To see the other types of publications on this topic, follow the link: Metalloenzimi.

Journal articles on the topic 'Metalloenzimi'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Metalloenzimi.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Höcker, Birte. "A metalloenzyme reloaded." Nature Chemical Biology 8, no. 3 (February 15, 2012): 224–25. http://dx.doi.org/10.1038/nchembio.800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

You, Jing-Song, Xiao-Qi Yu, Xiao-Yu Su, Tao Wang, Qing-Xiang Xiang, Meng Yang, and Ru-Gang Xie. "Hydrolytic metalloenzyme models." Journal of Molecular Catalysis A: Chemical 202, no. 1-2 (August 2003): 17–22. http://dx.doi.org/10.1016/s1381-1169(03)00199-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dong, Steven D., and Ronald Breslow. "Bifunctional cyclodextrin metalloenzyme mimics." Tetrahedron Letters 39, no. 51 (December 1998): 9343–46. http://dx.doi.org/10.1016/s0040-4039(98)02160-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hadianawala, Murtuza, and Bhaskar Datta. "Design and development of sulfonylurea derivatives as zinc metalloenzyme modulators." RSC Advances 6, no. 11 (2016): 8923–29. http://dx.doi.org/10.1039/c5ra27341b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kwon, Hanna, Jaswir Basran, Juliette M. Devos, Reynier Suardíaz, Marc W. van der Kamp, Adrian J. Mulholland, Tobias E. Schrader, et al. "Visualizing the protons in a metalloenzyme electron proton transfer pathway." Proceedings of the National Academy of Sciences 117, no. 12 (March 9, 2020): 6484–90. http://dx.doi.org/10.1073/pnas.1918936117.

Full text
Abstract:
In redox metalloenzymes, the process of electron transfer often involves the concerted movement of a proton. These processes are referred to as proton-coupled electron transfer, and they underpin a wide variety of biological processes, including respiration, energy conversion, photosynthesis, and metalloenzyme catalysis. The mechanisms of proton delivery are incompletely understood, in part due to an absence of information on exact proton locations and hydrogen bonding structures in a bona fide metalloenzyme proton pathway. Here, we present a 2.1-Å neutron crystal structure of the complex formed between a redox metalloenzyme (ascorbate peroxidase) and its reducing substrate (ascorbate). In the neutron structure of the complex, the protonation states of the electron/proton donor (ascorbate) and all of the residues involved in the electron/proton transfer pathway are directly observed. This information sheds light on possible proton movements during heme-catalyzed oxygen activation, as well as on ascorbate oxidation.
APA, Harvard, Vancouver, ISO, and other styles
6

Doerr, Allison. "Metalloenzyme structures in a shot." Nature Methods 10, no. 4 (March 28, 2013): 287. http://dx.doi.org/10.1038/nmeth.2428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lancaster, Kyle M. "Revving up an artificial metalloenzyme." Science 361, no. 6407 (September 13, 2018): 1071–72. http://dx.doi.org/10.1126/science.aau7754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stoecker, Walter, Russell L. Wolz, Robert Zwilling, Daniel J. Strydom, and David S. Auld. "Astacus protease, a zinc metalloenzyme." Biochemistry 27, no. 14 (July 12, 1988): 5026–32. http://dx.doi.org/10.1021/bi00414a012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vallee, B. L. "Zinc metalloenzyme structure and function." Journal of Inorganic Biochemistry 36, no. 3-4 (August 1989): 299. http://dx.doi.org/10.1016/0162-0134(89)84446-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Valdez, Crystal E., Amanda Morgenstern, Mark E. Eberhart, and Anastassia N. Alexandrova. "Predictive methods for computational metalloenzyme redesign – a test case with carboxypeptidase A." Physical Chemistry Chemical Physics 18, no. 46 (2016): 31744–56. http://dx.doi.org/10.1039/c6cp02247b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Jackl, Moritz K., Hyeonglim Seo, Johannes Karges, Mark Kalaj, and Seth M. Cohen. "Salicylate metal-binding isosteres as fragments for metalloenzyme inhibition." Chemical Science 13, no. 7 (2022): 2128–36. http://dx.doi.org/10.1039/d1sc06011b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ehudin, Melanie A., Andrew W. Schaefer, Suzanne M. Adam, David A. Quist, Daniel E. Diaz, Joel A. Tang, Edward I. Solomon, and Kenneth D. Karlin. "Influence of intramolecular secondary sphere hydrogen-bonding interactions on cytochrome c oxidase inspired low-spin heme–peroxo–copper complexes." Chemical Science 10, no. 10 (2019): 2893–905. http://dx.doi.org/10.1039/c8sc05165h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Li, Yinghao, Mingpan Cheng, Jingya Hao, Changhao Wang, Guoqing Jia, and Can Li. "Terpyridine–Cu(ii) targeting human telomeric DNA to produce highly stereospecific G-quadruplex DNA metalloenzyme." Chemical Science 6, no. 10 (2015): 5578–85. http://dx.doi.org/10.1039/c5sc01381j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Schneider, Camille R., and Hannah S. Shafaat. "An internal electron reservoir enhances catalytic CO2 reduction by a semisynthetic enzyme." Chemical Communications 52, no. 64 (2016): 9889–92. http://dx.doi.org/10.1039/c6cc03901d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Johnson, Heather C., Shaoguang Zhang, Anna Fryszkowska, Serge Ruccolo, Sandra A. Robaire, Artis Klapars, Niki R. Patel, Aaron M. Whittaker, Mark A. Huffman, and Neil A. Strotman. "Biocatalytic oxidation of alcohols using galactose oxidase and a manganese(iii) activator for the synthesis of islatravir." Organic & Biomolecular Chemistry 19, no. 7 (2021): 1620–25. http://dx.doi.org/10.1039/d0ob02395g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Smith, Meghan A., Sean H. Majer, Avery C. Vilbert, and Kyle M. Lancaster. "Controlling a burn: outer-sphere gating of hydroxylamine oxidation by a distal base in cytochrome P460." Chemical Science 10, no. 13 (2019): 3756–64. http://dx.doi.org/10.1039/c9sc00195f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Reed, Christopher J., Quan N. Lam, Evan N. Mirts, and Yi Lu. "Molecular understanding of heteronuclear active sites in heme–copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling." Chemical Society Reviews 50, no. 4 (2021): 2486–539. http://dx.doi.org/10.1039/d0cs01297a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zubi, Yasmine S., Bingqing Liu, Yifan Gu, Dipankar Sahoo, and Jared C. Lewis. "Controlling the optical and catalytic properties of artificial metalloenzyme photocatalysts using chemogenetic engineering." Chemical Science 13, no. 5 (2022): 1459–68. http://dx.doi.org/10.1039/d1sc05792h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

TAGAKI, Waichiro, and Kenji OGINO. "Proteolytic Metalloenzyme Models in Micellar Systems." Journal of Japan Oil Chemists' Society 39, no. 10 (1990): 744–52. http://dx.doi.org/10.5650/jos1956.39.10_744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Mayer, Clemens, Dennis G. Gillingham, Thomas R. Ward, and Donald Hilvert. "An artificial metalloenzyme for olefin metathesis." Chemical Communications 47, no. 44 (2011): 12068. http://dx.doi.org/10.1039/c1cc15005g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Bersellini, Manuela, and Gerard Roelfes. "A metal ion regulated artificial metalloenzyme." Dalton Transactions 46, no. 13 (2017): 4325–30. http://dx.doi.org/10.1039/c7dt00533d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Day, Joshua A., and Seth M. Cohen. "Investigating the Selectivity of Metalloenzyme Inhibitors." Journal of Medicinal Chemistry 56, no. 20 (October 14, 2013): 7997–8007. http://dx.doi.org/10.1021/jm401053m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Funk, Michael A. "Itaconate brings metalloenzyme to a halt." Science 366, no. 6465 (October 31, 2019): 583.13–585. http://dx.doi.org/10.1126/science.366.6465.583-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Armstrong, Richard N. "Mechanistic Diversity in a Metalloenzyme Superfamily†." Biochemistry 39, no. 45 (November 2000): 13625–32. http://dx.doi.org/10.1021/bi001814v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Koder, Ronald L., Bernard Everson, Lei Zhang, Jonathan Preston, and Emma Bjerkefeldt. "Optimizing Protein Dynamics in Metalloenzyme Design." Biophysical Journal 112, no. 3 (February 2017): 193a. http://dx.doi.org/10.1016/j.bpj.2016.11.1072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Haeggström, Jesper Z., Anders Wetterholm, Robert Shapiro, Bert L. Vallee, and Bengt Samuelsson. "Leukotriene A4 hydrolase: A zinc metalloenzyme." Biochemical and Biophysical Research Communications 172, no. 3 (November 1990): 965–70. http://dx.doi.org/10.1016/0006-291x(90)91540-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Grubmeyer, Charles, Marios Skiadopoulos, and Alan E. Senior. "l-Histidinol dehydrogenase, a Zn2+-metalloenzyme." Archives of Biochemistry and Biophysics 272, no. 2 (August 1989): 311–17. http://dx.doi.org/10.1016/0003-9861(89)90224-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Okamoto, Yasunori, and Thomas R. Ward. "Cross-Regulation of an Artificial Metalloenzyme." Angewandte Chemie 129, no. 34 (May 31, 2017): 10290–94. http://dx.doi.org/10.1002/ange.201702181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Dong, Steven D., and Ronald Breslow. "ChemInform Abstract: Bifunctional Cyclodextrin Metalloenzyme Mimics." ChemInform 30, no. 10 (June 17, 2010): no. http://dx.doi.org/10.1002/chin.199910229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Okamoto, Yasunori, and Thomas R. Ward. "Cross-Regulation of an Artificial Metalloenzyme." Angewandte Chemie International Edition 56, no. 34 (May 31, 2017): 10156–60. http://dx.doi.org/10.1002/anie.201702181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Karges, Johannes, Ryjul W. Stokes, and Seth M. Cohen. "Photorelease of a metal-binding pharmacophore from a Ru(ii) polypyridine complex." Dalton Transactions 50, no. 8 (2021): 2757–65. http://dx.doi.org/10.1039/d0dt04290k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Zhang, Yaoyao, Weiying Wang, Wenqin Fu, Mingjie Zhang, Zhiyang Tang, Rong Tan, and Donghong Yin. "Titanium(iv)-folded single-chain polymeric nanoparticles as artificial metalloenzyme for asymmetric sulfoxidation in water." Chemical Communications 54, no. 68 (2018): 9430–33. http://dx.doi.org/10.1039/c8cc05590d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Schneider, Camille R., Anastasia C. Manesis, Michael J. Stevenson, and Hannah S. Shafaat. "A photoactive semisynthetic metalloenzyme exhibits complete selectivity for CO2 reduction in water." Chemical Communications 54, no. 37 (2018): 4681–84. http://dx.doi.org/10.1039/c8cc01297k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Horch, Marius, Ana Filipa Pinto, Maria Andrea Mroginski, Miguel Teixeira, Peter Hildebrandt, and Ingo Zebger. "Metal-induced histidine deprotonation in biocatalysis? Experimental and theoretical insights into superoxide reductase." RSC Adv. 4, no. 96 (2014): 54091–95. http://dx.doi.org/10.1039/c4ra11976b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Cheng, Wenting, Jiehua Ma, Yongchen Zhang, Chuanjun Xu, Zhaoli Zhang, Liang Hu, and Jinlong Li. "Bio-inspired construction of a semi-artificial enzyme complex for detecting histone acetyltransferases activity." Analyst 145, no. 2 (2020): 613–18. http://dx.doi.org/10.1039/c9an01896d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Mus, Florence, Alexander B. Alleman, Natasha Pence, Lance C. Seefeldt, and John W. Peters. "Exploring the alternatives of biological nitrogen fixation." Metallomics 10, no. 4 (2018): 523–38. http://dx.doi.org/10.1039/c8mt00038g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Li, Yinghao, Changhao Wang, Jingya Hao, Mingpan Cheng, Guoqing Jia, and Can Li. "Higher-order human telomeric G-quadruplex DNA metalloenzyme catalyzed Diels–Alder reaction: an unexpected inversion of enantioselectivity modulated by K+ and NH4+ ions." Chemical Communications 51, no. 67 (2015): 13174–77. http://dx.doi.org/10.1039/c5cc05215g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Dick, Benjamin L., Ashay Patel, and Seth M. Cohen. "Effect of heterocycle content on metal binding isostere coordination." Chemical Science 11, no. 26 (2020): 6907–14. http://dx.doi.org/10.1039/d0sc02717k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Harty, Matthew L., Amar Nath Sharma, and Stephen L. Bearne. "Catalytic properties of the metal ion variants of mandelate racemase reveal alterations in the apparent electrophilicity of the metal cofactor." Metallomics 11, no. 3 (2019): 707–23. http://dx.doi.org/10.1039/c8mt00330k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Albareda, Marta, Agnès Rodrigue, Belén Brito, Tomás Ruiz-Argüeso, Juan Imperial, Marie-Andrée Mandrand-Berthelot, and Jose Palacios. "Rhizobium leguminosarum HupE is a highly-specific diffusion facilitator for nickel uptake." Metallomics 7, no. 4 (2015): 691–701. http://dx.doi.org/10.1039/c4mt00298a.

Full text
Abstract:
Functional and topological analysis ofRhizobium leguminosarumHupE, the founding member of the HupE/UreJ family of nickel permeases, provides new hints on how bacteria manage nickel provision for metalloenzyme synthesis.
APA, Harvard, Vancouver, ISO, and other styles
41

Zambrano, Gerardo, Alina Sekretareva, Daniele D'Alonzo, Linda Leone, Vincenzo Pavone, Angela Lombardi, and Flavia Nastri. "Oxidative dehalogenation of trichlorophenol catalyzed by a promiscuous artificial heme-enzyme." RSC Advances 12, no. 21 (2022): 12947–56. http://dx.doi.org/10.1039/d2ra00811d.

Full text
Abstract:
The artificial metalloenzyme FeMC6*a is able to perform the H2O2-mediated dechlorination of 2,4,6-trichlorophenol with unrivalled catalytic efficiency, highlighting its potential application for the removal of toxic pollutants.
APA, Harvard, Vancouver, ISO, and other styles
42

Herrero, Christian, Annamaria Quaranta, Rémy Ricoux, Alexandre Trehoux, Atif Mahammed, Zeev Gross, Frédéric Banse, and Jean-Pierre Mahy. "Oxidation catalysis via visible-light water activation of a [Ru(bpy)3]2+ chromophore BSA–metallocorrole couple." Dalton Transactions 45, no. 2 (2016): 706–10. http://dx.doi.org/10.1039/c5dt04158a.

Full text
Abstract:
Light induced enantioselective oxidation of thioanisole with water as the oxygen atom source is catalyzed by a Mn-corrole–BSA artificial metalloenzyme in the presence of a photoactivable ruthenium complex.
APA, Harvard, Vancouver, ISO, and other styles
43

Laureanti, Joseph A., Qiwen Su, and Wendy J. Shaw. "A protein scaffold enables hydrogen evolution for a Ni-bisdiphosphine complex." Dalton Transactions 50, no. 43 (2021): 15754–59. http://dx.doi.org/10.1039/d1dt03295j.

Full text
Abstract:
An artificial metalloenzyme acting as a functional biomimic of hydrogenase enzymes was activated by assembly via covalent attachment of the molecular complex, [Ni(PNglycineP)2]2−, within a structured protein scaffold.
APA, Harvard, Vancouver, ISO, and other styles
44

Honarmand Ebrahimi, Kourosh. "A unifying view of the broad-spectrum antiviral activity of RSAD2 (viperin) based on its radical-SAM chemistry." Metallomics 10, no. 4 (2018): 539–52. http://dx.doi.org/10.1039/c7mt00341b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kim, Sung-Kun, Cynthe L. Sims, Susan E. Wozniak, Stephanie H. Drude, Dustin Whitson, and Robert W. Shaw. "Antibiotic Resistance in Bacteria: Novel Metalloenzyme Inhibitors." Chemical Biology & Drug Design 74, no. 4 (October 2009): 343–48. http://dx.doi.org/10.1111/j.1747-0285.2009.00879.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Pordea, Anca. "Metal-binding promiscuity in artificial metalloenzyme design." Current Opinion in Chemical Biology 25 (April 2015): 124–32. http://dx.doi.org/10.1016/j.cbpa.2014.12.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Cuenoud, Bernard, and Jack W. Szostak. "A DNA metalloenzyme with DNA ligase activity." Nature 375, no. 6532 (June 1995): 611–14. http://dx.doi.org/10.1038/375611a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Colpas, G. J., M. Kumar, and M. J. Maroney. "XAS structural investigations of NI metalloenzyme models." Journal of Inorganic Biochemistry 36, no. 3-4 (August 1989): 249. http://dx.doi.org/10.1016/0162-0134(89)84303-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Whittaker, James W. "Molecular relaxation and metalloenzyme active site modeling." International Journal of Quantum Chemistry 90, no. 4-5 (2002): 1529–35. http://dx.doi.org/10.1002/qua.10422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Heinisch, Tillmann, and Thomas R. Ward. "Latest Developments in Metalloenzyme Design and Repurposing." European Journal of Inorganic Chemistry 2015, no. 21 (June 18, 2015): 3406–18. http://dx.doi.org/10.1002/ejic.201500408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography