Academic literature on the topic 'Metal Wire Deposition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Metal Wire Deposition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Metal Wire Deposition"
Peyre, Patrice. "Additive Layer Manufacturing using Metal Deposition." Metals 10, no. 4 (April 1, 2020): 459. http://dx.doi.org/10.3390/met10040459.
Full textBi, Xue Song, and Liang Zhu. "Joule Energy Deposition in Segmented Metal Wire Electrical Explosion." Advanced Materials Research 154-155 (October 2010): 363–66. http://dx.doi.org/10.4028/www.scientific.net/amr.154-155.363.
Full textYuan, Chengwei, Shujun Chen, Fan Jiang, Bin Xu, and Shanwen Dong. "Mechanism of Continuous Melting and Secondary Contact Melting in Resistance Heating Metal Wire Additive Manufacturing." Materials 13, no. 5 (February 28, 2020): 1069. http://dx.doi.org/10.3390/ma13051069.
Full textB T, Anirudhan, Jithin Devasia, Tejaswin Krishna, and Mebin T. Kuruvila. "Manufacturing of a Bimetallic Structure of Stainless Steel and Mild Steel through Wire Arc Additive Manufacturing – A Critical Review." International Journal of Innovative Science and Research Technology 5, no. 6 (July 3, 2020): 679–85. http://dx.doi.org/10.38124/ijisrt20jun583.
Full textShcherbakov, A. V., R. V. Rodyakina, and R. R. Klyushin. "Enhancement of Deposition Process Controlling in Electron Beam Metal Wire Deposition Method." IOP Conference Series: Materials Science and Engineering 969 (November 13, 2020): 012105. http://dx.doi.org/10.1088/1757-899x/969/1/012105.
Full textShaikh, Muhammad Omar, Ching-Chia Chen, Hua-Cheng Chiang, Ji-Rong Chen, Yi-Chin Chou, Tsung-Yuan Kuo, Kei Ameyama, and Cheng-Hsin Chuang. "Additive manufacturing using fine wire-based laser metal deposition." Rapid Prototyping Journal 26, no. 3 (November 18, 2019): 473–83. http://dx.doi.org/10.1108/rpj-04-2019-0110.
Full textAyed, Achraf, Guénolé Bras, Henri Bernard, Pierre Michaud, Yannick Balcaen, and Joel Alexis. "Additive Manufacturing of Ti6Al4V with Wire Laser Metal Deposition Process." Materials Science Forum 1016 (January 2021): 24–29. http://dx.doi.org/10.4028/www.scientific.net/msf.1016.24.
Full textStinson, Harley, Richard Ward, Justin Quinn, and Cormac McGarrigle. "Comparison of Properties and Bead Geometry in MIG and CMT Single Layer Samples for WAAM Applications." Metals 11, no. 10 (September 26, 2021): 1530. http://dx.doi.org/10.3390/met11101530.
Full textStützer, Juliane, Tom Totzauer, Benjamin Wittig, Manuela Zinke, and Sven Jüttner. "GMAW Cold Wire Technology for Adjusting the Ferrite–Austenite Ratio of Wire and Arc Additive Manufactured Duplex Stainless Steel Components." Metals 9, no. 5 (May 14, 2019): 564. http://dx.doi.org/10.3390/met9050564.
Full textSilva, Adrien Da, Sicong Wang, Joerg Volpp, and Alexander F. H. Kaplan. "Vertical laser metal wire deposition of Al-Si alloys." Procedia CIRP 94 (2020): 341–45. http://dx.doi.org/10.1016/j.procir.2020.09.078.
Full textDissertations / Theses on the topic "Metal Wire Deposition"
Ramsundar, Pallant Satnarine. "Wire feed metal deposition." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609517.
Full textHeralic, Almir. "Towards full Automation of Robotized Laser Metal-wire Deposition." Licentiate thesis, University West, Department of Engineering Science, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-2148.
Full textMetal wire deposition by means of robotized laser welding offers great saving potentials, i.e. reduced costs and reduced lead times, in many different applications, such as fabrication of complex components, repair or modification of high-value components, rapid prototyping and low volume production, especially if the process can be automated. Metal deposition is a layered manufacturing technique that builds metal structures by melting metal wire into beads which are deposited side by side and layer upon layer. This thesis presents a system for on-line monitoring and control of robotized laser metal wire deposition (RLMwD). The task is to ensure a stable deposition process with correct geometrical profile of the resulting geometry and sound metallurgical properties. Issues regarding sensor calibration, system identification and control design are discussed. The suggested controller maintains a constant bead height and width throughout the deposition process. It is evaluated through real experiments, however, limited to straight line deposition experiments. Solutions towards a more general controller, i.e. one that can handle different deposition paths, are suggested.
A method is also proposed on how an operator can use different sensor information for process understanding, process development and for manual on-line control. The strategies are evaluated through different deposition tasks and considered materials are tool steel and Ti-6Al-4V. The developed monitoring system enables an operator to control the process at a safe distance from the hazardous laser beam.
The results obtained in this work indicate promising steps towards full automation of the RLMwD process, i.e. without human intervention and for arbitrary deposition paths.
RMS
Medrano, Téllez Alexis G. "Fibre laser metal deposition with wire : parameters study and temperature control." Thesis, University of Nottingham, 2010. http://eprints.nottingham.ac.uk/12812/.
Full textSyed, Waheed Ul Haq. "Combined wire and powder deposition for laser direct metal additive manufacturing." Thesis, University of Manchester, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.556499.
Full textHussein, Nur Izan Syahriah. "Direct metal deposition of Waspaloy wire using laser and arc heat sources." Thesis, University of Nottingham, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.523507.
Full textLundkvist, Jennifer. "CFD Simulation of Fluid Flow During Laser Metal Wire Deposition using OpenFOAM : 3D printing." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-74476.
Full textFokuset på detta arbete var att simulera vätskeflöde i en smältpool-geometri, under en additiv-tillverkningsprocess. Detta implementerades med hjälp av CFD-mjukvaran OpenFOAM, version 1806. Två separata modeller skapades och simulerades under arbetets gång. Den första modellen kördes med hjälp av en mappning av temperaturfältet från finita-element-modellen (FE-modellen) och den andra modellen var en fristående modell tillsammans med en Gaussisk distribuerad laserstråle riktad ned på översta ytan. Båda simuleringarna använde sig av standardlösaren icoReactingMultiphaseInterFoam, vilket är en multifas-lösare, med möjlighet till fasövergångar. Tillägg av gaspartiklar utfördes under post-processing och dessa var för att visualisera porer som kan uppstå under smältning av metall-legering i en 3D-utskrivningsprocess. Vid jämförelse av den fristående modellen, som implementerade en rörlig laserstråle, till den mappade FE-modellen, uppdagades det att vätskeflödet i smältpoolen influerades starkt av trycket som orsakades av lasern. Inga strömlinjer tydde på en inkapsling av gaspartiklar under stelning.
Engblom, Eyvind. "Effect of oxygen concentration in build chamber during laser metal deposition of Ti-64 wire." Thesis, KTH, Materialvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230638.
Full textLindell, David. "Process Mapping for Laser Metal Deposition of Wire using Thermal Simulations : A prediction of material transfer stability." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-85474.
Full textAdditiv tillverkning (AT) är en kraftigt växande tillverkningsmetod på grund av sin flexibilitet kring design och möjligheten att skapa komponenter som inte är tillverkningsbara med traditionell avverkande bearbetning. AT kan kraftigt minska tid- och materialåtgång och på så sett minskas kostnader och miljöpåverkan. Införandet av AT i flyg- och rymdindustrin kräver strikt kontroll och förutsägbarhet av processen för att försäkra sig om säkra flygningar. Lasermetalldeponering av tråd är den AT metod som hanteras i denna uppsats. Användandet av tråd som tillsatsmaterial skapar ett potentiellt problem, materialöverföringen från tråden till substratet. Detta kräver att alla processparametrar är i balans för att få en jämn materialöverföring. Är processen inte balanserad syns detta genom materialöverföringsstabiliteterna stubbning och droppning. Stubbning uppkommer då energin som tillförs på tråden är för låg och droppning uppkommer då energin som tillförs är för hög jämfört med vad som krävs för en stabil process. Dessa två fenomen minskar möjligheterna för en kontrollerbar och stabil tillverkning. På grund av detta har användandet utav termiska simuleringar för att prediktera materialöverföringsstabiliteten för lasermetalldeponering av tråd med Waspaloy som deponeringsmaterial undersökts. Det har visat sig vara möjligt att prediktera materialöverföringsstabiliteten med användning av termiska simuleringar och kriterier baserat på tidigare experimentell data. Kriteriet för stubbning kontrolleras om en slutförd simulering resulterar i en tråd som når under smältan. För droppning finns två fungerande kriterier, förhållandet mellan svetshöjd och penetrationsdjup om verktygshöjden är konstant, sker förändringar i verktygshöjden är det dimensionslös ”slenderness” talet ett bättre kriterium. Genom att använda dessa kriterier är det möjligt att kvalitativt kartlägga processfönstret och skapa en bättre förståelse för förhållandet mellan verktygshöjden och den deponerade tvärsnittsarean.
Kottman, Michael Andrew. "Additive Manufacturing of Maraging 250 Steels for the Rejuvenation and Repurposing of Die Casting Tooling." Case Western Reserve University School of Graduate Studies / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=case1416854466.
Full textPrasad, Himani Siva. "Phenomena in material addition to laser generated melt pools." Licentiate thesis, Luleå tekniska universitet, Produkt- och produktionsutveckling, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-73754.
Full textBook chapters on the topic "Metal Wire Deposition"
Chergui, Akram, Nicolas Beraud, Frédéric Vignat, and François Villeneuve. "Finite Element Modeling and Validation of Metal Deposition in Wire Arc Additive Manufacturing." In Lecture Notes in Mechanical Engineering, 61–66. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70566-4_11.
Full textCatalano, Angioletta R., Vincenzo Lunetto, Paolo C. Priarone, and Luca Settineri. "A Survey on Energy Efficiency in Metal Wire Deposition Processes." In Sustainable Design and Manufacturing 2019, 311–22. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9271-9_26.
Full textCazaubon, Valentine, Audrey Abi Akle, and Xavier Fischer. "A Parametric Study of Additive Manufacturing Process: TA6V Laser Wire Metal Deposition." In Lecture Notes in Mechanical Engineering, 15–20. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70566-4_4.
Full textWani, Zarirah Karrim, Ahmad Baharuddin Abdullah, and Adha Fahmi Pauzi. "Semi-automatic 3D Metal Deposition Machine Based on Wire Arc Additive Manufacturing (WAAM)." In Lecture Notes in Electrical Engineering, 119–24. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8129-5_19.
Full textNowotny, Steffen, Sebastian Thieme, David Albert, Frank Kubisch, Robert Kager, and Christoph Leyens. "Generative Manufacturing and Repair of Metal Parts through Direct Laser Deposition Using Wire Material." In IFIP Advances in Information and Communication Technology, 185–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41329-2_20.
Full textManokruang, Supasit, Frederic Vignat, Matthieu Museau, and Maxime Limousin. "Process Parameters Effect on Weld Beads Geometry Deposited by Wire and Arc Additive Manufacturing (WAAM)." In Lecture Notes in Mechanical Engineering, 9–14. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70566-4_3.
Full textSallet, Vincent. "Metal-Organic Chemical Vapor Deposition Growth of ZnO Nanowires." In Wide Band Gap Semiconductor Nanowires 1, 265–302. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984321.ch11.
Full textAriza Galván, Enrique, Isabel Montealegre Meléndez, Cristina Arévalo Mora, Eva María Pérez Soriano, Erich Neubauer, and Michael Kitzmantel. "Plasma Metal Deposition for Metallic Materials." In Advanced Additive Manufacturing [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.101448.
Full textMwema, Fredrick M., and Esther T. Akinlabi. "Metal-Arc Welding Technologies for Additive Manufacturing of Metals and Composites." In Advances in Civil and Industrial Engineering, 94–105. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-4054-1.ch005.
Full textMarazani, Tawanda, Daniel Makundwaneyi Madyira, and Esther Titilayo Akinlabi. "Additive Manufacturing for Crack Repair Applications in Metals." In Additive Manufacturing Technologies From an Optimization Perspective, 77–101. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-9167-2.ch004.
Full textConference papers on the topic "Metal Wire Deposition"
Liu, Shuang, and Yaoyu Ding. "Wire-based direct metal deposition with Ti6Al4V." In Laser 3D Manufacturing VI, edited by Henry Helvajian, Bo Gu, and Hongqiang Chen. SPIE, 2019. http://dx.doi.org/10.1117/12.2510521.
Full textValentin, Mathieu, Christophe Arnaud, and Rainer Kling. "Additive manufacturing by wire based laser metal deposition." In Laser 3D Manufacturing VI, edited by Henry Helvajian, Bo Gu, and Hongqiang Chen. SPIE, 2019. http://dx.doi.org/10.1117/12.2510074.
Full textKumpaty, Subha, Renius Curtis Balu, Abhiram Pinnamaraju, Matthew Schaefer, Andrew Gray, and Scott Woida. "Characterizing Additively Manufactured Metals From a Novel Laser Wire Metal Deposition Process." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23177.
Full textSchulz, Martin, Fritz Klocke, Jan Riepe, Nils Klingbeil, and Kristian Arntz. "Process Optimization of Wire Based Laser Metal Deposition of Titanium." In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-76924.
Full textXu, Xiang, Gaoyang Mi, and Chunming Wang. "Laser metal deposition with 316L stainless wire: Macro morphologies and microstructures." In ICALEO® 2017: 36th International Congress on Applications of Lasers & Electro-Optics. Laser Institute of America, 2017. http://dx.doi.org/10.2351/1.5138148.
Full textSyed, Waheed Ul Haq, Andrew J. Pinkerton, and Lin Li. "Combined wire and powder feeding laser direct metal deposition for rapid prototyping." In ICALEO® 2004: 23rd International Congress on Laser Materials Processing and Laser Microfabrication. Laser Institute of America, 2004. http://dx.doi.org/10.2351/1.5060287.
Full textMedrano, Alexis, Janet Folkes, Joel Segal, and Ian Pashby. "Fibre laser metal deposition with wire: parameters study and temperature monitoring system." In XVII International Symposium on Gas Flow and Chemical Lasers and High Power Lasers. SPIE, 2008. http://dx.doi.org/10.1117/12.816831.
Full textHunko, Wesley S., and Lewis N. Payton. "Development of Wire 3D (Wir3D) Printing Parameters." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66186.
Full textHeralić, Almir, and Anna-Karin Christiansson. "Automatic in-process control of laser metal-wire deposition based on sensor feedback." In ICALEO® 2011: 30th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2011. http://dx.doi.org/10.2351/1.5062238.
Full textEdstorp, Marcus. "Numerical simulation of heat transfer and fluid flow during laser metal wire deposition." In ICALEO® 2011: 30th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2011. http://dx.doi.org/10.2351/1.5062259.
Full textReports on the topic "Metal Wire Deposition"
Kanner, Joseph, Edwin Frankel, Stella Harel, and Bruce German. Grapes, Wines and By-products as Potential Sources of Antioxidants. United States Department of Agriculture, January 1995. http://dx.doi.org/10.32747/1995.7568767.bard.
Full text