Journal articles on the topic 'Metalloenzimi'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Metalloenzimi.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Höcker, Birte. "A metalloenzyme reloaded." Nature Chemical Biology 8, no. 3 (February 15, 2012): 224–25. http://dx.doi.org/10.1038/nchembio.800.
Full textYou, Jing-Song, Xiao-Qi Yu, Xiao-Yu Su, Tao Wang, Qing-Xiang Xiang, Meng Yang, and Ru-Gang Xie. "Hydrolytic metalloenzyme models." Journal of Molecular Catalysis A: Chemical 202, no. 1-2 (August 2003): 17–22. http://dx.doi.org/10.1016/s1381-1169(03)00199-7.
Full textDong, Steven D., and Ronald Breslow. "Bifunctional cyclodextrin metalloenzyme mimics." Tetrahedron Letters 39, no. 51 (December 1998): 9343–46. http://dx.doi.org/10.1016/s0040-4039(98)02160-1.
Full textHadianawala, Murtuza, and Bhaskar Datta. "Design and development of sulfonylurea derivatives as zinc metalloenzyme modulators." RSC Advances 6, no. 11 (2016): 8923–29. http://dx.doi.org/10.1039/c5ra27341b.
Full textKwon, Hanna, Jaswir Basran, Juliette M. Devos, Reynier Suardíaz, Marc W. van der Kamp, Adrian J. Mulholland, Tobias E. Schrader, et al. "Visualizing the protons in a metalloenzyme electron proton transfer pathway." Proceedings of the National Academy of Sciences 117, no. 12 (March 9, 2020): 6484–90. http://dx.doi.org/10.1073/pnas.1918936117.
Full textDoerr, Allison. "Metalloenzyme structures in a shot." Nature Methods 10, no. 4 (March 28, 2013): 287. http://dx.doi.org/10.1038/nmeth.2428.
Full textLancaster, Kyle M. "Revving up an artificial metalloenzyme." Science 361, no. 6407 (September 13, 2018): 1071–72. http://dx.doi.org/10.1126/science.aau7754.
Full textStoecker, Walter, Russell L. Wolz, Robert Zwilling, Daniel J. Strydom, and David S. Auld. "Astacus protease, a zinc metalloenzyme." Biochemistry 27, no. 14 (July 12, 1988): 5026–32. http://dx.doi.org/10.1021/bi00414a012.
Full textVallee, B. L. "Zinc metalloenzyme structure and function." Journal of Inorganic Biochemistry 36, no. 3-4 (August 1989): 299. http://dx.doi.org/10.1016/0162-0134(89)84446-0.
Full textValdez, Crystal E., Amanda Morgenstern, Mark E. Eberhart, and Anastassia N. Alexandrova. "Predictive methods for computational metalloenzyme redesign – a test case with carboxypeptidase A." Physical Chemistry Chemical Physics 18, no. 46 (2016): 31744–56. http://dx.doi.org/10.1039/c6cp02247b.
Full textJackl, Moritz K., Hyeonglim Seo, Johannes Karges, Mark Kalaj, and Seth M. Cohen. "Salicylate metal-binding isosteres as fragments for metalloenzyme inhibition." Chemical Science 13, no. 7 (2022): 2128–36. http://dx.doi.org/10.1039/d1sc06011b.
Full textEhudin, Melanie A., Andrew W. Schaefer, Suzanne M. Adam, David A. Quist, Daniel E. Diaz, Joel A. Tang, Edward I. Solomon, and Kenneth D. Karlin. "Influence of intramolecular secondary sphere hydrogen-bonding interactions on cytochrome c oxidase inspired low-spin heme–peroxo–copper complexes." Chemical Science 10, no. 10 (2019): 2893–905. http://dx.doi.org/10.1039/c8sc05165h.
Full textLi, Yinghao, Mingpan Cheng, Jingya Hao, Changhao Wang, Guoqing Jia, and Can Li. "Terpyridine–Cu(ii) targeting human telomeric DNA to produce highly stereospecific G-quadruplex DNA metalloenzyme." Chemical Science 6, no. 10 (2015): 5578–85. http://dx.doi.org/10.1039/c5sc01381j.
Full textSchneider, Camille R., and Hannah S. Shafaat. "An internal electron reservoir enhances catalytic CO2 reduction by a semisynthetic enzyme." Chemical Communications 52, no. 64 (2016): 9889–92. http://dx.doi.org/10.1039/c6cc03901d.
Full textJohnson, Heather C., Shaoguang Zhang, Anna Fryszkowska, Serge Ruccolo, Sandra A. Robaire, Artis Klapars, Niki R. Patel, Aaron M. Whittaker, Mark A. Huffman, and Neil A. Strotman. "Biocatalytic oxidation of alcohols using galactose oxidase and a manganese(iii) activator for the synthesis of islatravir." Organic & Biomolecular Chemistry 19, no. 7 (2021): 1620–25. http://dx.doi.org/10.1039/d0ob02395g.
Full textSmith, Meghan A., Sean H. Majer, Avery C. Vilbert, and Kyle M. Lancaster. "Controlling a burn: outer-sphere gating of hydroxylamine oxidation by a distal base in cytochrome P460." Chemical Science 10, no. 13 (2019): 3756–64. http://dx.doi.org/10.1039/c9sc00195f.
Full textReed, Christopher J., Quan N. Lam, Evan N. Mirts, and Yi Lu. "Molecular understanding of heteronuclear active sites in heme–copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling." Chemical Society Reviews 50, no. 4 (2021): 2486–539. http://dx.doi.org/10.1039/d0cs01297a.
Full textZubi, Yasmine S., Bingqing Liu, Yifan Gu, Dipankar Sahoo, and Jared C. Lewis. "Controlling the optical and catalytic properties of artificial metalloenzyme photocatalysts using chemogenetic engineering." Chemical Science 13, no. 5 (2022): 1459–68. http://dx.doi.org/10.1039/d1sc05792h.
Full textTAGAKI, Waichiro, and Kenji OGINO. "Proteolytic Metalloenzyme Models in Micellar Systems." Journal of Japan Oil Chemists' Society 39, no. 10 (1990): 744–52. http://dx.doi.org/10.5650/jos1956.39.10_744.
Full textMayer, Clemens, Dennis G. Gillingham, Thomas R. Ward, and Donald Hilvert. "An artificial metalloenzyme for olefin metathesis." Chemical Communications 47, no. 44 (2011): 12068. http://dx.doi.org/10.1039/c1cc15005g.
Full textBersellini, Manuela, and Gerard Roelfes. "A metal ion regulated artificial metalloenzyme." Dalton Transactions 46, no. 13 (2017): 4325–30. http://dx.doi.org/10.1039/c7dt00533d.
Full textDay, Joshua A., and Seth M. Cohen. "Investigating the Selectivity of Metalloenzyme Inhibitors." Journal of Medicinal Chemistry 56, no. 20 (October 14, 2013): 7997–8007. http://dx.doi.org/10.1021/jm401053m.
Full textFunk, Michael A. "Itaconate brings metalloenzyme to a halt." Science 366, no. 6465 (October 31, 2019): 583.13–585. http://dx.doi.org/10.1126/science.366.6465.583-m.
Full textArmstrong, Richard N. "Mechanistic Diversity in a Metalloenzyme Superfamily†." Biochemistry 39, no. 45 (November 2000): 13625–32. http://dx.doi.org/10.1021/bi001814v.
Full textKoder, Ronald L., Bernard Everson, Lei Zhang, Jonathan Preston, and Emma Bjerkefeldt. "Optimizing Protein Dynamics in Metalloenzyme Design." Biophysical Journal 112, no. 3 (February 2017): 193a. http://dx.doi.org/10.1016/j.bpj.2016.11.1072.
Full textHaeggström, Jesper Z., Anders Wetterholm, Robert Shapiro, Bert L. Vallee, and Bengt Samuelsson. "Leukotriene A4 hydrolase: A zinc metalloenzyme." Biochemical and Biophysical Research Communications 172, no. 3 (November 1990): 965–70. http://dx.doi.org/10.1016/0006-291x(90)91540-9.
Full textGrubmeyer, Charles, Marios Skiadopoulos, and Alan E. Senior. "l-Histidinol dehydrogenase, a Zn2+-metalloenzyme." Archives of Biochemistry and Biophysics 272, no. 2 (August 1989): 311–17. http://dx.doi.org/10.1016/0003-9861(89)90224-5.
Full textOkamoto, Yasunori, and Thomas R. Ward. "Cross-Regulation of an Artificial Metalloenzyme." Angewandte Chemie 129, no. 34 (May 31, 2017): 10290–94. http://dx.doi.org/10.1002/ange.201702181.
Full textDong, Steven D., and Ronald Breslow. "ChemInform Abstract: Bifunctional Cyclodextrin Metalloenzyme Mimics." ChemInform 30, no. 10 (June 17, 2010): no. http://dx.doi.org/10.1002/chin.199910229.
Full textOkamoto, Yasunori, and Thomas R. Ward. "Cross-Regulation of an Artificial Metalloenzyme." Angewandte Chemie International Edition 56, no. 34 (May 31, 2017): 10156–60. http://dx.doi.org/10.1002/anie.201702181.
Full textKarges, Johannes, Ryjul W. Stokes, and Seth M. Cohen. "Photorelease of a metal-binding pharmacophore from a Ru(ii) polypyridine complex." Dalton Transactions 50, no. 8 (2021): 2757–65. http://dx.doi.org/10.1039/d0dt04290k.
Full textZhang, Yaoyao, Weiying Wang, Wenqin Fu, Mingjie Zhang, Zhiyang Tang, Rong Tan, and Donghong Yin. "Titanium(iv)-folded single-chain polymeric nanoparticles as artificial metalloenzyme for asymmetric sulfoxidation in water." Chemical Communications 54, no. 68 (2018): 9430–33. http://dx.doi.org/10.1039/c8cc05590d.
Full textSchneider, Camille R., Anastasia C. Manesis, Michael J. Stevenson, and Hannah S. Shafaat. "A photoactive semisynthetic metalloenzyme exhibits complete selectivity for CO2 reduction in water." Chemical Communications 54, no. 37 (2018): 4681–84. http://dx.doi.org/10.1039/c8cc01297k.
Full textHorch, Marius, Ana Filipa Pinto, Maria Andrea Mroginski, Miguel Teixeira, Peter Hildebrandt, and Ingo Zebger. "Metal-induced histidine deprotonation in biocatalysis? Experimental and theoretical insights into superoxide reductase." RSC Adv. 4, no. 96 (2014): 54091–95. http://dx.doi.org/10.1039/c4ra11976b.
Full textCheng, Wenting, Jiehua Ma, Yongchen Zhang, Chuanjun Xu, Zhaoli Zhang, Liang Hu, and Jinlong Li. "Bio-inspired construction of a semi-artificial enzyme complex for detecting histone acetyltransferases activity." Analyst 145, no. 2 (2020): 613–18. http://dx.doi.org/10.1039/c9an01896d.
Full textMus, Florence, Alexander B. Alleman, Natasha Pence, Lance C. Seefeldt, and John W. Peters. "Exploring the alternatives of biological nitrogen fixation." Metallomics 10, no. 4 (2018): 523–38. http://dx.doi.org/10.1039/c8mt00038g.
Full textLi, Yinghao, Changhao Wang, Jingya Hao, Mingpan Cheng, Guoqing Jia, and Can Li. "Higher-order human telomeric G-quadruplex DNA metalloenzyme catalyzed Diels–Alder reaction: an unexpected inversion of enantioselectivity modulated by K+ and NH4+ ions." Chemical Communications 51, no. 67 (2015): 13174–77. http://dx.doi.org/10.1039/c5cc05215g.
Full textDick, Benjamin L., Ashay Patel, and Seth M. Cohen. "Effect of heterocycle content on metal binding isostere coordination." Chemical Science 11, no. 26 (2020): 6907–14. http://dx.doi.org/10.1039/d0sc02717k.
Full textHarty, Matthew L., Amar Nath Sharma, and Stephen L. Bearne. "Catalytic properties of the metal ion variants of mandelate racemase reveal alterations in the apparent electrophilicity of the metal cofactor." Metallomics 11, no. 3 (2019): 707–23. http://dx.doi.org/10.1039/c8mt00330k.
Full textAlbareda, Marta, Agnès Rodrigue, Belén Brito, Tomás Ruiz-Argüeso, Juan Imperial, Marie-Andrée Mandrand-Berthelot, and Jose Palacios. "Rhizobium leguminosarum HupE is a highly-specific diffusion facilitator for nickel uptake." Metallomics 7, no. 4 (2015): 691–701. http://dx.doi.org/10.1039/c4mt00298a.
Full textZambrano, Gerardo, Alina Sekretareva, Daniele D'Alonzo, Linda Leone, Vincenzo Pavone, Angela Lombardi, and Flavia Nastri. "Oxidative dehalogenation of trichlorophenol catalyzed by a promiscuous artificial heme-enzyme." RSC Advances 12, no. 21 (2022): 12947–56. http://dx.doi.org/10.1039/d2ra00811d.
Full textHerrero, Christian, Annamaria Quaranta, Rémy Ricoux, Alexandre Trehoux, Atif Mahammed, Zeev Gross, Frédéric Banse, and Jean-Pierre Mahy. "Oxidation catalysis via visible-light water activation of a [Ru(bpy)3]2+ chromophore BSA–metallocorrole couple." Dalton Transactions 45, no. 2 (2016): 706–10. http://dx.doi.org/10.1039/c5dt04158a.
Full textLaureanti, Joseph A., Qiwen Su, and Wendy J. Shaw. "A protein scaffold enables hydrogen evolution for a Ni-bisdiphosphine complex." Dalton Transactions 50, no. 43 (2021): 15754–59. http://dx.doi.org/10.1039/d1dt03295j.
Full textHonarmand Ebrahimi, Kourosh. "A unifying view of the broad-spectrum antiviral activity of RSAD2 (viperin) based on its radical-SAM chemistry." Metallomics 10, no. 4 (2018): 539–52. http://dx.doi.org/10.1039/c7mt00341b.
Full textKim, Sung-Kun, Cynthe L. Sims, Susan E. Wozniak, Stephanie H. Drude, Dustin Whitson, and Robert W. Shaw. "Antibiotic Resistance in Bacteria: Novel Metalloenzyme Inhibitors." Chemical Biology & Drug Design 74, no. 4 (October 2009): 343–48. http://dx.doi.org/10.1111/j.1747-0285.2009.00879.x.
Full textPordea, Anca. "Metal-binding promiscuity in artificial metalloenzyme design." Current Opinion in Chemical Biology 25 (April 2015): 124–32. http://dx.doi.org/10.1016/j.cbpa.2014.12.035.
Full textCuenoud, Bernard, and Jack W. Szostak. "A DNA metalloenzyme with DNA ligase activity." Nature 375, no. 6532 (June 1995): 611–14. http://dx.doi.org/10.1038/375611a0.
Full textColpas, G. J., M. Kumar, and M. J. Maroney. "XAS structural investigations of NI metalloenzyme models." Journal of Inorganic Biochemistry 36, no. 3-4 (August 1989): 249. http://dx.doi.org/10.1016/0162-0134(89)84303-x.
Full textWhittaker, James W. "Molecular relaxation and metalloenzyme active site modeling." International Journal of Quantum Chemistry 90, no. 4-5 (2002): 1529–35. http://dx.doi.org/10.1002/qua.10422.
Full textHeinisch, Tillmann, and Thomas R. Ward. "Latest Developments in Metalloenzyme Design and Repurposing." European Journal of Inorganic Chemistry 2015, no. 21 (June 18, 2015): 3406–18. http://dx.doi.org/10.1002/ejic.201500408.
Full text