Academic literature on the topic 'Metalloproteins; Electron transfer'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Metalloproteins; Electron transfer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Metalloproteins; Electron transfer"

1

Brunori, Maurizio. "Control of electron transfer in metalloproteins." Biosensors and Bioelectronics 9, no. 9-10 (1994): 633–36. http://dx.doi.org/10.1016/0956-5663(94)80059-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Murgida, Daniel Horacio. "Modulation of Functional Features in Electron Transferring Metalloproteins." Science Reviews - from the end of the world 1, no. 2 (March 16, 2020): 45–65. http://dx.doi.org/10.52712/sciencereviews.v1i2.18.

Full text
Abstract:
Electron transferring metalloproteins are typically implicated in shuttling electrons between energy transduction chains membrane complexes, such as in (aerobic and anaerobic) respiration and photosynthesis, among other functions. The thermodynamic and kinetic electron transfer parameters of the different metalloproteins need to be adjusted in each case to the specific demands, which can be quite diverse among organisms. Notably, biology utilizes very few metals, essentially iron and copper, to cover this broad range of redox needs imposed by biodiversity. Here, I will describe some crucial structural and dynamical characteristics that modulate the electron transfer parameters (and alternative functions) of two prototypical metalloproteins: the iron protein cytochrome c and its redox partner, the CuA center of the terminal respiratory enzyme cytochrome c oxidase. Specifically, I will focus on summarizing results obtained in recent years in my laboratory.
APA, Harvard, Vancouver, ISO, and other styles
3

Gray, Harry B., and Bo G. Malmstroem. "Long-range electron transfer in multisite metalloproteins." Biochemistry 28, no. 19 (September 19, 1989): 7499–505. http://dx.doi.org/10.1021/bi00445a001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

De Jonge, N., H. K. Rau, and W. Haehnel. "Light-induced Electron Transfer in Synthetic Metalloproteins." Zeitschrift für Physikalische Chemie 1, no. 1 (January 1998): 375–80. http://dx.doi.org/10.1524/zpch.1998.1.1.375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

De Jonge, N., H. K. Rau, and W. Haehnel. "Light-induced Electron Transfer in Synthetic Metalloproteins." Zeitschrift für Physikalische Chemie 213, Part_2 (January 1999): 175–80. http://dx.doi.org/10.1524/zpch.1999.213.part_2.175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ogawa, Michael Y., Jiufeng Fan, Anna Fedorova, Jing Hong, Olesya A. Kharenko, Anna Y. Kornilova, Robin C. Lasey, and Fei Xie. "Electron-transfer functionality of synthetic coiled-coil metalloproteins." Journal of the Brazilian Chemical Society 17, no. 8 (December 2006): 1516–21. http://dx.doi.org/10.1590/s0103-50532006000800006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Malmstr�m, Bo G. "Structural control of electron-transfer properties in metalloproteins." Biology of Metals 3, no. 2 (1990): 64–66. http://dx.doi.org/10.1007/bf01179504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Elliott, Martin, and D. Dafydd Jones. "Approaches to single-molecule studies of metalloprotein electron transfer using scanning probe-based techniques." Biochemical Society Transactions 46, no. 1 (December 22, 2017): 1–9. http://dx.doi.org/10.1042/bst20170229.

Full text
Abstract:
The single-molecule properties of metalloproteins have provided an intensely active research area in recent years. This brief review covers some of the techniques used to prepare, measure and analyse the electron transfer properties of metalloproteins, concentrating on scanning tunnelling microscopy-based techniques and advances in attachment of proteins to electrodes.
APA, Harvard, Vancouver, ISO, and other styles
9

Butler, Clive S. "Metals, non-metals and minerals: The complexity of bacterial selenate respiration." Biochemist 34, no. 5 (October 1, 2012): 23–27. http://dx.doi.org/10.1042/bio03405023.

Full text
Abstract:
Metalloproteins and enzymes are an essential part of all respiratory electron-transfer chains and provide a pathway for electron transfer to terminal electron acceptors. Since bacteria can utilize a wide range of respiratory substrates, this variety of potential electron acceptors has facilitated the need for many different respiratory metalloproteins. Bacterial selenate respiration requires the sequential reduction of the selenium oxyanions selenate and selenite resulting in the precipitation of elemental selenium. The initial bioenergetic processes of selenate respiration are driven by metalloproteins utilizing cofactors containing iron and molybdenum. However, the assembly of the elemental selenium into selenium nanosphere crystals has shed light on a new family of proteins involved in selenium biomineralization. This article highlights some of the recent advances in our understanding of selenate respiration in the bacterium Thauera selenatis, with particular focus on the metalloproteins involved in selenate reduction and the novel proteins that function to deal with these insoluble selenium deposits. “As mineralogy constitutes a part of chemistry, it is clear that this arrangement of minerals must derive its principles from chemistry” Jöns Jacob Berzelius 1814
APA, Harvard, Vancouver, ISO, and other styles
10

Winkler, J. R., B. G. Malmström, and H. B. Gray. "Rapid electron injection into multisite metalloproteins: intramolecular electron transfer in cytochrome oxidase." Biophysical Chemistry 54, no. 3 (May 1995): 199–209. http://dx.doi.org/10.1016/0301-4622(94)00156-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Metalloproteins; Electron transfer"

1

Taiwo, Fatai Adetokunbo. "Electron transfer effects in metalloproteins : an ESR study." Thesis, University of Leicester, 1988. http://hdl.handle.net/2381/33944.

Full text
Abstract:
The metal chromophore in metalloproteins is identified as a high affinity site for dry electrons in conformity with previous studies. Relative electron affinities for such centres in a physiologically probable valence hybrid haemoglobin have been determined. A ratio of ca. 2.5 for the electron affinity of oxyhaemog1obin over methaemog1obin is explained in terms of structural differences in the constituent forms. The phenomenon of intersubunit electron transfer in similar systems is considered in terms of haem edge-to-edge minimum separation. The hydrogen peroxide complex of iron haemoproteins is characterised as an oxo compound of iron in the +4 oxidation state (ferryl), by electronic spectroscopy and ESR spectroscopy using low temperature ?-irradiation. Variations in ESR parameters during annealing are explained in terms of structural changes at the haem site. The electron-loss centre in many proteins, consequent upon ?-irradiation, is identified as the polypeptide amide nitrogen. The nitrogen-centred radical first formed may undergo hydrogen transfer reactions to give a terminal carbon-centred radical. ESR features for the nitrogen-centred radical are interpreted in relation to predominant secondary structures in the proteins examined. The catalytic mechanism of xanthine oxidase has been studied by the use of dry electrons as the reducing substrate. The series of intermediates obtained through annealing have ESR parameters identical with those for the enzyme-substrate intermediates obtained by other workers using chemical reducing substrates. A scheme of intramolecular electron transfer is proposed.
APA, Harvard, Vancouver, ISO, and other styles
2

Hong, Jing. "DESIGN, CHARACTERIZATION, AND ELECTRON TRANSFER PROPERTIES OF SYNTHETIC METALLOPROTEINS." Bowling Green State University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1149775101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Worrall, Jonathan A. R. "Studies on electron-transfer reactions of Fe and Cu metalloproteins." Thesis, University of Newcastle Upon Tyne, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pershad, Harsh R. "Studies of redox proteins and enzymes using protein-film voltammetry." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jackman, M. P. "Kinetics of electron transfer in some metalloproteins and their Ru-modified derivatives." Thesis, University of Newcastle Upon Tyne, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fan, Jiufeng. "Bottom-Up Design of Synthetic Photoactive Metalloproteins." Bowling Green State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1256410648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Xie. "Biochemical and electrochemical studies of metalloproteins involved in oxygen reduction pathway in Acidithiobacillus ferrooxidans." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0579.

Full text
Abstract:
Acidithiobacillus ferrooxidans (A. f.) est un modèle bactérien parfaitement adapté à l’étude de la survie en milieu acide. Si plusieurs métalloprotéines ont été identifiées et caractérisées d’un point de vue biochimique, le fonctionnement de la chaîne respiratoire couplant l’oxydation du Fe(II) à la réduction de l’oxygène dans cet organisme n’est pas élucidée. Au cours de ce travail de thèse, après avoir optimisé les conditions de croissance de la bactérie et de production des protéines redox impliquées, nous avons reconstitué sur interface électrochimique une partie de la chaîne respiratoire d’A. f. dans le but de déterminer étape par étape le chemin de transfert d’électrons (TE). Notre attention s’est portée sur trois protéines qui interagissent dans la chaîne respiratoire: la cytochrome c oxidase (CcO), la cuprédoxine AcoP, qui copurifie avec la CcO mais de fonction inconnue, et un cytochrome dihémique (Cyt c4) proposé comme interagissant avec la CcO. La mise en évidence, puis la quantification d’un TE intermoléculaire entre le Cyt c4 et AcoP, puis entre le Cyt c4 et la CcO nous a permis de proposer un rôle pour AcoP et un nouveau chemin de TE vers la CcO. Nous avons ensuite étudié les propriétés électrochimiques de la CcO vis à vis de la réduction catalytique de l’O2, en particulier avec une forte affinité. Nous avons ainsi pu montrer que la CcO de A. f. réduisait l’O2 à des potentiels 500 mV plus anodiques que les CcO neutrophiles par une connexion directe de l’enzyme sur nanomatériaux carbonés. Affinité pour O2 et haut potentiel redox font de cette CcO une enzyme de choix pour développer une nouvelle génération de piles à combustible enzymatique
Acidithiobacillus ferrooxidans is one of the most studied bacterial models to understand how to survive in an acid environment. Although several metalloproteins have been identified and characterized from a biochemical point of view, the electron transfer pathway (ET) of the respiratory chain coupling the oxidation of ferrous iron with the reduction of oxygen in this organism has not been elucidated.During this thesis work, after having optimized the growth conditions of the bacterium and the production of the redox proteins involved, we reconstituted on the electrochemical interface part of the respiratory chain of A. ferrooxidans for the purpose of determining step by step the ET. Our attention focused on three proteins that interact in the respiratory chain: cytochrome c oxidase (CcO), the cupredoxin AcoP, which co-purifies with CcO but of unknown function, and a cytochrome dihemic (Cyt c4) proposed as interacting with the CcO. The demonstration, then the quantification of an intermolecular ET between the Cyt c4 and AcoP, then between the Cyt c4 and the CcO allowed us to propose a role for AcoP and a new pathway for the ET to the CcO. We then studied the electrochemical properties of CcO with respect to the catalytic reduction of O2. We have demonstrated the strong affinity of this oxidase for O2. We have established the chemical functions required to obtain a direct wiring of the enzyme on carbon nanomaterials. This showed that A. ferrooxidans CcO reduced O2 at potentials 500 mV more anodic than neutrophilic CcOs. Affinity for O2 and high redox potential make this CcO an enzyme of choice to develop a new generation of enzymatic fuel cells
APA, Harvard, Vancouver, ISO, and other styles
8

Chaussade, Marc. "Étude par RMN à haute résolution en solide de modèles synthétiques des sites actifs des protéines à {4Fe-4S}." Grenoble 1, 1998. http://www.theses.fr/1998GRE10139.

Full text
Abstract:
Les ferredoxines a 4fe-4s constituent une categorie de metalloproteines particulierement etudiee depuis leur decouverte dans les annees 1960 en raison de leur fonction clef de transfert electronique dans les metabolismes essentiels de la vie. Le cluster de type pseudo-cubane 4fe-4s opere entre les deux etats redox fe#4s#4#2#+(2+) et fe#4s#4#1#+(1+) et est responsable du transfert electronique. Il est possible d'en synthetiser chimiquement des analogues afin d'en simplifier l'etude. Ses proprietes magnetiques font l'objet de beaucoup d'investigations car il presente des couplages magnetiques complexes entre les spins des atomes de fer, couplages que nous avons etudies ici par rmn en solide. Dans cette these, les (cinq) complexes modeles synthetises et etudies sont ceux ayant pour ligands, soit le tertiobutylthiolate, soit le benzylthiolate deuterie et enrichi selectivement en #1#3c. Nous avons etudie ces clusters 4fe-4s dans les deux etats redox (2+) et (1+) par rmn du #1#3c en solide en fonction de la temperature (de 180 a 330 k). Nous avons en particulier mene des experiences de rmn bidimensionnelle en solide correlant deplacements chimiques isotropes et anisotropes. Pour interpreter les courbes de dependance en temperature obtenues, nous avons eu recours a differents modeles de couplage magnetique. Dans le cas des composes reduits d'etat redox (1+), nous avons ete conduit a elaborer un nouveau modele mettant en evidence la necessite d'une delocalisation differenciee des electrons de valence sur les quatre sites de fer. Dans ce cas, l'analyse de ces courbes s'est averee particulierement interessante puisque la rmn en solide du #1#3c, qui introduit des sondes locales de la distribution de la densite de spin dans le cluster, apporte une richesse d'information beaucoup plus contraignante a l'egard des modeles que la susceptometrie. La rmn en solide apparait donc comme une technique de choix pour ce type d'analyse.
APA, Harvard, Vancouver, ISO, and other styles
9

HUBERT, JEAN-GASPARD. "Rmn de proteines 4fe-4s : proprietes structurales et transfert electronique intramoleculaire." Université Joseph Fourier (Grenoble), 1996. http://www.theses.fr/1996GRE10175.

Full text
Abstract:
Les proprietes de deplacement chimique et de relaxation des spins nucleaires, surtout quand elles sont influencees par le paramagnetisme de centres polymetalliques, apportent de nouvelles informations sur la structure atomique, electronique et magnetiques des proteines 4fe-4s et sur la vitesse d'echange electronique entre clusters
APA, Harvard, Vancouver, ISO, and other styles
10

Brouquisse, Renaud. "Etude des protéines fer-soufre des mitochondries végétales : caractérisation et purification de l'aconitase." Grenoble 1, 1987. http://www.theses.fr/1987GRE10088.

Full text
Abstract:
Les proteines a centre (fe-s) des mitochondries vegetales sont etudiees par resonance para magnetique (rpe), cette etude a permis de caracteriser les centres (fe-s) impliques dans la chaine respiratoire de la membrane interne puis d'etudier et de purifier l'aconitase matricielle. L'activite aconitase dans les cellules d'erable est associee a deux fractions proteique. L'une est presente dans le cytosol alors que la seconde est d'origine mitochondriale. La presence de l'aconitase et de l'isocitrate deshydrogenase nadp-dependante dans le cytosol permet de penser que ces enzymes pourraient avoir un role important dans le metabolisme des acides organiques
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Metalloproteins; Electron transfer"

1

Helmut, Sigel, and Sigel Astrid, eds. Electron transfer reactions in metalloproteins. New York: M. Dekker, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1947-, Bertrand P., ed. Long-range electron transfer in biology. Berlin: Springer-Verlag, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

A, Nicolini Claudio, ed. Biophysics of electron transfer and molecular bioelectronics. New York: Plenum Press, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nicolini, C. Biophysics of Electron Transfer and Molecular Bioelectronics (Electronics and Biotechnology Advanced (Elba) Forum Series). Springer, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

1953-, Johnson Michael K., American Chemical Society. Division of Inorganic Chemistry., and Inorganic Chemistry Symposium (1989 : Athens, Ga.), eds. Electron transfer in biology and the solid state: Inorganic compounds with unusual properties. Washington, DC: American Chemical Society, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Electron Transfer in Biology and the Solid State: Inorganic Compounds with Unusual Properties (Advances in Chemistry Series). Oxford University Press, USA, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Metalloproteins; Electron transfer"

1

Therien, Michael J., Jeffrey Chang, Adrienne L. Raphael, Bruce E. Bowler, and Harry B. Gray. "Long-range electron transfer in metalloproteins." In Long-Range Electron Transfer in Biology, 109–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/3-540-53260-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yang, Xin, Xue-Bin Wang, You-Jun Fu, and Lai-Sheng Wang. "Probing the Electronic Structure of FeS Clusters: Ubiquitous Electron Transfer Centers in Metalloproteins Using Anion Photoelectron Spectroscopy in the Gas Phase." In Principles of Mass Spectrometry Applied to Biomolecules, 63–117. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/047005042x.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Palma, P. Nuno, Jean Legall, John E. Wampler, and José J. G. Moura. "Molecular Interactions Between Metalloproteins Involved in Electron Transfer Processes: Tetraheme Cytochrome c 3 and Flavodoxin. Nmr and Molecular Modeling Studies." In Transition Metals in Supramolecular Chemistry, 279–90. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8380-0_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nicolini, Claudio. "Metalloprotein Engineering for New Materials, Drugs and Nanodevices." In Biophysics of Electron Transfer and Molecular Bioelectronics, 1–31. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-9516-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kostić, Nenad M. "Dynamic Aspects of Electron-Transfer Reactions in Metalloprotein Complexes." In Metal-Containing Polymeric Materials, 491–500. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0365-7_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kuznetsov, Aleksandr M., Jens Ulstrup, and Merab G. Zakaraya. "Protein Configurational Fluctuation Dependence of the Electronic Tunnel Factor of Modified Metalloprotein Electron Transfer Systems and in Fast Direct and Superexchange Separation and Recombination in Bacterial Photosynthesis." In The Jerusalem Symposia on Quantum Chemistry and Biochemistry, 241–59. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0489-7_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Electron Transfer." In Encyclopedia of Metalloproteins, 783. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-1533-6_100472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Electron Transfer Shuttles." In Encyclopedia of Metalloproteins, 783. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-1533-6_100473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bizzarri, A. R., and S. Cannistraro. "Metalloproteins, Electron Transfer in." In Encyclopedia of Condensed Matter Physics, 361–69. Elsevier, 2005. http://dx.doi.org/10.1016/b0-12-369401-9/00379-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bizzarri, A. R., and S. Cannistraro. "Biophysics: Electron Transfer in Metalloproteins." In Reference Module in Materials Science and Materials Engineering. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-803581-8.00993-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Metalloproteins; Electron transfer"

1

Peerey, L. Cross-linked metalloproteins: Novel systems for the study of intraprotein electron-transfer reactions. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/7118554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography