To see the other types of publications on this topic, follow the link: Metamagnetický.

Journal articles on the topic 'Metamagnetický'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Metamagnetický.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Zyuzin, A. A., and A. Y. Zyuzin. "Spin Injection as a Source of the Metamagnetic Phase Transition." Solid State Phenomena 168-169 (December 2010): 461–64. http://dx.doi.org/10.4028/www.scientific.net/ssp.168-169.461.

Full text
Abstract:
We consider a metamagnetic phase transition of itinerant electrons in the metamagnetic- ferromagnetic metal junction. The current flow between a ferromagnetic metal and a metamagnetic metal produces the non-equilibrium spin imbalance acting as an effective magnetic field and initiating the first-order type transition from low- to high-magnetization states of the metamagnet in the vicinity of the ferromagnet. We show that the current dependence of the length of high-magnetization state region diverges at some threshold value, due to nonequilibrium shift, generated in a contact between the high and low magnetization states of the metamagnetic metal.
APA, Harvard, Vancouver, ISO, and other styles
2

Kainuma, Ryosuke, W. Ito, R. Y. Umetsu, V. V. Khovaylo, and T. Kanomata. "Metamagnetic Shape Memory Effect and Magnetic Properties of Ni-Mn Based Heusler Alloys." Materials Science Forum 684 (May 2011): 139–50. http://dx.doi.org/10.4028/www.scientific.net/msf.684.139.

Full text
Abstract:
In some Ni-Mn-In- and Ni-Mn-Sn-based Heusler-type alloys, martensitic transformation from the ferromagnetic parent phase to the paramagnetic martensite phase appears and magnetic field-induced reverse transformation, namely, metamagnetic phase transition, is detected. In this paper, the metamagnetic shape memory effect due to the metamagnetic phase transition and the magnetostress effect in the Ni-Co-Mn-In alloys are introduced and the phase diagrams of Ni50Mn50-yXy (X: In, Sn, Sb) alloys are shown as basic information. Furthermore, the magnetic properties of both the parent and martensite phases in the Ni-Mn-In- and Ni-Mn-Sn-based metamagnetic shape memory alloys are also reviewed.
APA, Harvard, Vancouver, ISO, and other styles
3

Oomi, G., N. Matsuda, T. Kagayama, C. K. Cho, and P. C. Canfield. "Electronic Properties of Magnetic Superconductor HoNi2B2C Under High Pressure." International Journal of Modern Physics B 17, no. 18n20 (August 10, 2003): 3664–71. http://dx.doi.org/10.1142/s0217979203021587.

Full text
Abstract:
The electrical resistivity of single crystalline HoNi 2 B 2 C has been measured at high pressure and magnetic fields. The three anomalies in the magnetoresistance due to metamagnetic transitions are observed both at ambient and high pressures. It is found that the metamagnetic transition fields increase with increasing pressure. The temperature dependence of electrical resistivity is strongly dependent on magnetic field. Non Fermi liquid behavior is observed near the metamagnetic transition fields. But the normal Fermi liquid behavior recovers after completing the phase transition. The Grüneisen parameters are also calculated to examine the stability of electronic state.
APA, Harvard, Vancouver, ISO, and other styles
4

YAMADA, H. "ITINERANT ELECTRON METAMAGNETISM OF Co-COMPOUNDS." International Journal of Modern Physics B 07, no. 01n03 (January 1993): 589–92. http://dx.doi.org/10.1142/s0217979293001232.

Full text
Abstract:
On the Landau-Ginzburg theory the metamagnetic transition observed at low temperature in some Co-compounds YCo2, LuCo2, Co(S, Se)2 and others has been shown to be related with the susceptibility maximum at room temperature through a characteristic quantity given in terms of the Landau expansion coefficients of the magnetic free energy. The present theory can explain the metamagnetic behaviours observed in the d-electron system at finite temperature.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Xi, Gayatri Venugopal, Jinwei Zeng, Yinnan Chen, Dong Ho Lee, Natalia M. Litchinitser, and Alexander N. Cartwright. "Optical fiber metamagnetics." Optics Express 19, no. 21 (September 26, 2011): 19813. http://dx.doi.org/10.1364/oe.19.019813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Peschke, Simon, Lisa Gamperl, Valentin Weippert, and Dirk Johrendt. "Flux synthesis, crystal structures, and physical properties of new lanthanum vanadium oxyselenides." Dalton Transactions 46, no. 19 (2017): 6230–43. http://dx.doi.org/10.1039/c7dt00779e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jing, C., H. L. Zhang, Z. Li, D. H. Yu, S. X. Cao, and J. C. Zhang. "Martensitic Transformation and Metamagnetic Shape Memory Effect in Ni46Co4Mn37in13 Heusler Alloy." Materials Science Forum 687 (June 2011): 505–9. http://dx.doi.org/10.4028/www.scientific.net/msf.687.505.

Full text
Abstract:
The phase transition strain and magnetostrain during the martensitic transformation have been systematically investigated in Ni46Co4Mn37In13 Heusler alloy. A large phase transition strain with the value of about 0.25% upon martensitic transition has been observed, which is much larger than that in other metamagnetic shape memory alloys. In addition, such phase transition strain can be also obtained by the field change of about 50 kOe, exhibiting a large metamagnetic shape memory effect with nonprestrain. This behavior can be attributed to magnetoelastic coupling, which is caused by large difference in Zeeman energy between austenitic and martensitic phases.
APA, Harvard, Vancouver, ISO, and other styles
8

Grado-Caffaro, M. A., and M. Grado-Caffaro. "Mathematical–Physics Investigation on the Behaviour of a Metamagnetic System." Zeitschrift für Naturforschung A 72, no. 5 (May 1, 2017): 463–67. http://dx.doi.org/10.1515/zna-2016-0485.

Full text
Abstract:
AbstractIn order to exemplify, we consider a finite itinerant-electron metamagnetic gas at sufficiently low absolute temperature so that relevant new results are obtained. In fact, we study key aspects related to derive the electronic energy of the abovementioned metamagnetic gas in relation to the Fermi levels of the spin-up and spin-down electron bands and in relation to the exchange energy and magnetic susceptibility. Within an unprecedented mathematical–physics approach, the abovementioned electronic energy is reinterpreted by defining it as an averaged quantity from the corresponding nonrelativistic, time-independent, Schrödinger equation with two-band energy-eigenvalue spectrum. In parallel, a matrix formulation is presented.
APA, Harvard, Vancouver, ISO, and other styles
9

Ye, Jingfan, Marco Hauke, Vikram Singh, Rajeev Rawat, Mukul Gupta, Akhil Tayal, S. M. Amir, Jochen Stahn, and Amitesh Paul. "Magnetic properties of ordered polycrystalline FeRh thin films." RSC Advances 7, no. 70 (2017): 44097–103. http://dx.doi.org/10.1039/c7ra06738k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gawai, U. P., D. K. Gaikwad, M. R. Bodke, H. A. Khawal, K. K. Pandey, A. K. Yadav, S. N. Jha, D. Bhattacharyya, and B. N. Dole. "Doping effect on the local structure of metamagnetic Co doped Ni/NiO:GO core–shell nanoparticles using X-ray absorption spectroscopy and the pair distribution function." Physical Chemistry Chemical Physics 21, no. 3 (2019): 1294–307. http://dx.doi.org/10.1039/c8cp05267k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Yin, L. H., J. Yang, P. Tong, X. Luo, C. B. Park, K. W. Shin, W. H. Song, et al. "Role of rare earth ions in the magnetic, magnetocaloric and magnetoelectric properties of RCrO3 (R = Dy, Nd, Tb, Er) crystals." Journal of Materials Chemistry C 4, no. 47 (2016): 11198–204. http://dx.doi.org/10.1039/c6tc03989h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Klein, D. R., D. MacNeill, J. L. Lado, D. Soriano, E. Navarro-Moratalla, K. Watanabe, T. Taniguchi, et al. "Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling." Science 360, no. 6394 (May 3, 2018): 1218–22. http://dx.doi.org/10.1126/science.aar3617.

Full text
Abstract:
Magnetic insulators are a key resource for next-generation spintronic and topological devices. The family of layered metal halides promises varied magnetic states, including ultrathin insulating multiferroics, spin liquids, and ferromagnets, but device-oriented characterization methods are needed to unlock their potential. Here, we report tunneling through the layered magnetic insulator CrI3 as a function of temperature and applied magnetic field. We electrically detect the magnetic ground state and interlayer coupling and observe a field-induced metamagnetic transition. The metamagnetic transition results in magnetoresistances of 95, 300, and 550% for bilayer, trilayer, and tetralayer CrI3 barriers, respectively. We further measure inelastic tunneling spectra for our junctions, unveiling a rich spectrum consistent with collective magnetic excitations (magnons) in CrI3.
APA, Harvard, Vancouver, ISO, and other styles
13

Liu, Zhong-Yi, Yan-Fei Xia, Jiao Jiao, En-Cui Yang, and Xiao-Jun Zhao. "Two water-bridged cobalt(ii) chains with isomeric naphthoate spacers: from metamagnetic to single-chain magnetic behaviour." Dalton Transactions 44, no. 46 (2015): 19927–34. http://dx.doi.org/10.1039/c5dt03297k.

Full text
Abstract:
Two water-bridged cobalt(ii) chains with isomeric naphthoate spacers exhibit metamagnetic and SCM behaviours, arising from the dramatically different interchain stacking induced by naphthoate isomers.
APA, Harvard, Vancouver, ISO, and other styles
14

Cai, Wenshan, Uday K. Chettiar, Hsiao-Kuan Yuan, Vashista C. de Silva, Alexander V. Kildishev, Vladimir P. Drachev, and Vladimir M. Shalaev. "Metamagnetics with rainbow colors." Optics Express 15, no. 6 (2007): 3333. http://dx.doi.org/10.1364/oe.15.003333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Werner, Julia, Zbigniew Tomkowicz, Michał Rams, Stefan G. Ebbinghaus, Tristan Neumann, and Christian Näther. "Synthesis, structure and properties of [Co(NCS)2(4-(4-chlorobenzyl)pyridine)2]n, that shows slow magnetic relaxations and a metamagnetic transition." Dalton Transactions 44, no. 31 (2015): 14149–58. http://dx.doi.org/10.1039/c5dt01898f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Grado-Caffaro, M. A., and M. Grado-Caffaro. "A Short Note on the Susceptibility in the Paramagnetic State for Disordered Itinerant-Electron Metamagnetic Materials." Active and Passive Electronic Components 19, no. 4 (1997): 261–63. http://dx.doi.org/10.1155/1997/10953.

Full text
Abstract:
A formulation for the paramagnetic susceptibility of a typical disordered itinerant-electron metamagnetic material is proposed by using a tight-binding approximation. Moreover, some considerations on the susceptibility tensor are exposed.
APA, Harvard, Vancouver, ISO, and other styles
17

Prokeš, K., M. I. Bartashevich, T. Goto, H. Nakotte, E. G. Haanappel, A. Syshchenko, F. R. de Boer, A. Lacerda, L. C. J. Perreira, and V. Sechovský. "Metamagnetic transition in U2Pd2In." Physica B: Condensed Matter 294-295 (January 2001): 288–91. http://dx.doi.org/10.1016/s0921-4526(00)00661-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Satoh, K., I. Umehara, A. Fukada, Y. Kurosawa, Y. Ōnuki, and K. Maezawa. "Metamagnetic behavior in CeCu2." Journal of Magnetism and Magnetic Materials 90-91 (December 1990): 141–42. http://dx.doi.org/10.1016/s0304-8853(10)80045-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Yamada, H., K. Terao, H. Ohta, T. Arioka, and E. Kulatov. "Metamagnetic transition of FeSi." Physica B: Condensed Matter 281-282 (June 2000): 267–68. http://dx.doi.org/10.1016/s0921-4526(99)00828-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sugiyama, K., Y. Yoshida, D. Aoki, R. Settai, T. Takeuchi, K. Kindo, and Y. Ōnuki. "Metamagnetic magnetization in DyCu2." Physica B: Condensed Matter 230-232 (February 1997): 748–51. http://dx.doi.org/10.1016/s0921-4526(96)00829-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Matsuoka, Y., Y. Nishimura, S. Mitsudo, H. Nojiri, H. Komatsu, M. Motokawa, K. Kakurai, K. Nakajima, Y. Karasawa, and N. Niimura. "Metamagnetic transition in Y2Cu2O5." Journal of Magnetism and Magnetic Materials 177-181 (January 1998): 729–30. http://dx.doi.org/10.1016/s0304-8853(97)00395-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Saito, Hidekazu, Satoshi Suzuki, Kazuaki Fukamichi, Hiroyuki Mitamura, and Tsuneaki Goto. "Metamagnetic Transition in GdSi." Journal of the Physical Society of Japan 65, no. 7 (July 15, 1996): 1938–40. http://dx.doi.org/10.1143/jpsj.65.1938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Opagiste, C., M. J. Jackson, R. M. Galéra, E. Lhotel, C. Paulsen, and B. Ouladdiaf. "Metamagnetic behaviour of Nd3Pt23Si11." Journal of Magnetism and Magnetic Materials 340 (August 2013): 46–49. http://dx.doi.org/10.1016/j.jmmm.2013.03.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Yamada, H., and M. Shimizu. "Metamagnetic transition of YCo2." Journal of Physics F: Metal Physics 15, no. 6 (June 1985): L175—L180. http://dx.doi.org/10.1088/0305-4608/15/6/007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Cuartero, V., J. Blasco, J. García, J. A. Rodríguez-Velamazán, and C. Ritter. "Metamagnetic transition in Tb2MnCoO6." EPJ Web of Conferences 40 (2013): 15002. http://dx.doi.org/10.1051/epjconf/20134015002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hu, Jifan, Fuming Yang, Yizhong Wang, Jianli Wang, and F. R. de Boer. "Metamagnetic Transition in ErMn6Sn6." physica status solidi (b) 214, no. 1 (July 1999): 135–40. http://dx.doi.org/10.1002/(sici)1521-3951(199907)214:1<135::aid-pssb135>3.0.co;2-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hirose, Yusuke, Fuminori Honda, Rikio Settai, and Yoshichika Ōnuki. "Metamagnetic Behaviour in CeCu6." Journal of the Physical Society of Japan 80, Suppl.A (January 2, 2011): SA065. http://dx.doi.org/10.1143/jpsjs.80sa.sa065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Tsutaoka, Takanori, Toshihiko Tokunaga, Hideoki Kadomatsu, Xun Xu, Shinji Kawano, Yoshikazu Andoh, Go Nakamoto, and Makio Kurisu. "Metamagnetic Transitions in Nd7Ni3." Journal of the Physical Society of Japan 69, no. 6 (June 15, 2000): 1850–55. http://dx.doi.org/10.1143/jpsj.69.1850.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ōnuki, Yoshichika, Katsuyoshi Ina, Munekazu Nishihara, Takemi Komatsubara, Sigeru Takayanagi, Katsuhiko Kameda, and Nobuo Wada. "Metamagnetic Behavior in NdCu6." Journal of the Physical Society of Japan 55, no. 6 (June 15, 1986): 1818–21. http://dx.doi.org/10.1143/jpsj.55.1818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Khomchenko, V. A., I. O. Troyanchuk, A. P. Sazonov, V. V. Sikolenko, H. Szymczak, and R. Szymczak. "Metamagnetic behaviour in TbCo0.5Mn0.5O3.06perovskite." Journal of Physics: Condensed Matter 18, no. 42 (October 5, 2006): 9541–48. http://dx.doi.org/10.1088/0953-8984/18/42/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bakker, K., A. de Visser, A. A. Menovsky, and J. J. M. Franse. "Metamagnetic transition ofUPt3under pressure." Physical Review B 46, no. 1 (July 1, 1992): 544–47. http://dx.doi.org/10.1103/physrevb.46.544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Sugiyama, K., P. Ahmet, M. Abliz, H. Azuma, T. Takeuchi, K. Kindo, H. Sugawara, et al. "Metamagnetic transition in PrCu2." Physica B: Condensed Matter 211, no. 1-4 (May 1995): 145–47. http://dx.doi.org/10.1016/0921-4526(94)00968-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Motokawa, M., K. Kita, H. Shibazaki, H. Ohta, W. J. Jang, M. Hasegawa, and H. Takei. "Metamagnetic transition in Y2Cu2O5." Physica B: Condensed Matter 211, no. 1-4 (May 1995): 165–67. http://dx.doi.org/10.1016/0921-4526(94)00975-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Zhang, Chao, Zhong-Yi Liu, Ning Liu, Hong Zhao, En-Cui Yang, and Xiao-Jun Zhao. "Different magnetic responses observed in CoII4, CoII3 and CoII1-based MOFs." Dalton Transactions 45, no. 29 (2016): 11864–75. http://dx.doi.org/10.1039/c6dt01587e.

Full text
Abstract:
Four extended MOFs constructed from CoII4, CoII3 and CoII1 subunits were reported, exhibiting ferromagnetic ordering below 2.7 K, a non-zero paramagnetic state above 2.0 K and a field-induced metamagnetic transition, respectively.
APA, Harvard, Vancouver, ISO, and other styles
35

Sakurai, Takahiro, Ryo Saiki, Rong Jia Wei, Graham N. Newton, Takuya Shiga, and Hiroki Oshio. "Oxalate-bridged heterometallic chains with monocationic dabco derivatives." Dalton Transactions 45, no. 41 (2016): 16182–89. http://dx.doi.org/10.1039/c6dt02955h.

Full text
Abstract:
A series of bimetallic oxalate-bridged one-dimensional chains with monocationic dabco derivatives were synthesized, and their metamagnetic behavior of ferromagnetic Cr–Co oxalate chain and a specific paraelectronic relaxation behavior were investigated.
APA, Harvard, Vancouver, ISO, and other styles
36

Tokunaga, M., N. Miura, and Y. Moritomo. "High-field Study of Layered Manganites R1/2Sr3/2MnO4 (R = La and Nd)." Australian Journal of Physics 52, no. 2 (1999): 227. http://dx.doi.org/10.1071/p98044.

Full text
Abstract:
We have studied the effects of a magnetic field on the magnetism and transport properties of the layered manganites R1/2Sr3/2MnO4 (R = La and Nd) in pulsed magnetic fields up to 40 T. The R = La crystal shows metamagnetic-like transitions above 30 T, concomitantly with a colossal magnetoresistance (CMR) effect as large as [ρ(0) - ρ(H)]/ρ(H) > 103 with a field of µοH = 38 T at low temperatures. These transitions can be ascribed to the field-induced melting of the real-space ordering of the eg electrons (charge ordering). For the R = Nd crystal, a magnetic field along the c-axis enhances the two-dimensionality in the conductivity. Moreover, we observed metamagnetic-like transitions accompanied by the CMR effects at low temperatures, in spite of the absence of charge ordering.
APA, Harvard, Vancouver, ISO, and other styles
37

Ru, Jing, Feng Gao, Min-Xia Yao, Tao Wu, and Jing-Lin Zuo. "Crystal structures and magnetic properties of chiral heterobimetallic chains based on the dicyanoruthenate building block." Dalton Trans. 43, no. 48 (2014): 18047–55. http://dx.doi.org/10.1039/c4dt02518k.

Full text
Abstract:
Two pairs of 1D enantiomers based on the dicyanoruthenate building block were prepared and characterized. Compounds 1-(RR) and 1-(SS) show metamagnetic behavior with a critical field of about 7.2 kOe at 1.9 K.
APA, Harvard, Vancouver, ISO, and other styles
38

Zhang, Daopeng, Yongzhong Bian, Jie Qin, Ping Wang, and Xia Chen. "The supramolecular interaction mediated chiral 1D cyanide-bridged metamagnet: synthesis, crystal structures and magnetic properties." Dalton Trans. 43, no. 3 (2014): 945–49. http://dx.doi.org/10.1039/c3dt52996g.

Full text
Abstract:
Two cyanide-bridged enantiopure one-dimensional single chain complexes have been synthesized and structurally characterized. Systematically magnetic investigations show the antiferromagnetic coupling between the Mn(iii)–Fe(iii) centers and the metamagnetic behavior at about 5.0 K.
APA, Harvard, Vancouver, ISO, and other styles
39

Lapidus, Saul H., Peter W. Stephens, Maria Fumanal, Jordi Ribas-Ariño, Juan J. Novoa, Jack G. DaSilva, Arnold L. Rheingold, and Joel S. Miller. "Low temperature structures and magnetic interactions in the organic-based ferromagnetic and metamagnetic polymorphs of decamethylferrocenium 7,7,8,8-tetracyano-p-quinodimethanide, [FeCp*2]˙+[TCNQ]˙−." Dalton Transactions 50, no. 32 (2021): 11228–42. http://dx.doi.org/10.1039/d1dt02106k.

Full text
Abstract:
To identify the genesis of the differing magnetic behaviors for the ferro- (FO) and metamagnetic (MM) polymorphs of [FeCp*2][TCNQ] the low temperature structures of each polymorph were determined from high-resolution synchrotron powder diffraction data.
APA, Harvard, Vancouver, ISO, and other styles
40

Sláma, Jozef, Jozef Pal’a, Martin Šoka, and Jan Lokaj. "Metamagnetism in manganate magnesium ferrite." Journal of Electrical Engineering 70, no. 1 (February 1, 2019): 78–81. http://dx.doi.org/10.2478/jee-2019-0012.

Full text
Abstract:
Abstract The metamagnetic properties of the manganese magnesium ferrites having the general formula Mn0.7Mg0.3Fe2O4 prepared by the standard ceramic technique have been studied. It is proposed that when a change of temperature at adequate magnetic field is applied in a Mn0.7Mg0.3Fe2O4 a magnetic phase transition will be generated, giving rise to an antiferromagnetic (AFM) state from ferrimagnetic (FM) phase. The critical transition field Hac = 300 A/m was estimated for critical magnetization curve of transition from the metamagnetic behavior to FM behavior of sample. The FM to AFM transition in these ferrites is accompanied by a Néel type to Yafet-Kittel type transition and gradual spin ordering changes of the unit cell volume. The application of an external magnetic field to the low-temperatures AFM state causes the sample to reset to the original FM state.
APA, Harvard, Vancouver, ISO, and other styles
41

Karpenkov, Alexey, Konstantin Skokov, Dmitriy Karpenkov, Oksana V. Balbikhina, Elena M. Semenova, Yulia V. Kuznetsova, and Sergey V. Taskaev. "Microstructure Transformation under Itinerant-Electron Metamagnetic Transition in LaFe11.6Si1.4." Materials Science Forum 845 (March 2016): 42–45. http://dx.doi.org/10.4028/www.scientific.net/msf.845.42.

Full text
Abstract:
The microstructure of LaFe11.6Si1.4 compound under itinerant-electron metamagnetic transition was investigated by means of optical microscopy. It was found that the field-induced phase transition observed in LaFe11.6Si1.4 compound preceded via nucleation and growth of the ferromagnetic phase.
APA, Harvard, Vancouver, ISO, and other styles
42

Grado-Caffaro, M. A., and M. Grado-Caffaro. "A Brief Study on Energy in Itinerant-Electron Metamagnetic Materials at Very Low Temperature." Active and Passive Electronic Components 20, no. 2 (1997): 91–94. http://dx.doi.org/10.1155/1997/78393.

Full text
Abstract:
Electronic energy is calculated explicitly for itinerant-electron metamagnetic materials at very low temperature. This calculation involves bandwidth and consequently volume, and it has been performed by means of an elliptic density of states. Moreover, total energy is considered.
APA, Harvard, Vancouver, ISO, and other styles
43

Liu, Jun-Liang, Guo-Zhang Huang, and Ming-Liang Tong. "Field-induced dynamic magnetic behaviour of a canted weak ferromagnetic chain material." Inorganic Chemistry Frontiers 2, no. 4 (2015): 403–8. http://dx.doi.org/10.1039/c5qi00004a.

Full text
Abstract:
A 1-D [MnIII3O] based magnetic chain material amazingly exhibits the coexistence of spin-glass, spin-canting, and metamagnetic behaviours as well as slow relaxation of magnetization under different applied magnetic fields.
APA, Harvard, Vancouver, ISO, and other styles
44

Asl, Hooman Yaghoobnejad, Kartik Ghosh, Melissa P. Vidal Meza, and Amitava Choudhury. "Li3Fe2(HPO3)3Cl: an electroactive iron phosphite as a new polyanionic cathode material for Li-ion battery." Journal of Materials Chemistry A 3, no. 14 (2015): 7488–97. http://dx.doi.org/10.1039/c5ta00208g.

Full text
Abstract:
Low melting phosphorous acid flux has been used to synthesize a novel iron-chloro-phosphite, Li3Fe2(HPO3)3Cl, which is electrochemically active and exhibits interesting metamagnetic transition.
APA, Harvard, Vancouver, ISO, and other styles
45

Serikov, V. V., N. M. Kleinerman, and A. V. Vershinin. "Mossbauer Study of Changes in Magnetic Structure of La(Fe0.88Al0.12-xSix)13 Compounds." Solid State Phenomena 190 (June 2012): 530–33. http://dx.doi.org/10.4028/www.scientific.net/ssp.190.530.

Full text
Abstract:
A first-order metamagnetic transition from antiferromagnetic to ferromagnetic state in La (Fe0.88Al0.12-xSix) compounds was investigated using Mossbauer effect. The exchange-related clusters in the ferromagnetic and antiferromagnetic state are shown to exist. The influence of Si on magnetic structure is observed.
APA, Harvard, Vancouver, ISO, and other styles
46

Maezawa, K., K. Sato, M. Ikka, and Y. Isikawa. "Magnetic torque in metamagnetic DyNi." Journal of Magnetism and Magnetic Materials 90-91 (December 1990): 77–78. http://dx.doi.org/10.1016/s0304-8853(10)80028-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Tazuke, Yuuichi, Hideaki Suzuki, and Hachidai Tanikawa. "Metamagnetic transitions in hexagonal La2Ni7." Physica B: Condensed Matter 346-347 (April 2004): 122–26. http://dx.doi.org/10.1016/j.physb.2004.01.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Yusuf, S. M., M. D. Mukadam, P. Raj, A. Sathyamoorthy, and S. K. Malik. "Metamagnetic-like transition in UThCuGe." Physica B: Condensed Matter 359-361 (April 2005): 1009–11. http://dx.doi.org/10.1016/j.physb.2005.01.380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sláma, Jozef, Paľa Jozef, Martin Šoka, and Ján Lokaj. "Metamagnetic properties in Mn0.7Mg0.3Fe2O4 ferrite." Physica B: Condensed Matter 576 (January 2020): 411705. http://dx.doi.org/10.1016/j.physb.2019.411705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Krasko, Genrich L. "Metamagnetic behavior of fcc iron." Physical Review B 36, no. 16 (December 1, 1987): 8565–69. http://dx.doi.org/10.1103/physrevb.36.8565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography