TRANSITION ON CURVED SURFACES." In Proceedings of the International Symposium. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812708687_0031.
Full textRiley, Stephen, Mark W. Johnson, and John C. Gibbings. "Boundary Layer Transition of Strongly Concave Surfaces." In ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1989. http://dx.doi.org/10.1115/89-gt-321.
Full textThomas, O. "Les siliciures de métaux de transition en microélectronique : propriétés mécaniques et contraintes induites au cours de la formation en phase solide." In PlastOx 2007 - Mécanismes et Mécanique des Interactions Plasticité - Environnement. Les Ulis, France: EDP Sciences, 2009. http://dx.doi.org/10.1051/ptox/2009020.
Full textHachem, Farouk, and Mark W. Johnson. "A Boundary Layer Transition Correlation for Concave Surfaces." In ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/90-gt-222.
Full textShahpar, S., and S. Shahpar. "Transition correlations for hypersonic flows over swept surfaces." In 28th Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-2013.
Full textRoberts, S. K., and M. I. Yaras. "Boundary-Layer Transition in Separation Bubbles Over Rough Surfaces." In ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53667.
Full textPeters, Jörg, and Jianhua Fan. "The Projective Linear Transition Map for Constructing Smooth Surfaces." In 2010 Shape Modeling International (SMI). IEEE, 2010. http://dx.doi.org/10.1109/smi.2010.26.
Full textReports on the topic "Métaux de transition – Surfaces"
Batzill, Matthias. Photocatalysis of Modified Transition Metal Oxide Surfaces. Office of Scientific and Technical Information (OSTI), February 2018. http://dx.doi.org/10.2172/1423046.
Full textFEIBELMAN, PETER J., and GARY LEE KELLOGG. Surfactant-Modified Diffusion on Transition-Metal Surfaces. Office of Scientific and Technical Information (OSTI), December 1999. http://dx.doi.org/10.2172/750256.
Full textTong, Yuye. Exploring Electrocatalysis of Methane on Transition Metal Surfaces. Office of Scientific and Technical Information (OSTI), November 2020. http://dx.doi.org/10.2172/1832240.
Full textPerkins, Leslie. Diffusion of adatoms on face-centered cubic transition metal surfaces. Office of Scientific and Technical Information (OSTI), May 1994. http://dx.doi.org/10.2172/10161694.
Full textBarteau, M. Selectivity of the reactions of oxygenates on transition metal surfaces. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5420355.
Full textHoffmann, Roald, and John Wilkins. Simple Adsorbates on Transition Metal Surfaces: A Joint Chemical and Physical Approach. Fort Belvoir, VA: Defense Technical Information Center, February 1989. http://dx.doi.org/10.21236/ada205726.
Full textMadix, R. J. The dynamics of adsorption on clean and adsorbate-modified transition metal surfaces. Office of Scientific and Technical Information (OSTI), June 1991. http://dx.doi.org/10.2172/5911113.
Full textStupakov, Gennady. Image Formation by Incoherent and Coherent Transition Radiation from Flat and Rough Surfaces. Office of Scientific and Technical Information (OSTI), March 2012. http://dx.doi.org/10.2172/1035803.
Full textDunkerton, L., C. Hinckley, J. Tyrrell, and P. Robinson. Interactions of sulfur-containing compounds with transition metal clusters and metal surfaces III. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/7019171.
Full textFEIBELMAN, PETER J., and GARY LEE KELLOGG. Surfactant-modified diffusion on transition-metal surfaces (reprinted with the addition of the appendices). Office of Scientific and Technical Information (OSTI), March 2000. http://dx.doi.org/10.2172/752083.
Full text