Journal articles on the topic 'Metals Fatigue'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Metals Fatigue.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Correia, J. A. F. O., A. M. P. De Jesus, I. F. Pariente, J. Belzunce, and A. Fernández-Canteli. "Mechanical fatigue of metals." Engineering Fracture Mechanics 185 (November 2017): 1. http://dx.doi.org/10.1016/j.engfracmech.2017.10.029.
Full textPolák, Jaroslav, Jiří Man, and Ivo Kuběna. "The True Shape of Persistent Slip Markings in Fatigued Metals." Key Engineering Materials 592-593 (November 2013): 781–84. http://dx.doi.org/10.4028/www.scientific.net/kem.592-593.781.
Full textEnomoto, Masatoshi. "Prediction of Fatigue Life for Light Metals and their Welded Metals." Materials Science Forum 794-796 (June 2014): 273–77. http://dx.doi.org/10.4028/www.scientific.net/msf.794-796.273.
Full textKAWAGOISHI, Norio, Qiang CHEN, Masahiro GOTO, Qingyuan WANG, and Hironobu NISITANI. "Ultrasonic Fatigue Properties of Metals." Proceedings of Conference of Kyushu Branch 2003 (2003): 47–48. http://dx.doi.org/10.1299/jsmekyushu.2003.47.
Full textTROSHCHENKO, V. T. "Fatigue fracture toughness of metals." Fatigue & Fracture of Engineering Materials & Structures 32, no. 4 (April 2009): 287–91. http://dx.doi.org/10.1111/j.1460-2695.2009.01343.x.
Full textFonseca de Oliveira Correia, José António, Miguel Muñiz Calvente, Abílio Manuel Pinho de Jesus, and Alfonso Fernández-Canteli. "ICMFM18-Mechanical fatigue of metals." International Journal of Structural Integrity 8, no. 6 (December 4, 2017): 614–16. http://dx.doi.org/10.1108/ijsi-10-2017-0055.
Full textPineau, André, David L. McDowell, Esteban P. Busso, and Stephen D. Antolovich. "Failure of metals II: Fatigue." Acta Materialia 107 (April 2016): 484–507. http://dx.doi.org/10.1016/j.actamat.2015.05.050.
Full textVinogradov, A., and S. Hashimoto. "Fatigue of Severely Deformed Metals." Advanced Engineering Materials 5, no. 5 (May 16, 2003): 351–58. http://dx.doi.org/10.1002/adem.200310078.
Full textTeng, N. J., and T. H. Lin. "Elastic Anisotropy Effect of Crystals on Polycrystal Fatigue Crack Initiation." Journal of Engineering Materials and Technology 117, no. 4 (October 1, 1995): 470–77. http://dx.doi.org/10.1115/1.2804741.
Full textLowe, Terry C. "Enhancing Fatigue Properties of Nanostructured Metals and Alloys." Advanced Materials Research 29-30 (November 2007): 117–22. http://dx.doi.org/10.4028/www.scientific.net/amr.29-30.117.
Full textChen, Rui, Hongqian Xue, and Bin Li. "Comparison of SP, SMAT, SMRT, LSP, and UNSM Based on Treatment Effects on the Fatigue Properties of Metals in the HCF and VHCF Regimes." Metals 12, no. 4 (April 10, 2022): 642. http://dx.doi.org/10.3390/met12040642.
Full textBalasubramanian, Shyam-Sundar, Chris Philpott, James Hyder, Mike Corliss, Bruce Tai, and Wayne NP Hung. "Testing Techniques and Fatigue of Additively Manufactured Inconel 718 – A Review." International Journal of Engineering Materials and Manufacture 5, no. 4 (October 20, 2020): 156–94. http://dx.doi.org/10.26776/ijemm.05.04.2020.05.
Full textSzala, Grzegorz. "Influence of Stresses below the Fatigue Limit on Fatigue Life." Solid State Phenomena 224 (November 2014): 45–50. http://dx.doi.org/10.4028/www.scientific.net/ssp.224.45.
Full textLevitin, V. V., S. V. Loskutov, M. I. Pravda, and B. A. Serpetsky. "WORK FUNCTION FOR FATIGUE TESTED METALS." Nondestructive Testing and Evaluation 17, no. 2 (January 2001): 79–89. http://dx.doi.org/10.1080/10589750108953103.
Full textFatemi, Ali, Reza Molaei, and Nam Phan. "Multiaxial Fatigue of Additive Manufactured Metals." MATEC Web of Conferences 300 (2019): 01003. http://dx.doi.org/10.1051/matecconf/201930001003.
Full textWang, Shengping, Yongjun Li, Mei Yao, and Renzhi Wang. "Fatigue limits of shot-peened metals." Journal of Materials Processing Technology 73, no. 1-3 (January 1998): 57–63. http://dx.doi.org/10.1016/s0924-0136(97)00212-4.
Full textMUGHRABI, H. "Cyclic plasticity and fatigue of metals." Le Journal de Physique IV 03, no. C7 (November 1993): C7–659—C7–668. http://dx.doi.org/10.1051/jp4:19937105.
Full textKabaldin, Yu G. "Nanostructuring of metals in fatigue loading." Russian Engineering Research 28, no. 6 (June 2008): 559–65. http://dx.doi.org/10.3103/s1068798x08060105.
Full textOmar, M. K., A. G. Atkins, and J. K. Lancaster. "The adhesive-fatigue wear of metals." Wear 107, no. 3 (February 1986): 279–85. http://dx.doi.org/10.1016/0043-1648(86)90230-9.
Full textMOTZ, C., O. FRIEDL, and R. PIPPAN. "Fatigue crack propagation in cellular metals." International Journal of Fatigue 27, no. 10-12 (October 2005): 1571–81. http://dx.doi.org/10.1016/j.ijfatigue.2005.06.044.
Full textBowman, M. D., G. E. Nordmark, and J. T. P. Yao. "Fuzzy logic approach in metals fatigue." International Journal of Approximate Reasoning 1, no. 2 (April 1987): 197–219. http://dx.doi.org/10.1016/0888-613x(87)90014-4.
Full textSchleinkofer, U., H. G. Sockel, K. Go¨rting, and W. Heinrich. "Fatigue of hard metals and cermets." Materials Science and Engineering: A 209, no. 1-2 (May 1996): 313–17. http://dx.doi.org/10.1016/0921-5093(95)10106-3.
Full textLiu, Dan, Dirk John Pons, and E. H. Wong. "Creep-integrated fatigue equation for metals." International Journal of Fatigue 98 (May 2017): 167–75. http://dx.doi.org/10.1016/j.ijfatigue.2016.11.030.
Full textItoh, Y. Z., and H. Kashiwaya. "Low-Cycle Fatigue Properties of Steels and Their Weld Metals." Journal of Engineering Materials and Technology 111, no. 4 (October 1, 1989): 431–37. http://dx.doi.org/10.1115/1.3226491.
Full textRajmane, Umesh C. "Review of Equal Channel Angular Pressing System." Asian Review of Mechanical Engineering 5, no. 2 (November 5, 2016): 11–13. http://dx.doi.org/10.51983/arme-2016.5.2.2417.
Full textMatsuno, Hiroshi. "Fatigue Strength of Metals Containing Inclusions and Phase Inhomogeneity." Key Engineering Materials 353-358 (September 2007): 1090–93. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.1090.
Full textGräfe, Wolfgang. "Fatigue of Cellulose Acetate and Ductile Metals." Advanced Materials Research 1154 (June 2019): 112–21. http://dx.doi.org/10.4028/www.scientific.net/amr.1154.112.
Full textCavaliere, Pasquale. "Low Cycle Fatigue of Electrodeposited Pure Nanocrystalline Metals." Materials Science Forum 561-565 (October 2007): 1299–302. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.1299.
Full textArakawa, Jinta, Tatsuya Hanaki, Yoshiichirou Hayashi, Hiroyuki Akebono, and Atsushi Sugeta. "Effect of surface compressive residual stress introduced by surface treatment on fatigue properties of metallic material." MATEC Web of Conferences 165 (2018): 18006. http://dx.doi.org/10.1051/matecconf/201816518006.
Full textIhara, C., and T. Misawa. "Stochastic Models Related to Fatigue Damage of Materials." Journal of Energy Resources Technology 113, no. 4 (December 1, 1991): 215–21. http://dx.doi.org/10.1115/1.2905903.
Full textAlderiesten, René. "Fatigue in fibre metal laminates: The interplay between fatigue in metals and fatigue in composites." Fatigue & Fracture of Engineering Materials & Structures 42, no. 11 (February 26, 2019): 2414–21. http://dx.doi.org/10.1111/ffe.12995.
Full textSoyama, Hitoshi, Michela Simoncini, and Marcello Cabibbo. "Effect of Cavitation Peening on Fatigue Properties in Friction Stir Welded Aluminum Alloy AA5754." Metals 11, no. 1 (December 30, 2020): 59. http://dx.doi.org/10.3390/met11010059.
Full textHajshirmohammadi, Behnam, and Michael M. Khonsari. "Application of thermoelectricity in fatigue of metals." Fatigue & Fracture of Engineering Materials & Structures 44, no. 5 (January 25, 2021): 1162–77. http://dx.doi.org/10.1111/ffe.13421.
Full textLi, Xiaoyan, Ming Dao, Christoph Eberl, Andrea Maria Hodge, and Huajian Gao. "Fracture, fatigue, and creep of nanotwinned metals." MRS Bulletin 41, no. 4 (April 2016): 298–304. http://dx.doi.org/10.1557/mrs.2016.65.
Full textBecker, Thorsten Hermann, Punit Kumar, and Upadrasta Ramamurty. "Fracture and fatigue in additively manufactured metals." Acta Materialia 219 (October 2021): 117240. http://dx.doi.org/10.1016/j.actamat.2021.117240.
Full textBalasubramanian, Shyam-Sundar, Chris Philpott, James Hyder, Mike Corliss, Bruce Tai, and Wayne Hung. "Novel Fatigue Tester for Additively Manufactured Metals." Procedia Manufacturing 53 (2021): 525–34. http://dx.doi.org/10.1016/j.promfg.2021.06.054.
Full textVincent, Alain, and Roger Fougères. "Fatigue and Internal Friction of FCC Metals." Materials Science Forum 119-121 (January 1993): 69–82. http://dx.doi.org/10.4028/www.scientific.net/msf.119-121.69.
Full textSEKI, Hironori, Masakazu TANE, and Hideo NAKAJIMA. "Fatigue Strength of Lotus-type Porous Metals." Journal of High Temperature Society 34, no. 2 (2008): 56–59. http://dx.doi.org/10.7791/jhts.34.56.
Full textMcDowell, David L. "Multiaxial small fatigue crack growth in metals." International Journal of Fatigue 19, no. 93 (June 1997): 127–35. http://dx.doi.org/10.1016/s0142-1123(97)00014-5.
Full textTirosh, Jehuda, and Sharon Peles. "Bounds on the fatigue threshold in metals." Journal of the Mechanics and Physics of Solids 49, no. 6 (June 2001): 1301–22. http://dx.doi.org/10.1016/s0022-5096(00)00076-4.
Full textLuong, M. P. "Infrared thermographic scanning of fatigue in metals." Nuclear Engineering and Design 158, no. 2-3 (September 1995): 363–76. http://dx.doi.org/10.1016/0029-5493(95)01043-h.
Full textKANAZAWA, Kenji. "How Dose Fatigue Fracture Occur in Metals?" Journal of the Japan Society for Precision Engineering 73, no. 3 (2007): 322–25. http://dx.doi.org/10.2493/jjspe.73.322.
Full textHANLON, T., E. TABACHNIKOVA, and S. SURESH. "Fatigue behavior of nanocrystalline metals and alloys." International Journal of Fatigue 27, no. 10-12 (October 2005): 1147–58. http://dx.doi.org/10.1016/j.ijfatigue.2005.06.035.
Full textMakkonen, M. "Predicting the total fatigue life in metals." International Journal of Fatigue 31, no. 7 (July 2009): 1163–75. http://dx.doi.org/10.1016/j.ijfatigue.2008.12.008.
Full textRomaniv, O. N., B. N. Andrusiv, and V. I. Borsukevich. "Crack formation in fatigue of metals (review)." Soviet Materials Science 24, no. 1 (1988): 1–10. http://dx.doi.org/10.1007/bf00722573.
Full textGonçalves, Camilla de Andrade, José Alexander Araújo, and Edgar Nobuo Mamiya. "A simple multiaxial fatigue criterion for metals." Comptes Rendus Mécanique 332, no. 12 (December 2004): 963–68. http://dx.doi.org/10.1016/j.crme.2004.09.003.
Full textNICOLETTO, G. "Plastic zones about fatigue cracks in metals." International Journal of Fatigue 11, no. 2 (March 1989): 107–15. http://dx.doi.org/10.1016/0142-1123(89)90005-4.
Full textTroshchenko, V. T. "Nonlocalized fatigue damage to metals and alloys." Materials Science 42, no. 1 (January 2006): 20–33. http://dx.doi.org/10.1007/s11003-006-0054-0.
Full textZhou, Xiaoling, Xiaoyan Li, and Changqing Chen. "Atomistic mechanisms of fatigue in nanotwinned metals." Acta Materialia 99 (October 2015): 77–86. http://dx.doi.org/10.1016/j.actamat.2015.07.045.
Full textWeiss, Menachem P., and Erel Lavi. "Fatigue of metals – What the designer needs?" International Journal of Fatigue 84 (March 2016): 80–90. http://dx.doi.org/10.1016/j.ijfatigue.2015.11.013.
Full text