Dissertations / Theses on the topic 'Metal Wire Deposition'

To see the other types of publications on this topic, follow the link: Metal Wire Deposition.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 16 dissertations / theses for your research on the topic 'Metal Wire Deposition.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Ramsundar, Pallant Satnarine. "Wire feed metal deposition." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Heralic, Almir. "Towards full Automation of Robotized Laser Metal-wire Deposition." Licentiate thesis, University West, Department of Engineering Science, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-2148.

Full text
Abstract:

Metal wire deposition by means of robotized laser welding offers great saving potentials, i.e. reduced costs and reduced lead times, in many different applications, such as fabrication of complex components, repair or modification of high-value components, rapid prototyping and low volume production, especially if the process can be automated. Metal deposition is a layered manufacturing technique that builds metal structures by melting metal wire into beads which are deposited side by side and layer upon layer. This thesis presents a system for on-line monitoring and control of robotized laser metal wire deposition (RLMwD). The task is to ensure a stable deposition process with correct geometrical profile of the resulting geometry and sound metallurgical properties. Issues regarding sensor calibration, system identification and control design are discussed. The suggested controller maintains a constant bead height and width throughout the deposition process. It is evaluated through real experiments, however, limited to straight line deposition experiments. Solutions towards a more general controller, i.e. one that can handle different deposition paths, are suggested.

A method is also proposed on how an operator can use different sensor information for process understanding, process development and for manual on-line control. The strategies are evaluated through different deposition tasks and considered materials are tool steel and Ti-6Al-4V. The developed monitoring system enables an operator to control the process at a safe distance from the hazardous laser beam.

The results obtained in this work indicate promising steps towards full automation of the RLMwD process, i.e. without human intervention and for arbitrary deposition paths.


RMS
APA, Harvard, Vancouver, ISO, and other styles
3

Medrano, Téllez Alexis G. "Fibre laser metal deposition with wire : parameters study and temperature control." Thesis, University of Nottingham, 2010. http://eprints.nottingham.ac.uk/12812/.

Full text
Abstract:
This research addresses the development of a laser metal deposition process with wire feeding and melt pool temperature control. The system consists of a2 kW fibre laser, a CNC table, a wire feeder and a temperature monitoring and control system. A study of the influence of the main parameters on the process and on the deposited bead geometry was performed. The parameters analysed were: laser power, traverse speed and wire feed rate. As a result of this study, a process window was established for metal deposition of stainless steel 308LSi (wire) on stainless steel 304 (plate). The influence of the parameters on the bead geometry (height and width) was analysed applying the Design of Experiments methodology, using a full factorial design 3k. The results are presented, together with important practical considerations for laser metal deposition with wire. A closed-loop temperature control system was developed: it controls the melt pool temperature by means of modifying the laser power. The melt pool temperature was measured by a two-colour pyrometer, whereas a single-colour pyrometer was used for monitoring the workpiece (upper layer) temperature. A model of the melt pool was derived from a heat balance equation. It was then utilized for the design of the controller in the discrete domain, using the root locus method. The control algorithm was developed in LabVIEW software and executed in a computer. The control system was implemented successfully and was utilized to build single-bead walls and cylinders of stainless steel 308LSi. The study performed on the parameters and the developed temperature controller proved to be very effective tools to facilitate the transition to the deposition of titanium alloy Ti-6A1-4V, requiring only minimum adaptations. Single-bead walls and cylinders were also built in this material. Stable and smooth metal deposition was achieved for both materials. During the experiments, several strategies for the automation of wire metal deposition of multilayered structures were developed. Finally, mechanical tests were performed. The mechanical properties of the deposited materials are comparable to those in wrought (annealed) condition and to similar alloys made by laser powder deposition systems. The system developed in this work provides a means to perform stable and smooth wire metal deposition, achieving good mechanical properties. It also facilitates the transition to deposit different materials. It has a flexible structure and can be expanded or adapted to be used in other wire metal deposition systems.
APA, Harvard, Vancouver, ISO, and other styles
4

Syed, Waheed Ul Haq. "Combined wire and powder deposition for laser direct metal additive manufacturing." Thesis, University of Manchester, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.556499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hussein, Nur Izan Syahriah. "Direct metal deposition of Waspaloy wire using laser and arc heat sources." Thesis, University of Nottingham, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.523507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lundkvist, Jennifer. "CFD Simulation of Fluid Flow During Laser Metal Wire Deposition using OpenFOAM : 3D printing." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-74476.

Full text
Abstract:
The focus of this work was to simulate the fluid flow within a melt pool geometry, during an additive manufacturing process, implementing the CFD software OpenFOAM version 1806. Two separate models were created and run during this work, the first using a temperature mapping from a finite element (FE) model and the second being a free-standing model with Gaussian distributed laser beam striking down on the top surface. Both models were run with the standard solver icoReactingMultiphaseInterFoam, being a multiphase solver, with phase transition possibilities. Addition of gas particles was carried out during post-processing and these were to visualise the imperfections caused by melting metal alloys in a 3D printing case. During comparison of the movement of the free-standing model, using a moving laser beam, to the mapped temperature FE model, it was revealed that the fluid flow in the molten pool was heavily influenced by the pressure introduced by the laser beam. No streamlines were found that would indicate entrapment of gas particles during solidification.
Fokuset på detta arbete var att simulera vätskeflöde i en smältpool-geometri, under en additiv-tillverkningsprocess. Detta implementerades med hjälp av CFD-mjukvaran OpenFOAM, version 1806. Två separata modeller skapades och simulerades under arbetets gång. Den första modellen kördes med hjälp av en mappning av temperaturfältet från finita-element-modellen (FE-modellen) och den andra modellen var en fristående modell tillsammans med en Gaussisk distribuerad laserstråle riktad ned på översta ytan. Båda simuleringarna använde sig av standardlösaren icoReactingMultiphaseInterFoam, vilket är en multifas-lösare, med möjlighet till fasövergångar. Tillägg av gaspartiklar utfördes under post-processing och dessa var för att visualisera porer som kan uppstå under smältning av metall-legering i en 3D-utskrivningsprocess. Vid jämförelse av den fristående modellen, som implementerade en rörlig laserstråle, till den mappade FE-modellen, uppdagades det att vätskeflödet i smältpoolen influerades starkt av trycket som orsakades av lasern. Inga strömlinjer tydde på en inkapsling av gaspartiklar under stelning.
APA, Harvard, Vancouver, ISO, and other styles
7

Engblom, Eyvind. "Effect of oxygen concentration in build chamber during laser metal deposition of Ti-64 wire." Thesis, KTH, Materialvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230638.

Full text
Abstract:
Additive manufacturing of titanium and other metals is a rapidly growing field that could potentially improve component manufacturing through optimization of geometries, less material waste and fewer process steps. Although powder-based additive manufacturing processes have so far been predominant, methods using a wire as feedstock has gained popularity due to faster deposition rates and lower porosity in deposited material. The titanium alloy Ti-6Al-4V accounts for the majority of aerospace titanium alloy consumption and as titanium is a precious and expensive resource, reducing material waste is an important factor.  Laser metal deposition with wire (LMD-w) is currently used in production at GKN Aerospace in Trolhättan. One important process parameter is the oxygen level in the chamber during deposition as titanium is highly reactive with oxygen at process temperatures. Oxygen enrichment of titanium can cause embrittlement and reduced fatigue life due to formation of alpha-case, an oxygen enriched region directly beneath the surface. The oxygen level in the chamber is controlled through extensive use of protective inert gas which is a costly and time-consuming practice. The objective of this thesis was to study how elevated oxygen levels in the chamber would affect surface oxidation, chemical composition, tensile properties and microstructure.  Two different sample geometries were built with Ti-6Al-4V wire at an oxygen level of 100, 500 and 850 ppm. The subsequent analysis was based around microstructural features, alpha-case formation, chemical composition in surface layers, and tensile tests. Results showed that elevated oxygen levels in the build chamber did not degrade the chemical composition or tensile properties with regard to aerospace specifications. However, significant layers of alpha-case were found in all samples indicating that subsequent processing such as machining or etching is needed.
APA, Harvard, Vancouver, ISO, and other styles
8

Lindell, David. "Process Mapping for Laser Metal Deposition of Wire using Thermal Simulations : A prediction of material transfer stability." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-85474.

Full text
Abstract:
Additive manufacturing (AM) is a quickly rising method of manufacturing due to its ability to increase design freedom. This allows the manufacturing of components not possible by traditional subtractive manufacturing. AM can greatly reduce lead time and material waste, therefore decreasing the cost and environmental impact. The adoption of AM in the aerospace industry requires strict control and predictability of the material deposition to ensure safe flights.  The method of AM for this thesis is Laser Metal Deposition with wire (LMD-w). Using wire as a feedstock introduces a potential problem, the material transfer from the wire to the substrate. This requires all process parameters to be in balance to produce a stable deposition. The first sign of unbalanced process parameters are the material transfer stabilities; stubbing and dripping. Stubbing occurs when the energy to melt the wire is too low and the wire melts slower than required. Dripping occurs when too much energy is applied and the wire melts earlier than required.  These two reduce the predictability and stability that is required for robust manufacturing.  Therefore, the use of thermal simulations to predict the material transfer stability for LMD-w using Waspaloy as the deposition material has been studied.  It has been shown that it is possible to predict the material transfer stability using thermal simulations and criterions based on preexisting experimental data. The criterion for stubbing checks if the completed simulation result produces a wire that ends below the melt pool. For dripping two criterions shows good results, the dilution ratio is a good predictor if the tool elevation remains constant. If there is a change in tool elevation the dimensionless slenderness number is a better predictor.  Using these predictive criterions it is possible to qualitatively map the process window and better understand the influence of tool elevation and the cross-section of the deposited material.
Additiv tillverkning (AT) är en kraftigt växande tillverkningsmetod på grund av sin flexibilitet kring design och möjligheten att skapa komponenter som inte är tillverkningsbara med traditionell avverkande bearbetning.  AT kan kraftigt minska tid- och materialåtgång och på så sett minskas kostnader och miljöpåverkan. Införandet av AT i flyg- och rymdindustrin kräver strikt kontroll och förutsägbarhet av processen för att försäkra sig om säkra flygningar.  Lasermetalldeponering av tråd är den AT metod som hanteras i denna uppsats. Användandet av tråd som tillsatsmaterial skapar ett potentiellt problem, materialöverföringen från tråden till substratet. Detta kräver att alla processparametrar är i balans för att få en jämn materialöverföring. Är processen inte balanserad syns detta genom materialöverföringsstabiliteterna stubbning och droppning. Stubbning uppkommer då energin som tillförs på tråden är för låg och droppning uppkommer då energin som tillförs är för hög jämfört med vad som krävs för en stabil process. Dessa två fenomen minskar möjligheterna för en kontrollerbar och stabil tillverkning.  På grund av detta har användandet utav termiska simuleringar för att prediktera materialöverföringsstabiliteten för lasermetalldeponering av tråd med Waspaloy som deponeringsmaterial undersökts. Det har visat sig vara möjligt att prediktera materialöverföringsstabiliteten med användning av termiska simuleringar och kriterier baserat på tidigare experimentell data. Kriteriet för stubbning kontrolleras om en slutförd simulering resulterar i en tråd som når under smältan.  För droppning finns två fungerande kriterier, förhållandet mellan svetshöjd och penetrationsdjup om verktygshöjden är konstant, sker förändringar i verktygshöjden är det dimensionslös ”slenderness” talet ett bättre kriterium.  Genom att använda dessa kriterier är det möjligt att kvalitativt kartlägga processfönstret och skapa en bättre förståelse för förhållandet mellan verktygshöjden och den deponerade tvärsnittsarean.
APA, Harvard, Vancouver, ISO, and other styles
9

Kottman, Michael Andrew. "Additive Manufacturing of Maraging 250 Steels for the Rejuvenation and Repurposing of Die Casting Tooling." Case Western Reserve University School of Graduate Studies / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=case1416854466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Prasad, Himani Siva. "Phenomena in material addition to laser generated melt pools." Licentiate thesis, Luleå tekniska universitet, Produkt- och produktionsutveckling, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-73754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lipowsky, Peter. "Deposition of metal oxide thin films from solutions containing organic additives." [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-33262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Sheridan, Liam A. "Alternative cadmium source precursors for the growth of cadmium sulphide and cadmium selenide by metal-organic chemical vapour deposition." Thesis, University of Reading, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Saadatkia, Pooneh. "Optoelectronic Properties of Wide Band Gap Semiconductors." Bowling Green State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1562379152593304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Antonysamy, Alphons Anandaraj. "Microstructure, texture and mechanical property evolution during additive manufacturing of Ti6Al4V alloy for aerospace applications." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/microstructure-texture-and-mechanical-property-evolution-during-additive-manufacturing-of-ti6al4v-alloy-for-aerospace-applications(03c4d403-822a-4bfd-a0f8-ef49eb65e7a0).html.

Full text
Abstract:
Additive Manufacturing (AM) is an innovative manufacturing process which offers near-net shape fabrication of complex components, directly from CAD models, without dies or substantial machining, resulting in a reduction in lead-time, waste, and cost. For example, the buy-to-fly ratio for a titanium component machined from forged billet is typically 10-20:1 compared to 5-7:1 when manufactured by AM. However, the production rates for most AM processes are relatively slow and AM is consequently largely of interest to the aerospace, automotive and biomedical industries. In addition, the solidification conditions in AM with the Ti alloy commonly lead to undesirable coarse columnar primary β grain structures in components. The present research is focused on developing a fundamental understanding of the influence of the processing conditions on microstructure and texture evolution and their resulting effect on the mechanical properties during additive manufacturing with a Ti6Al4V alloy, using three different techniques, namely; 1) Selective laser melting (SLM) process, 2) Electron beam selective melting (EBSM) process and, 3) Wire arc additive manufacturing (WAAM) process. The most important finding in this work was that all the AM processes produced columnar β-grain structures which grow by epitaxial re-growth up through each melted layer. By thermal modelling using TS4D (Thermal Simulation in 4 Dimensions), it has been shown that the melt pool size increased and the cooling rate decreased from SLM to EBSM and to the WAAM process. The prior β grain size also increased with melt pool size from a finer size in the SLM to a moderate size in EBSM and to huge grains in WAAM that can be seen by eye. However, despite the large difference in power density between the processes, they all had similar G/R (thermal gradient/growth rate) ratios, which were predicted to lie in the columnar growth region in the solidification diagram. The EBSM process showed a pronounced local heterogeneity in the microstructure in local transition areas, when there was a change in geometry; for e.g. change in wall thickness, thin to thick capping section, cross-over’s, V-transitions, etc. By reconstruction of the high temperature β microstructure, it has been shown that all the AM platforms showed primary columnar β grains with a <001>β.
APA, Harvard, Vancouver, ISO, and other styles
15

Chmielewski, Daniel Joseph. "III-V Metamorphic Materials and Devices for Multijunction Solar Cells Grown via MBE and MOCVD." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1534707692114982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Huang, Lian-Yu, and 黃廉育. "Effect of metal wire and upperlying contact film on the deposition of carbon nanomaterials at low temperature." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/13798308799654077936.

Full text
Abstract:
碩士
國立交通大學
物理研究所
101
The purpose of this study is to fabricate the carbon nanomaterials (CNMs) via interconnects at temperatures not larger than 400°C. Carbon nanofibers (CNFs) were grown on the as-deposited Ti or TiN contact film with the following conditions: temperature = 400°C, pressure = 15 torr, gas flow rates = 340/50/110 sccm for Ar/H2/Are (carrier gas of ethanol vapor), growth time = 15 minutes, respectively. We found that the growth of CNFs can be promoted by using bilayer contact film of Al/TiN or TaN/TiN on top of the Ta wire, probably due to the reduction of the surface energy of TiN film by the introduction of Al/TiN bilayer derived from the AlOx layer. We also found that the surface treatment of Ti or TiN contact film can further increase the interaction between the Ni catalyst and underlying Ti/TiN film and promote the low temperature growth of CNMs, since CNFs with hollow structures could be synthesized on the APM (Ammonia-hydrogen Peroxide Mixture)-treated, or HCl+HNO3 solution-treated substrates. X-ray photoelectron spectroscopy indicates that this surface treatment could generate the derivatives of Ni element which can increase the interaction between the Ni catalyst and the underlying Ti or TiN contact film and thus promote the CNMs growth at 400°C.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography