To see the other types of publications on this topic, follow the link: Metamagnets.

Journal articles on the topic 'Metamagnets'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Metamagnets.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Selke, W. "Anomalies in Ising metamagnets." Zeitschrift für Physik B Condensed Matter 101, no. 1 (March 1996): 145–50. http://dx.doi.org/10.1007/s002570050192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fyodorov, Ya V., I. Ya Korenblit, and E. F. Shender. "Phase Transitions in Frustrated Metamagnets." Europhysics Letters (EPL) 4, no. 7 (October 1, 1987): 827–32. http://dx.doi.org/10.1209/0295-5075/4/7/012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chalupa, J., and M. A. Novotny. "Molecular fields in chainlike metamagnets." Solid State Communications 54, no. 9 (June 1985): 843–44. http://dx.doi.org/10.1016/0038-1098(85)90299-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Selke, W., and S. Dasgupta. "Magnetization anomaly in Ising metamagnets." Journal of Magnetism and Magnetic Materials 147, no. 3 (June 1995): L245—L249. http://dx.doi.org/10.1016/0304-8853(95)00090-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Galam, Serge, Carlos S. O. Yokoi, and Silvio R. Salinas. "Metamagnets in uniform and random fields." Physical Review B 57, no. 14 (April 1, 1998): 8370–74. http://dx.doi.org/10.1103/physrevb.57.8370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yamada, H. "Spin fluctuations in itinerant electron metamagnets." Physica B: Condensed Matter 177, no. 1-4 (March 1992): 115–18. http://dx.doi.org/10.1016/0921-4526(92)90078-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Burkov, A. T., T. Nakama, and K. Yagasaki. "Electronic Transport in Itinerant Metamagnets with Strong Static Disorder." Solid State Phenomena 168-169 (December 2010): 521–24. http://dx.doi.org/10.4028/www.scientific.net/ssp.168-169.521.

Full text
Abstract:
We report on electronic transport in nearly magnetic conductors with strong structural disorder. The initial motivation for this work was a large positive magnetoresistance (MR) found in magnetically ordered ground state of (Y1-xGdx)Co2 alloys. This was a surprising result since a large positive MR is not expected in a system with strong static magnetic or structural disorder. Contemporary theory of magnetotransport and common sense agree that an external magnetic field should suppress magnetic fluctuations, resulting in a negative MR. On the contrary; a positive MR suggests that an external magnetic field enhances static magnetic disorder. It was shown that unusual MR of (Y1-xGdx)Co2 alloys is related to a combination of structural disorder and metamagnetic instability of itinerant Co-3d electrons. The new mechanism of MR is common of a broad class of materials featuring a static magnetic disorder and itinerant metamagnetism. Such systems display a number of unusual properties, among them strong pressure and magnetic field dependencies of resistivity and thermopower, Non-Fermi-Liquid (NFL) behavior of resistivity and, possibly, of thermopower. We review the relevant experimental data, mostly the properties of RCo2-based alloys, and discuss the theoretical model developed for the interpretation of the experimental results. This model includes new mechanism of magnetoresistivity in structurally disordered itinerant magnetic alloys.
APA, Harvard, Vancouver, ISO, and other styles
8

Yamada, H., and T. Goto. "Giant magnetocaloric effect in itinerant-electron metamagnets." Physica B: Condensed Matter 346-347 (April 2004): 104–8. http://dx.doi.org/10.1016/j.physb.2004.01.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Burkov, A. T., A. Yu Zyuzin, T. Nakama, and K. Yagasaki. "Disorder-induced positive magnetoresistivity in itinerant metamagnets." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): E1081—E1082. http://dx.doi.org/10.1016/j.jmmm.2003.12.1117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

ZENG, MingHua, YueQiao HU, and YanLing ZHOU. "Cobalt(Ⅱ)/manganese(Ⅱ)-based molecular metamagnets." SCIENTIA SINICA Chimica 42, no. 6 (June 1, 2012): 883. http://dx.doi.org/10.1360/zb2012-42-6-883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Held, K., M. Ulmke, N. Blümer, and D. Vollhardt. "Correlated-electron theory of strongly anisotropic metamagnets." Physical Review B 56, no. 22 (December 1, 1997): 14469–80. http://dx.doi.org/10.1103/physrevb.56.14469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Baskey, J. H., and M. G. Cottam. "Theory of surface spin waves in metamagnets." Physical Review B 42, no. 7 (September 1, 1990): 4304–10. http://dx.doi.org/10.1103/physrevb.42.4304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Zhou, YanLing, YueQiao Hu, and MingHua Zeng. "Cobalt(II)/manganese(II)-based molecular metamagnets." Science China Chemistry 55, no. 6 (May 11, 2012): 893–905. http://dx.doi.org/10.1007/s11426-012-4574-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Gabay, M., and T. Garel. "Branching in the intermediate state of metamagnets." Journal of Magnetism and Magnetic Materials 54-57 (February 1986): 1109–10. http://dx.doi.org/10.1016/0304-8853(86)90405-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Yamada, H., and T. Goto. "Magneto-volume coupling constant in itinerant-electron metamagnets." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): 460–61. http://dx.doi.org/10.1016/j.jmmm.2003.12.1034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gabay, M., and T. Garel. "Branched domains in the intermediate state of metamagnets." Journal of Physics C: Solid State Physics 19, no. 5 (February 20, 1986): 655–71. http://dx.doi.org/10.1088/0022-3719/19/5/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Burkov, A. T., A. Yu Zyuzin, T. Nakama, Y. Takaesu, M. Takeda, and K. Yagasaki. "Anomalous transport in itinerant metamagnets with structural disorder." Journal of Magnetism and Magnetic Materials 310, no. 2 (March 2007): e322-e324. http://dx.doi.org/10.1016/j.jmmm.2006.10.283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Pawlicki, P. "Calculation of the Magnon Spectrum for Mn3GaC Metamagnets." physica status solidi (b) 132, no. 1 (November 1, 1985): K37—K40. http://dx.doi.org/10.1002/pssb.2221320141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Tuszyński, J. A. "Improved calculations of magnetoelastic properties in collinear metamagnets." Journal of Applied Physics 63, no. 8 (April 15, 1988): 3918–20. http://dx.doi.org/10.1063/1.340605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Koci[ndot]ski, J., and K. Osuch. "Symmetry changes at the tricritical point in metamagnets." Phase Transitions 10, no. 3 (November 1987): 151–80. http://dx.doi.org/10.1080/01411598708209383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Tuszynski, J. A., M. Skierski, and A. M. Grundland. "Short-range-induced critical phenomena in the Landau–Ginzburg model." Canadian Journal of Physics 68, no. 9 (September 1, 1990): 751–55. http://dx.doi.org/10.1139/p90-108.

Full text
Abstract:
Within the framework of the Landau–Ginzburg model of phase transitions, the type of physical behaviour that results from the sign reversal of the coefficient owing to inhomogeneities is investigated. As a result, a number of interesting phase-transition sequences are obtained. Some such sequences have been observed in metamagnets. These effects are interpreted as induced by short-range interactions.
APA, Harvard, Vancouver, ISO, and other styles
22

Prystasz, W. "Quantum Formation of the Stable Ferromagnetic Phase in Metamagnets." physica status solidi (b) 165, no. 2 (June 1, 1991): K95—K99. http://dx.doi.org/10.1002/pssb.2221650246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zhou, YanLing, YueQiao Hu, and MingHua Zeng. "ChemInform Abstract: Cobalt(II)/Manganese(II)-Based Molecular Metamagnets." ChemInform 43, no. 34 (July 26, 2012): no. http://dx.doi.org/10.1002/chin.201234193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Onyszkiewicz, Z., and A. Wierzbicki. "Dipol-octopol interaction spin model for temperature-induced metamagnets." Solid State Communications 60, no. 2 (October 1986): 179–81. http://dx.doi.org/10.1016/0038-1098(86)90556-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Gerasimchuk, V. S. "Cylindrical domain structure in metamagnets and its stability conditions." Soviet Physics Journal 31, no. 3 (March 1988): 246–49. http://dx.doi.org/10.1007/bf00898233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Pregelj, Matej, Oksana Zaharko, Andrej Zorko, Matjaž Gomilšek, Oles Sendetskyi, Axel Günther, Mykhaylo Ozerov, et al. "Controllable Broadband Absorption in the Mixed Phase of Metamagnets." Advanced Functional Materials 25, no. 24 (May 15, 2015): 3634–40. http://dx.doi.org/10.1002/adfm.201500702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Tuszynski, J. A., and M. Otwinowski. "Pattern formation and pattern selection in the Landau–Ginzburg model of critical phenomena." Canadian Journal of Physics 68, no. 9 (September 1, 1990): 760–67. http://dx.doi.org/10.1139/p90-110.

Full text
Abstract:
In this paper we investigate the family of nonlinear partial differential equations used to describe the kinetics of critical phenomena within the Landau–Ginzburg model. An analysis of the recently obtained symmetry-reduction results for a number of such equations is provided from the point of view of pattern formation at criticality. Various possibilities occur depending on the choice of control parameters. An illustration is provided using several physical examples such as metamagnets and liquid crystals.
APA, Harvard, Vancouver, ISO, and other styles
28

Zyuzin, A. A., and A. Y. Zyuzin. "Spin Injection as a Source of the Metamagnetic Phase Transition." Solid State Phenomena 168-169 (December 2010): 461–64. http://dx.doi.org/10.4028/www.scientific.net/ssp.168-169.461.

Full text
Abstract:
We consider a metamagnetic phase transition of itinerant electrons in the metamagnetic- ferromagnetic metal junction. The current flow between a ferromagnetic metal and a metamagnetic metal produces the non-equilibrium spin imbalance acting as an effective magnetic field and initiating the first-order type transition from low- to high-magnetization states of the metamagnet in the vicinity of the ferromagnet. We show that the current dependence of the length of high-magnetization state region diverges at some threshold value, due to nonequilibrium shift, generated in a contact between the high and low magnetization states of the metamagnetic metal.
APA, Harvard, Vancouver, ISO, and other styles
29

Yamada, H. "P–T–B magnetic phase diagram of itinerant-electron metamagnets." Physica B: Condensed Matter 391, no. 1 (March 2007): 42–46. http://dx.doi.org/10.1016/j.physb.2006.08.044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Anselmo, D. H. A. L., E. L. Albuquerque, and M. G. Cottam. "Surface spin waves in metamagnets with nonuniaxial single-ion anisotropy." Journal of Applied Physics 83, no. 11 (June 1998): 6955–57. http://dx.doi.org/10.1063/1.367659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Nogami, Takashi, and Takayuki Ishida. "Tempo-Based Organic Ferromagnets and Metamagnets (Tempo = 2,2,6,6-Tetramethywiperidin-1-yloxyl)." Molecular Crystals and Liquid Crystals 296, no. 1 (April 1, 1997): 305–22. http://dx.doi.org/10.1080/10587259708032329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kiselev, N. S., U. K. Rößler, A. N. Bogdanov, and O. Hellwig. "Magnetic ground and remanent states of synthetic metamagnets with perpendicular anisotropy." Journal of Physics: Conference Series 303 (July 6, 2011): 012051. http://dx.doi.org/10.1088/1742-6596/303/1/012051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Pikuła, R., and J. Kirkiewicz. "Magnetization Processes in Dilute Metamagnets with Ferro- and Antiferromagnetic Exchange Interactions." Acta Physica Polonica A 110, no. 1 (July 2006): 25–39. http://dx.doi.org/10.12693/aphyspola.110.25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Krynetskiı̆, I. B. "Low-Temperature Quasi-Adiabatic Magnetization Reversal of Rare-Earth Ising Metamagnets." Physics of the Solid State 47, no. 7 (2005): 1316. http://dx.doi.org/10.1134/1.1992612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Fukamichi, Kazuaki, A. Fujita, and S. Fujieda. "Application of Large Magnetocaloric Effects in Itinerant-Electron Metamagnets to Cooling Systems." Materials Science Forum 512 (April 2006): 137–44. http://dx.doi.org/10.4028/www.scientific.net/msf.512.137.

Full text
Abstract:
The La(FexSi1-x)13 compounds exhibit large magnetocaloric effects (MCEs) due to the itinerant-electron metamagnetic (IEM) transition. By hydrogen absorption, the Curie temperature TC increases up to room temperature with retaining the IEM transition. The La(Fe0.90Si0.10)13H1.1 compound indicates a large isothermal magnetic entropy change of ∆Sm = - 28 J/kg K at 287 K in the magnetic field change from 0 to 2 T (∆B = 2 T). In addition, the MCEs are enhanced by partial substitution of Ce for La. The value of TC for La(FexSi1-x)13 is decreased by partial substitution of Mn for Fe, keeping excellent MCEs. Consequently, the La(FexSi1-x)13 and their modified compounds are promising as magnetic refrigerants working at a wide range of temperature covering room temperature.
APA, Harvard, Vancouver, ISO, and other styles
36

Zyuzin, Vladimir A., and A. Yu Zyuzin. "Role of domain wall fluctuations in non-Fermi-liquid behavior of metamagnets." Journal of Physics: Condensed Matter 25, no. 4 (December 20, 2012): 046006. http://dx.doi.org/10.1088/0953-8984/25/4/046006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Lukierska-Walasek, K. "On the critical behaviour of quantum Ising-like metamagnets in transverse fields." Physics Letters A 171, no. 5-6 (December 1992): 423–26. http://dx.doi.org/10.1016/0375-9601(92)90670-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Baranov, N. V., P. E. Markin, A. I. Kozlov, and E. V. Sinitsyn. "Effect of magnetic interphase boundaries on the electrical resistivity in metallic metamagnets." Journal of Alloys and Compounds 200, no. 1-2 (October 1993): 43–50. http://dx.doi.org/10.1016/0925-8388(93)90469-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Meloche, E., and M. G. Cottam. "Thermal properties of surface and bulk spin waves in metamagnets FeBr2 and FeCl2." physica status solidi (a) 196, no. 1 (March 2003): 165–68. http://dx.doi.org/10.1002/pssa.200306377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Moyoshi, Taketo, and Kiyoichiro Motoya. "Long-time variation of magnetic structure in multistep metamagnets Ca3(Co-M)2O6." Journal of Physics: Conference Series 391 (December 14, 2012): 012100. http://dx.doi.org/10.1088/1742-6596/391/1/012100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Salem-Sugui, S., and W. A. Ortiz. "A new approach to the experimental determination of the critical temperature of metamagnets." Journal of Magnetism and Magnetic Materials 54-57 (February 1986): 715–16. http://dx.doi.org/10.1016/0304-8853(86)90223-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hirose, Yusuke, Tetsuya Takeuchi, Fuminori Honda, Shingo Yoshiuchi, Masayuki Hagiwara, Etsuji Yamamoto, Yoshinori Haga, Rikio Settai, and Yoshichika Ōnuki. "Crossover Phase Diagram and Electronic State in the Heavy-Fermion Metamagnets UIr2Zn20 and UCo2Zn20." Journal of the Physical Society of Japan 84, no. 7 (July 15, 2015): 074704. http://dx.doi.org/10.7566/jpsj.84.074704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Herchel, Radovan, Jiří Tuček, Zdeněk Trávníček, Dimitris Petridis, and Radek Zbořil. "Crystal Water Molecules as Magnetic Tuners in Molecular Metamagnets Exhibiting Antiferro–Ferro–Paramagnetic Transitions." Inorganic Chemistry 50, no. 18 (September 19, 2011): 9153–63. http://dx.doi.org/10.1021/ic201358c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Goto, T., and M. I. Bartashevich. "Forced magnetostriction in itinerant metamagnets Y(Co1−xAlx)2 and Lu(Co1−xGax)2." Physica B: Condensed Matter 246-247 (May 1998): 495–97. http://dx.doi.org/10.1016/s0921-4526(97)00970-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Rudziński, W., and Z. Onyszkiewicz. "Fluctuations of the Molecular Field in the Two-Ion Model for Temperature-Induced Metamagnets." physica status solidi (b) 163, no. 1 (January 1, 1991): 267–80. http://dx.doi.org/10.1002/pssb.2221630127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Jin, Yi, Mohammadreza Ghahremani, Shuo Gu, Virgil Provenzano, Lawrence H. Bennett, Edward Della Torre, and Hatem ElBidweihy. "Characterization of the Mixed-Phase States Using Self-Similarity Phenomenon for First-Order Magnetocaloric Metamagnets." IEEE Transactions on Magnetics 48, no. 11 (November 2012): 3992–94. http://dx.doi.org/10.1109/tmag.2012.2200883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kornyshev, A. A., D. A. Kossakowski, and S. Leikin. "Landau Theory of a System with Two Bilinearly Coupled Order Parameter sin External Field: Exact Mean Field Solution, Critical Properties and Isothermal Susceptibility." Zeitschrift für Naturforschung A 50, no. 9 (September 1, 1995): 789–94. http://dx.doi.org/10.1515/zna-1995-0901.

Full text
Abstract:
Abstract We present simple description of a system with two bilinearly coupled order parameters in external field based on an exact mean-field solution of the Landau Hamiltonian. It reproduces the qualitative form of the "field-temperature" phase diagram given by a molecular-field model and by more sophisticated theories and experiments on metamagnets. The solution gives the same critical exponents as the molecular-field theory, but it is not restricted to the magnetic systems only and it is easier to handle, since it formulates the results in explicit analytical form. The susceptibility in this model does not diverge at the second order transition line (far from a higher order critical point separating the second and first order transition lines), but jumps down from the lower temperature wing to the higher temperature one. The jump amplitude is proportional to the square of the field in small fields and diverges in large fields close to the higher order critical point.
APA, Harvard, Vancouver, ISO, and other styles
48

Herchel, Radovan, Jiri Tucek, Zdenek Travnicek, Dimitris Petridis, and Radek Zboril. "ChemInform Abstract: Crystal Water Molecules as Magnetic Tuners in Molecular Metamagnets Exhibiting Antiferro-Ferro-Paramagnetic Transitions." ChemInform 42, no. 48 (November 3, 2011): no. http://dx.doi.org/10.1002/chin.201148005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

GOTO, TSUNEAKI, and TOSHIRO SAKAKIBARA. "METAMAGNETISM AND SPIN FLUCTUATIONS IN Co-BASED INTERMETALLIC COMPOUNDS." International Journal of Modern Physics B 07, no. 01n03 (January 1993): 788–93. http://dx.doi.org/10.1142/s0217979293001669.

Full text
Abstract:
High field magnetization and susceptibility of Co-based compounds Y(Co1−xA1x)2 are investigated in the paramagnetic region 0≤x≤0.11. In all the region, a sharp metamagnetic transition is observed, while the susceptibility shows a maximum at finite temperature Tmax. The transition field Hc exhibits a positive shift proportional to T2 with temperature. The Hc in the ground state is found to be proportional to Tmax. The experimental results are discussed with a new theory for itinerant electron metamagnetism based on the spin fluctuation model.
APA, Harvard, Vancouver, ISO, and other styles
50

Saito, H., T. Yokoyama, Y. Terada, K. Fukamichi, H. Mitamura, and T. Goto. "Universal linear relation between the critical field and the inverse susceptibility for Co-based Laves-phase metamagnets." Solid State Communications 113, no. 8 (January 2000): 447–50. http://dx.doi.org/10.1016/s0038-1098(99)00520-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography