Academic literature on the topic 'Metal supported oxide thin films'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Metal supported oxide thin films.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Metal supported oxide thin films"

1

Wayne Goodman, D. "Surface spectroscopic studies of model supported-metal catalysts." Proceedings, annual meeting, Electron Microscopy Society of America 53 (August 13, 1995): 394–95. http://dx.doi.org/10.1017/s0424820100138348.

Full text
Abstract:
A new surface science approach to the study of supported-metal catalysts will be described. Thin oxide films (~100 Å) of SiO2, Al2O3, or MgO supported on a refractory metal substrate (e.g., Mo or W) have been prepared by depositing the oxide metal precursor in a background of oxygen (ca. l×l0-5 Torr) [1]. The thin-film catalysts facilitate investigation by an array of surface techniques, many of which are precluded when applied to the corresponding bulk oxide [1,2]. In particular, the oxide films have been characterized by AES, ELS, HREELS, XPS, UPS, ISS, IRAS, and TD spectroscopies and shown to have essentially identical electronic and vibrational properties of the corresponding bulk oxides. These studies indicate then that these films can serve as convenient models for oxide catalysts or metal supports. Metal thin films (e.g., Cu, Pd, Ni) have subsequently been deposited onto the oxide films and the properties of the metal/oxide system then studied with the above array of surface techniques [3]. By properly defining the metal thin film thickness, metal particles of varying sizes can be synthesized with dispersions from a few nanometers to tens of nanometers.
APA, Harvard, Vancouver, ISO, and other styles
2

St. Clair, Todd P., and D. Wayne Goodman. "ChemInform Abstract: Metal Nanoclusters Supported on Metal Oxide Thin Films: Bridging the Materials Gap." ChemInform 31, no. 47 (November 21, 2000): no. http://dx.doi.org/10.1002/chin.200047240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhu, Jiaxin, Jung-Woo Lee, Hyungwoo Lee, Lin Xie, Xiaoqing Pan, Roger A. De Souza, Chang-Beom Eom, and Stephen S. Nonnenmann. "Probing Vacancy Behavior in Complex Oxide Heterostructured Films." ECS Meeting Abstracts MA2018-01, no. 32 (April 13, 2018): 1931. http://dx.doi.org/10.1149/ma2018-01/32/1931.

Full text
Abstract:
Oxygen vacancies (Vo•• ) play a critical role in the transport mechanisms within complex oxides, analogous to electrons and holes within semiconductors. Systems including memristors, all-oxide electronics, and electrochemical cells comprise substrate-supported thin films either in metal-insulator-metal or complex oxide heterostructure configurations. As well-studied defect chemistry dictates mixed electronic/ionic functionality, improving oxide-oxide interfaces necessitates a direct, spatial understanding of vacancy distributions that define electrochemically active regions. Here we show that vacancies deplete over large, micron-level distances within single crystalline perovskite Nb-doped SrTiO3 substrate (Nb:SrTiO3) substrates after typical vacuum film deposition and post-annealing processes. We demonstrate the conversion of the surface potential across a four-layer strontium titanate / yttria-stabilized zirconia (STO/YSZ) heterostructured film to spatially defined (< 100 nm) [Vo•• ] profiles within STO through a unique combination of high temperature (500 °C), in situ scanning probes and classic semiconductor energy band diagram model analysis. Further comparison between room temperature and high temperature potential profiles clearly distinguishes between electronic-dominant and activated, ionic-dominant transport characteristics within the oxide layers. Consequently, we determined that oxygen scavenging by deposited films during pulsed laser deposition significantly reduce the Nb:STO, which is then partially reoxidized in the ambient environment during cooling. The results presented herein i) introduce the means to spatially resolve quantitative vacancy distributions across oxide films, and ii) pose the mechanism by which oxide thin film getters both enhance then deplete vacancies within the underlying substrate.
APA, Harvard, Vancouver, ISO, and other styles
4

GOODMAN, D. W. "MODEL CATALYSTS: FROM EXTENDED SINGLE CRYSTALS TO SUPPORTED PARTICLES." Surface Review and Letters 02, no. 01 (February 1995): 9–24. http://dx.doi.org/10.1142/s0218625x95000030.

Full text
Abstract:
Model oxide-supported metal catalysts have been prepared by evaporating a metal (e.g., Cu, Pd) onto an oxide ( SiO 2, Al 2 O 3) thin film (~100 Å) which, in turn, is supported on a refractory metal (Mo, W, Ta) surface. The deposited metal films, upon annealing, form small metallic clusters on the oxide surface whose sizes are dependent upon the initial metal film thickness. The surface structures and particle morphologies have been characterized using scanning probe microscopies, temperature programed desorption, X-ray and ultraviolet photoemission, and high-resolution electron energy-loss spectroscopy/infrared reflection-absorption spectroscopy of adsorbed carbon monoxide. The catalytic properties of these particles have also been investigated with respect to several reactions including CO/O 2 and CO/NO. The chemical and electronic properties of the metal particles with respect to size are compared to the analogous properties of extended single-crystal surfaces.
APA, Harvard, Vancouver, ISO, and other styles
5

Freund, Hans-Joachim, and Gianfranco Pacchioni. "Oxide ultra-thin films on metals: new materials for the design of supported metal catalysts." Chemical Society Reviews 37, no. 10 (2008): 2224. http://dx.doi.org/10.1039/b718768h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

GOODMAN, D. W. "CATALYSIS BY METALS: FROM EXTENDED SINGLE CRYSTALS TO SMALL CLUSTERS." Surface Review and Letters 01, no. 04 (December 1994): 449–55. http://dx.doi.org/10.1142/s0218625x94000424.

Full text
Abstract:
Model oxide-supported metal cluster catalysts have been prepared by evaporating the corresponding metal (e.g., Cu, Pd, Ni) onto a oxide thin film (~100 Å), which in turn is supported on a refractory metal (Mo, W, Ta) surface. The deposited metal films, upon annealing, form small metallic clusters on the oxide surface whose size are dependent upon the initial metal film thickness. The surface structures and cluster morphologies have been characterized using scanning probe microscopies, temperature-programed desorption, X-ray, and ultraviolet photoemission; and high-resolution electron energy loss spectroscopy/infrared reflection-absorption spectroscopy of adsorbed carbon monoxide. The catalytic properties of these clusters have also been investigated with respect to several reactions including CO/O 2 and CO/NO. The chemical and electronic properties of the metal clusters with respect to size are compared to the analogous properties of extended single crystal surfaces.
APA, Harvard, Vancouver, ISO, and other styles
7

Mustajab, M. A., T. Winata, and P. Arifin. "Lithium doping effect on microstructural and electrical properties of zinc oxide thin film grown by metal-organic chemical vapor deposition." Journal of Physics: Conference Series 2243, no. 1 (June 1, 2022): 012054. http://dx.doi.org/10.1088/1742-6596/2243/1/012054.

Full text
Abstract:
Abstract In this study, the undoped and Li-doped ZnO thin films were grown on Si(100) substrate using metal-organic chemical vapor deposition (MOCVD). Zinc acetylacetonate hydrate and lithium acetylacetonate solution were used as ZnO thin film precursor and Li dopant source. The effect of lithium doping on microstructural was characterized using a scanning electron microscope (SEM) and X-ray diffractometer (XRD). XRD diffractogram analysis shows that undoped and Li-doped ZnO thin films have polycrystalline hexagonal wurtzite structures with preferred peak crystal orientation (103). Li doping slightly changes the lattice parameters and cell volume of ZnO thin films through the increase of crystallite size and slightly affects the surface morphology of ZnO thin films. Current-voltage (I-V) measurement and four-point probe method were used to measure the electrical properties of lithium doped ZnO thin films. The electrical conductivity of ZnO thin films increases as Li doping is given compared to undoped films. These results are also supported by the I-V curve of Li-doped ZnO thin films by having a higher slope, indicating improvement in electrical properties.
APA, Harvard, Vancouver, ISO, and other styles
8

Baltrus, John P., Gordon R. Holcomb, Joseph H. Tylczak, and Paul R. Ohodnicki. "Factors Influencing the Stability of Au-Incorporated Metal-Oxide Supported Thin Films for Optical Gas Sensing." Journal of The Electrochemical Society 164, no. 4 (2017): B159—B167. http://dx.doi.org/10.1149/2.1451704jes.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

D'Souza, Francis, Ashwin Ganesan, Adaeze Osonkie, Precious Chukwunenye, Ishika Rashed, Fatima Anwar, Mojgan Gharee, Kabirat Balogun, Thomas R. Cundari, and Jeffry Kelber. "Electro-Catalytic Reduction of Nitrogen to Ammonia By Vanadium Oxide and Vanadium Oxynitride Thin Films: The Roles of Metal Oxophilicity, and Lattice Oxygen and Nitrogen Towards NRR." ECS Meeting Abstracts MA2022-01, no. 45 (July 7, 2022): 1893. http://dx.doi.org/10.1149/ma2022-01451893mtgabs.

Full text
Abstract:
Electro-catalytic reduction of N2 to NH3 using Earth-abundant oxide and oxynitrides is an energy- and environmentally-friendly alternative to the Haber-Bosch process. The present contribution summarizes our recent progress on vanadium oxide (VO) and vanadium oxynitride (VON) thin films1,2 as electrochemical nitrogen reduction reaction (NRR) catalysts at neutral pH conditions. In the case of VO films, the N-free VIII/IV-oxide, created by O2 plasma oxidation of polycrystalline vanadium, exhibited N2 reduction at an onset potential of -0.16 V vs. Ag/AgCl. DFT calculations indicated that N2 scission from O-supported V-centers is energetically favorable by ~18 kcal/mole as compared to N-supported sites. Interestingly, in the case of VON catalysts, both electrochemistry and photoemission data revealed the involvement of both lattice N and dissolved N2 in the NRR process. Our results also show that NH3 production from VON lattice N occurs in the presence or absence of N2 and involves the formation of V≡N: intermediates or similar unsaturated VN surface states. This is in contrast to VO where N2 reduction occurred in the presence or absence of lattice N, and without N incorporation into a vanadium oxide lattice. Thus, both lattice N and N2 reduction mechanisms involve oxide-supported V surface sites ([V]O) in preference to N-supported sites ([V]N). DFT calculations revealed the formation of V≡N:, V-N=N-H, plus other plausible reaction intermediates that are energetically favored at [V]O rather than at [V]N surface sites. Acknowledgment: This work was supported by the National Science Foundation through grants DMR-2112864 (to JAK, TRC, and FD) and partial support by CHE-1953547 (to TRC). Additional NSF support for the UNT CASCaM HPC cluster via Grant CHE-1531468 is also gratefully acknowledged. Ganesan, A. Osonkie, P. Chukwunenye, T. Cundari, F. D'Souza, J. Kelber. Electrochemical Reduction of N2 to ammonia by vanadium oxide thin films at neutral pH, J. Electrochem. Soc., 2021, 168, 026504. Osonkie, A. Ganesan, P. Chukwunenye, F. Anwar, K. Balogun, M. Gharee, I. Rashed, T. R. Cundari, F. D’Souza, and J. A. Kelber, Electro-catalytic reduction of nitrogen to ammonia: The roles of lattice O and N in reduction at vanadium oxynitride surfaces, ACS Adv. Mater & Interface, 2021, in revision.
APA, Harvard, Vancouver, ISO, and other styles
10

Rodrigues, Marco S., Joel Borges, Cláudia Lopes, Rui M. S. Pereira, Mikhail I. Vasilevskiy, and Filipe Vaz. "Gas Sensors Based on Localized Surface Plasmon Resonances: Synthesis of Oxide Films with Embedded Metal Nanoparticles, Theory and Simulation, and Sensitivity Enhancement Strategies." Applied Sciences 11, no. 12 (June 10, 2021): 5388. http://dx.doi.org/10.3390/app11125388.

Full text
Abstract:
This work presents a comprehensive review on gas sensors based on localized surface plasmon resonance (LSPR) phenomenon, including the theory of LSPR, the synthesis of nanoparticle-embedded oxide thin films, and strategies to enhance the sensitivity of these optical sensors, supported by simulations of the electromagnetic properties. The LSPR phenomenon is known to be responsible for the unique colour effects observed in the ancient Roman Lycurgus Cup and at the windows of the medieval cathedrals. In both cases, the optical effects result from the interaction of the visible light (scattering and absorption) with the conduction band electrons of noble metal nanoparticles (gold, silver, and gold–silver alloys). These nanoparticles are dispersed in a dielectric matrix with a relatively high refractive index in order to push the resonance to the visible spectral range. At the same time, they have to be located at the surface to make LSPR sensitive to changes in the local dielectric environment, the property that is very attractive for sensing applications. Hence, an overview of gas sensors is presented, including electronic-nose systems, followed by a description of the surface plasmons that arise in noble metal thin films and nanoparticles. Afterwards, metal oxides are explored as robust and sensitive materials to host nanoparticles, followed by preparation methods of nanocomposite plasmonic thin films with sustainable techniques. Finally, several optical properties simulation methods are described, and the optical LSPR sensitivity of gold nanoparticles with different shapes, sensing volumes, and surroundings is calculated using the discrete dipole approximation method.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Metal supported oxide thin films"

1

Min, Byoung Koun. "Scanning tunneling microscopic studies of SiO2 thin film supported metal nano-clusters." Diss., Texas A&M University, 2004. http://hdl.handle.net/1969.1/2737.

Full text
Abstract:
This dissertation is focused on understanding heterogeneous metal catalysts supported on oxides using a model catalyst system of SiO2 thin film supported metal nano-clusters. The primary technique applied to this study is scanning tunneling microscopy (STM). The most important constituent of this model catalyst system is the SiO2 thin film, as it must be thin and homogeneous enough to apply electron or ion based surface science techniques as well as STM. Ultra-thin SiO2 films were successfully synthesized on a Mo(112) single crystal. The electronic and geometric structure of the SiO2 thin film was investigated by STM combined with LEED, Auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS). The relationship between defects on the SiO2 thin film and the nucleation and growth of metal nano-clusters was also investigated. By monitoring morphology changes during thermal annealing, it was found that the metal-support interaction is strongly dependent on the type of metal as well as on the defect density of the SiO2 thin film. Especially, it was found that oxygen vacancies and Si impurities play an important role in the formation of Pd-silicide. By substituting Ti atoms into the SiO2 thin film network, an atomically mixed TiO2-SiO2 thin film was synthesized. Furthermore, these Ti atoms play a role as heterogeneous defects, resulting in the creation of nucleation sites for Au nano-clusters. A marked increase in Au cluster density due to Ti defects was observed in STM. A TiO2-SiO2 thin film consisting of atomic Ti as well as TiOx islands was also synthesized by using higher amounts of Ti (17 %). More importantly, this oxide surface was found to have sinter resistant properties for Au nano-clusters, which are desirable in order to make highly active Au nano-clusters more stable under reaction conditions.
APA, Harvard, Vancouver, ISO, and other styles
2

SCHLEXER, PHILOMENA DENIZ. "Nanostructures in Catalysis - Support Effects on Metal Clusters and Oxide Thin Films." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2017. http://hdl.handle.net/10281/158187.

Full text
Abstract:
La catalisi ha profondamento modificato la nostra società e giocherà un ruolo chiave nella risoluzione della crisi energetica ed ambientale che stiamo affrontando in questo secolo. Il grande vantaggio nello sviluppo dei nanomateriali nel regno della nanotecnologia ha portato a possibilità impreviste anche per la progettazione di nuovi catalizzatori. La produzione e la comprensione del funzionamento di catalizzatori ad alta efficienza basati su materiali nanostrutturati è lo sforzo del campo emergente della nanocatalisi. Negli ultimi anni, i nanocatalizzatori sono stati ampiamente studiati e si è registrato un costante progresso nella loro produzione su larga scala. La tecnologia è tuttora in evoluzione ed ulteriore ricerca è necessaria per capitalizzare appieno il suo potenziale. I metodi computazionali sono molto adatti a studiare il funzionamento dei nanocatalizzatori e a fornire importanti informazioni da un punto di vista atomistico. Un accurato ed efficiente metodo è rappresentato dalla teoria del funzionale della densità (DFT). In questa tesi, abbiamo esplorato le caratteristiche chimiche e fisiche di clusters metallici supportati e di film sottili di ossidi utilizzando principalmente il metodo basato su DFT. Questi materiali sono di particolare interesse nella catalisi e in molte altre applicazioni, a causa delle loro caratteristiche uniche che derivano dalla nanostrutturazione. In particolare, abbiamo studiato la geometria, lo stato di carica, l’interazione cluster-supporto, e la reattività di clusters metallici sub-nanometrici supportati su ossidi. In un caso particolare abbiamo inoltre affrontato il ruolo della dimensione in nanoparticelle metalliche più grandi. Per quanto riguarda i clusters supportati, abbiamo verificato che le forze di dispersione di van-der-Waals sono molto importanti per la corretta descrizione dell’interazione cluster-supporto. Inoltre, abbiamo stabilito che difetti e dopanti presenti sulla superfice del supporto ossido hanno un'influenza determinante sui cluster, determinandone intrinsecamente la reattività. Anche la modifica dei cluster attraverso la formazione di leghe altera l’interazione metallo-supporto, e può essere sfruttata per evitare l’agglomerazione dei clusters. La nanostrutturazione del supporto a base di ossido può generare nuove proprietà del materiale e in questo contesto abbiamo esaminato le caratteristiche di un film ultrasottile di ossido supportato su metallo. Infine, abbiamo eseguito studi meccanicistici che hanno contribuito a chiarire il meccanismo di reazione dell’ossidazione di CO su catalizzatori a base di Au/TiO2 e dell’idrogenazione di CO2 su catalizzatori a base di Ru/TiO2 and Cu/TiO2.
Catalysis has largely shaped society and will play a key part in the resolution of the energy and environment crisis we are facing in this century. The great advancements in the development of nanomaterials in the realm of nanotechnology have brought forth unforeseen possibilities also for the design of novel catalysts. The production and understanding of highly efficient catalysts based on nanostructured materials is the endeavor of the emerging field of nanocatalysis. In the last years, nanocatalysts have been studied extensively and progress in their large-scale fabrication has been demonstrated. Still, the technology is immature and further research is necessary to capitalize its full potential. Computational approaches are well suited to investigate the functioning of nanocatalysts and provide valuable atomistic insights. An accurate and efficient method is density functional theory (DFT). In this thesis, we explored the physical and chemical characteristics of supported metal clusters and oxide thin films using mainly DFT. These materials are of special interest in catalysis and many other applications, because of their unique features emerging from the nanostructuring. In particular, we investigated the geometry, the charge state, the cluster-support interaction, and the reactivity of sub-nanometer metal clusters supported on oxides. In a case study, we also addressed size-effects on larger metal nanoparticles. Regarding the supported clusters, we find that van-der-Waals dispersion forces are important for the correct description of the cluster-support interaction. Furthermore, we establish that defects and dopants present on the supporting oxide surface have a determining influence on the clusters, inherently affecting their reactivity. Also the modification of the clusters via alloying alters the metal-support interaction which can be exploited against cluster agglomeration. Nanostructuring of the oxide support engenders new material properties and in this context we examined the features of metal-supported oxide ultrathin films. Finally, we performed mechanistic studies contributing to elucidate the reaction mechanism of CO oxidation on Au/TiO2, as well as CO2 hydrogenation on Ru/TiO2 and Cu/TiO2.
APA, Harvard, Vancouver, ISO, and other styles
3

Carew, Alexander Jon. "Fundamental studies into the catalytic properties of metal-oxide supported gold and copper nanoparticles." Thesis, University of Liverpool, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jerratsch, Jan-Frederik Karl [Verfasser]. "Investigation and manipulation of thin oxide films supported on metal single crystals : a scanning tunneling microscopy study / Jan-Frederik Karl Jerratsch." Berlin : Freie Universität Berlin, 2011. http://d-nb.info/1025355822/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

PRADA, STEFANO. "Enhancing oxide surface reactivity by doping or nano-structuring." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/50011.

Full text
Abstract:
Wide band-gap simple oxides are rather inert materials, which found applications in heterogeneous catalysis mainly as supports for active metal nanoparticles. This thesis investigates tailored modifications of the oxide characteristics aimed at making these substrates more reactive in catalytic processes. In particular we are interested in engineering the charge transfer with supported metal catalysts in order to enhance their activity and selectivity. By using first principles calculations in the framework of the density functional theory, we have explored two main routes in this field: 1) nanostructuring, in particular nanothick oxide films supported on metals, and 2) doping of oxides with substitutional metal ions. After addressing methodological aspects related to the theoretical simulations of these materials, we have considered the role of oxide doping in optimizing the structural and electronic properties of supported gold adparticles; we have shown that depending on the dopant and the nature of the oxide it is possible to finely tune the shape and the charge state of adsorbed metal particle. Moreover we have combined oxide doping and nanostructuring in modifying the work function of metal substrates. By varying parameters like nature, position, and concentration of dopants within the metal-supported oxide films, it is possible in principle to modify the work function of the metallic support in a desired way.
APA, Harvard, Vancouver, ISO, and other styles
6

Benia, Hadj Mohamed. "Spatially resolved optical measurements on supported metal particles and oxide surfaces with the STM." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2008. http://dx.doi.org/10.18452/15862.

Full text
Abstract:
In der vorliegenden Arbeit wurde mit Hilfe eines Photon-STM die Korrelation zwischen optischen Eigenschaften und der lokalen Morphologie an zwei unterschiedlichen Systemen untersucht. Hierfür wurden zum einem oxidgetragene Ensemble von Silber-Partikeln präpariert, wobei sowohl die Partikelform (Kuppel- und Scheibenform) als auch die deponierte Partikeldichte variiert werden konnte. Neben der Präparation solcher Partikel auf Al10O13/NiAl, konnten sphärische Silber-Kolloide geordnet, als auch ungeordnet auf HOPG aufgebracht und untersucht werden. Dabei zeigte sich, dass das Verhältnis von Höhen zu Breiten nicht nur einen signifikanten Einfluss auf die Mie-Resonanz des einzelnen Partikels hat, sondern auch die elektromagnetische Kopplung der Partikel in einem Ensemble stark kontrolliert. Die energetische Lage der Mie-Resonanz zeigt im Fall der kuppelförmigen Ag-Partikel eine starke Abhängigkeit vom Intepartikel-Abstand, was sich in einer Verschiebung zu höheren Energien für eine steigende Partikeldichte äußert. Eine solche Abhängigkeit konnte bei den Ensembles der scheibenförmigen Partikel nicht beobachtet werden. Des weiteren zeigte sich, dass, verglichen mit den ungeordneten Ensembles, die selbstorganisierte langreichweitige Ordnung der Silber-Kolloide auf HOPG nur einen schwachen Einfluss auf die energetische Position der Mie Resonanz hat.Das zweite hier untersuchte System sind dünne MgO Filme unterschiedlicher Dicken auf einem Mo(001) Substrat. Diese zeigen ein reichhaltiges Wachstumsverhalten, welches durch eine Differenz in den Gitterkonstanten von 5.3% begründet ist und erst ab etwa 25 ML zu einem flachen und defektarmen Film führt. Die so induzierte Spannung relaxiert bis zu einer Dicke von etwa 7 ML in einer periodischen Überstruktur die aus abwechselnd flachen und verkippten Ebenen an der MgO-Mo Grenzschicht hervorgeht. Für MgO Filme mit einer Dicke von etwa 12 ML werden dann Schraubenversetzungen, ausgedehnte verkippte Ebenen und Stufenkanten mit einer Orientierung entlang der Richtung beobachtet. Die optische Charakterisierung durch Feldemission von Elektronen aus der STM-Spitze in den MgO-Film wird dominiert von zwei Emissionsmaxima bei Energien von 3.1 eV und 4.4 eV. Die kontrollierte Nukleation von Gold Partikeln und die Erzeugung von Farbzentren im MgO Film erlaubten eine Zuordnung dieser Emissionen zu strahlenden Zerfällen von Exitonen an Ecken, Kinken bzw. Stufen des Magnesiumoxids. Solche Emissionsprozesse konnten allerdings nur unter Einstellungen beobachtet werden, bei denen ein gleichzeitiges Rastern der Oberfläche unmöglich ist. Bei moderaten Einstellungen war auch eine ortsaufgelösten Spektroskopie möglich, wobei dann neue Emissionsmechanismen beobachtet wurden. Dabei sind zwei Prozesse wesentlich; zum einen die Ausbildung von sog. Spitzen-induzierten Plasmonen im Bereich zwischen Spitze und dem Mo-Substrat, zum anderen strahlende Elektronenübergänge zwischen sog. Feldemissionsresonanzen, die sich im Spitze/MgO-Film System ausbilden.
In this thesis, the correlation between the optical properties and the local morphology of supported silver nanoparticle ensembles and MgO thin films deposited on Mo(001) systems is explored by means of Photon-STM. In the first section, dome and disk shaped Ag nanoparticle ensembles with increasing density on an alumina film on NiAl(110) were analyzed as well as ordered and disordered ensembles of Ag nanocolloids on HOPG. The aspect ratio of the Ag nanoparticles was found to have a significant influence not only on the Mie plasmon resonance of a single particle, but also on the electromagnetic coupling within the nanoparticle ensembles. The Mie resonance in the ensemble of dome shaped Ag nanoparticles shows a strong dependence on the interparticle distance, where it shifts to higher energies with increasing particle density, due to destructive interference effects. In the disk-like Ag ensembles, however, the plasmon energy is independent of particle-particle separation. The long-range lateral ordering of size-selected Ag nanocolloids is found to induce a high dipole-dipole coupling within the ensemble. This is mainly reflected by the enhancement of the spectral intensity of the in-plane Mie mode, due to constructive coupling. However, ensembles with either well-ordered or disordered arrangements reveal no important difference in their optical properties, reflecting the weak influence of the long-range order in the particle ensemble. Thin MgO films with different thicknesses were grown on a Mo(001) surface. The stress resulting from the 5.3% lattice mismatch between the MgO(001) and the Mo(001) lattice parameters is found to control the surface morphology of the MgO film until thicknesses of around 25ML at which flat and defect-poor films are obtained. The relaxation of the stress induces a periodic network in the first 7ML of the MgO film, consisting of alternated flat and tilted mosaics. The presence of screw dislocations, steps oriented along the MgO directions, and tilted planes is observed when the MgO films are approximately 12ML thick. In addition, an increase of the MgO work function around these new surface features is revealed from STM spectroscopy. The photon emission induced by field-emitted electron injection from the STM tip into the MgO films is dominated by two emission bands located at 3.1eV and 4.4eV. To check the origin of these bands, further experiments, namely, nucleation of Au particles and creation of F-centers on the MgO surface, have been performed. The nucleation of Au particles at the low coordinated sites is found to quench the MgO optical signal, while the creation or annihilation of F-centers does not alter the MgO emission bands. The 3.1eV and the 4.4eV bands are therefore assigned to the radiative decay of MgO excitons at corner and kink sites, and step sites, respectively. Besides, spatially resolved optical measurements in the tunneling mode of the STM revealed different light emission mechanisms. These radiative processes are mainly related to tip-induced plasmons that form between the tip and the Mo support and to electron transitions between field-emission-resonance states in the STM tip-MgO film junction. The signal from exciton decays at corners and kinks of the MgO surface is however only observed at excitation conditions where the spatial resolution is already strongly reduced.
APA, Harvard, Vancouver, ISO, and other styles
7

Kiisk, Valter. "Optical investigation of metal-oxide thin films /." Online version, 2006. http://dspace.utlib.ee/dspace/bitstream/10062/115/1/kiiskvalter.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ponja, Sapna D. "Metal oxide thin films for optoelectronic applications." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10045545/.

Full text
Abstract:
This thesis details the use of aerosol assisted chemical vapour deposition to deposit transparent conducting oxide thin films. Transparent conducting oxides are a special class of materials that exhibit high optical transparency as well as good electrical conductivity, two properties usually in contradiction with each other. The combination of these properties in one material has established an essential role for transparent conducting oxides in a range of applications such as flat screen displays, photovoltaic cells, gas sensors, low-emissive coatings and light emitting diodes. Aerosol assisted chemical vapour deposition is increasingly becoming recognised as a simple, low-cost and reliable technique for depositing thin films. It involves generating an aerosol mist from a solution containing the precursors that is transported with the aid of an inert or reactive carrier gas into the reaction chamber where deposition takes place on a heated substrate. Two of the attractive features of this method are its versatility in allowing the use of precursors that are not suitable for conventional chemical vapour deposition methods as the method depends on solubility rather than volatility and the facility to use multiple precursors simultaneously within a single vessel. The focus of this work is on doping and co-doping of metal oxide thin films, namely ZnO and SnO2, to enhance their optoelectronic properties. The ZnO films were doped with group III elements aluminium or gallium, and the SnO2 films were doped with multivalent elements antimony or tungsten. All four systems were co-doped by introducing fluorine to replace the oxygen ion in the lattice. Fluorine was used as the co-dopant because of its established use in fluorine doped tin(IV) oxide transparent conducting oxides, a commercially available product. Co-doping has received less attention compared with single cation doping largely because of the limitations of other deposition methods. The rationale for co-doping is that it would allow greater tuning of the optoelectronic properties of the transparent conducting oxides to suit specific applications. All films synthesised in this investigation were characterised using a wide range of techniques including X-ray diffraction, energy and/or wavelength dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, UV-visible-near infrared spectroscopy and Hall effect measurements.
APA, Harvard, Vancouver, ISO, and other styles
9

Snyder, Mark Q. "Modification of Semi-metal Oxide and Metal Oxide Powders by Atomic Layer Deposition of Thin Films." Fogler Library, University of Maine, 2007. http://www.library.umaine.edu/theses/pdf/SnyderMQ2007.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Han, Sanggil. "Cu2O thin films for p-type metal oxide thin film transistors." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/285099.

Full text
Abstract:
The rapid progress of n-type metal oxide thin film transistors (TFTs) has motivated research on p-type metal oxide TFTs in order to realise metal oxide-based CMOS circuits which enable low power consumption large-area electronics. Cuprous oxide (Cu2O) has previously been proposed as a suitable active layer for p-type metal oxide TFTs. The two most significant challenges for achieving good quality Cu2O TFTs are to overcome the low field-effect mobility and an unacceptably high off-state current that are a feature of devices that have been reported to date. This dissertation focuses on improving the carrier mobility, and identifying the main origins of the low field-effect mobility and high off-state current in Cu2O TFTs. This work has three major findings. The first major outcome is a demonstration that vacuum annealing can be used to improve the carrier mobility in Cu2O without phase conversion, such as oxidation (CuO) or oxide reduction (Cu). In order to allow an in-depth discussion on the main origins of the very low carrier mobility in as-deposited films and the mobility enhancement by annealing, a quantitative analysis of the relative dominance of the main conduction mechanisms (i.e. trap-limited and grain-boundary-limited conduction) is performed. This shows that the low carrier mobility of as-deposited Cu2O is due to significant grain-boundary-limited conduction. In contrast, after annealing, grain-boundary-limited conduction becomes insignificant due to a considerable reduction in the energy barrier height at grain boundaries, and therefore trap-limited conduction dominates. A further mobility improvement by an increase in annealing temperature is explained by a reduction in the effect of trap-limited conduction resulting from a decrease in tail state density. The second major outcome of this work is the observation that grain orientation ([111] or [100] direction) of sputter-deposited Cu2O can be varied by control of the incident ion-to-Cu flux ratio. Using this technique, a systematic investigation on the effect of grain orientation on carrier mobility in Cu2O thin films is presented, which shows that the [100] Cu2O grain orientation is more favourable for realising a high carrier mobility. In the third and final outcome of this thesis, the temperature dependence of the drain current as a function of gate voltage along with the C-V characteristics reveals that minority carriers (electrons) cause the high off-state current in Cu2O TFTs. In addition, it is observed that an abrupt lowering of the activation energy and pinning of the Fermi energy occur in the off-state, which is attributed to subgap states at 0.38 eV below the conduction band minimum. These findings provide readers with the understanding of the main origins of the low carrier mobility and high off-state current in Cu2O TFTs, and the future research direction for resolving these problems.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Metal supported oxide thin films"

1

Ezema, Fabian I., Chandrakant D. Lokhande, and Rajan Jose, eds. Chemically Deposited Nanocrystalline Metal Oxide Thin Films. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68462-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yagoubi, Benabdellah. A study of some thin transition metal oxide films. Uxbridge: Brunel University, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bird, Daniel P. C. The investigation of thin metal oxide films by STM and RAIRS studies. Manchester: UMIST, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Roca, Alejandro G., Paolo Mele, Hanae Kijima-Aoki, Elvira Fantechi, Jana K. Vejpravova, Martin Kalbac, Satoru Kaneko, and Tamio Endo, eds. Surfaces and Interfaces of Metal Oxide Thin Films, Multilayers, Nanoparticles and Nano-composites. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74073-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Thin film metal-oxides: Fundamentals and applications in electronics and energy. New York: Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Laconte, J. Micromachined thin-film sensors for SOI-CMOS co-integration. New York: Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

1936-, Simonne J. J., and Buxo J. 1941-, eds. Insulating films on semiconductors: Proceedings of the international conference, INFOS 85, Toulouse, France, 16-18 April, 1985. Amsterdam: North-Holland, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

M, Lambert R., Pacchioni G. 1954-, North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Study Institute on Chemisorption and Reactivity on Supported Clusters and Thin Films: Towards an Understanding of Microscopic Processes in Catalysis (1996 : Erice, Italy), eds. Chemisorption and reactivity on supported clusters and thin films: Towards an understanding of microscopic processes in catalysis. Dordrecht: Kluwer Academic Publishers, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

W, Eccleston, Uren M, and INFOS '91 (1991 :, eds. Insulating films on semiconductors 1991: Proceedings from the 7th biennial European conference, including satellite workshops on Silicon on Insulator: Materials and Device Technology and The Physics of Hot Electron Degradation in Si MOSFETs held at the University of Liverpool, 2nd to 6th April 1991. Bristol: Adam Hilger, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Habraken, F. H. P. M., ed. LPCVD silicon nitride and oxynitride films: Material and applications in integrated circuit technology. Berlin: Springer-Verlag, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Metal supported oxide thin films"

1

Møller, P. J. "Co-Adsorption on Metal-Oxide Crystal Surfaces." In Chemisorption and Reactivity on Supported Clusters and Thin Films, 267–84. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8911-6_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rösch, N., and G. Pacchioni. "Density Functional Cluster Calculations on Metal Deposition at Oxide Surfaces." In Chemisorption and Reactivity on Supported Clusters and Thin Films, 353–70. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8911-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pettersson, L. G. M., M. Nyberg, J. L. Pascual, and M. A. Nygren. "Theoretical Modelling of Chemisorption and Reactions on Metal-Oxide Surfaces." In Chemisorption and Reactivity on Supported Clusters and Thin Films, 425–54. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8911-6_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rupprechter, Günther. "Catalysis by Noble Metal Nanoparticles Supported on Thin-Oxide Films." In Model Systems in Catalysis, 319–43. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-98049-2_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bäumer, M., J. Libuda, and H. J. Freund. "Metal Deposits on Thin Well Ordered Oxide Films: Morphology, Adsorption and Reactivity." In Chemisorption and Reactivity on Supported Clusters and Thin Films, 61–104. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8911-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Madey, Theodore E. "The Growth and Stability of Ultrathin Films on Metal and Oxide Surfaces." In Chemisorption and Reactivity on Supported Clusters and Thin Films, 105–16. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8911-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yoo, Yeong, Naoki Oishi, Daniel Roth, and Suwas Nikumb. "Development of Metal Supported Thin Film SOFCs at ICPET/NRCC." In Advances in Solid Oxide Fuel Cells III, 15–24. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470339534.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lu, Jiwei, Kevin G. West, and Stuart A. Wolf. "Novel Magnetic Oxide Thin Films." In Thin Film Metal-Oxides, 95–129. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0664-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Padhan, Prahallad, and Arunava Gupta. "Magnetic/Multifunctional Double Perovskite Oxide Thin Films." In Functional Metal Oxides, 51–87. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527654864.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Angelomé, Paula C., and M. Cecilia Fuertes. "Metal Nanoparticle–Mesoporous Oxide Nanocomposite Thin Films." In Handbook of Sol-Gel Science and Technology, 1–27. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19454-7_146-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Metal supported oxide thin films"

1

Gindrat, M., A. Refke, and R. Damani. "APS-Triplex and LPPS-Thin Film as Advanced Plasma Spraying Technologies for Industrialization of SOFC Components." In ITSC2008, edited by B. R. Marple, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima, and G. Montavon. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2008. http://dx.doi.org/10.31399/asm.cp.itsc2008p0088.

Full text
Abstract:
Abstract Reliable and economically efficient processes are necessary for the production of high quality coatings for solid oxide fuel cells (SOFC) applications in an industrial scale. In that perspective, Sulzer Metco developed several coating solutions through different processes adapted for each specific applications, in particular on metal supported cells (MSC). Diffusion barrier layers (DBL) using perovskite material, such as Lanthanum Strontium Manganite (LSM), is produced “state-of-the-art” as coating service by Sulzer Metco on metallic interconnects (IC) using the Triplex technology. The newly developed TriplexPro-200 having a long lifetime performance and specific features, like cascaded arc and 3-cathode torch, is the best candidate for producing high quality and reliable coatings in a mass production of SOFC functional layers. LPPS-Thin Film, on the other hand is the technology of choice to deposit very dense, thin and homogeneous layers on various substrates. Yttria stabilized Zirconia (YSZ) layers of 20-40 µm thickness have been deposited on thin metallic substrates (0.7 mm, 140 cm2) without producing any strong deformation of the substrate. Considering the dimension of the metallic substrate the coated cells present very good gas leak tightness performances between 2 and 8 Pa·m/s which is homogeneous on the substrate area. Moreover, LPPS-TF can also be used to produce very dense and thin LSM coatings on interconnects. In this case, LPPS-TF not only produces denser and thinner coatings but also becomes again competitive when considering the manufacturing of DBL for metallic ICs on a high production scale. This paper presents the current developments of these technologies in the domain of SOFC applications.
APA, Harvard, Vancouver, ISO, and other styles
2

Kiriakidis, G., D. Dovinos, and M. Suchea. "Sensing using nanostructured metal oxide thin films." In Optics East 2006, edited by Nibir K. Dhar, Achyut K. Dutta, and M. Saif Islam. SPIE, 2006. http://dx.doi.org/10.1117/12.685369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gomez-Escoto, R., M. Ghafari, B. Stahl, and H. Hahn. "Magnetoresistance of granular metal - oxide thin films." In IEEE International Magnetics Conference. IEEE, 1999. http://dx.doi.org/10.1109/intmag.1999.837540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Moghe, Shweta, A. D. Acharya, and S. B. Shrivastava. "Study of metal oxide doped polymeric thin films." In EMERGING INTERFACES OF PHYSICAL SCIENCES AND TECHNOLOGY 2019: EIPT2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0006263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wood, Vanessa, Matthew Panzer, Jean-Michel Caruge, Jonathan Halpert, Moungi Bawendi, and Vladimir Bulovic. "Colloidally-Synthesized Nanocrystal LEDs Using Metal Oxide Thin Films." In Optics and Photonics for Advanced Energy Technology. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/energy.2009.wc6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fryc, Irena. "Electrical and optical characterization of metal oxide/metal/polymer multilayer thin films." In Tenth Polish-Czech-Slovak Optical Conference: Wave and Quantum Aspects of Contemporary Optics. SPIE, 1998. http://dx.doi.org/10.1117/12.301351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Das, Biswajit. "Nanosystem Implementation Using Nanochannels of Nanoporous Membranes." In ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2007. http://dx.doi.org/10.1115/icnmm2007-30147.

Full text
Abstract:
We are currently developing a novel fabrication technique for the implementation of nanosystems utilizing the nanochannels in nanoporous membranes. The technique is CMOS-compatible and has the potential for volume commercial manufacturing. The technique is based on the anodization, or electrolytic oxidation, of a thin film of aluminum to form a nanoporous alumina membrane, which is used as a guide to implement the nanosystems. The underlying principle of the fabrication technique is that when aluminum is anodized in a suitable acidic electrolyte under controlled conditions, it oxidizes to form a hydrated aluminum oxide (alumina) containing a two dimensional hexagonal array of cylindrical pores. The pore diameter and the inter-pore spacing depend on the anodization conditions and the substrate parameters, and can be varied between 4 nm to 100s of nm; the pores can be several microns deep. Due to the excellent periodicity of the pores, and the ability to control the pore diameters, such anodized alumina films can be used as templates for the fabrication of periodic arrays of nanostructures. In fact, the pores in alumina templates have been used to synthesize a variety of metal and semiconductor nanostructures. In addition, the template can also be used as a mask for pattern transfer to create periodic arrays of pores on a substrate. While most of the work in this field has focused on bulk aluminum, the use of a bulk aluminum substrate precludes most photonic and electronic applications. To overcome this, we have developed a thin film alumina template technology that allows the fabrication of nanoporous membranes consisting of nanochannels with diameters ranging between 4 nm to 10s of nm. By using a novel process, we convert the nanoporous templates into an array of nanochannels supported by the membrane. These nanochannels are then used as guides to deposit nanoparticles (nanodots, nanotubes and nanopillars) to form the desired nanosystem. The nanoparticles are primarily deposited by electrophoretic techniques. We are currently using this technique to implement nanosystems based on CdSe quantum dots and carbon nanotubes with applications in broad ranging fields including multispectral detectors, photonics, gas sensors and high efficiency solar cells. In this paper, we provide a description of the fabrication technique as well as some of the nanosystems currently under development.
APA, Harvard, Vancouver, ISO, and other styles
8

Hassan, Z., M. S. M. Saheed, and A. S. Yusof. "Metal oxide-based heterojunction thin films for solar cell applications." In 2019 International Energy and Sustainability Conference (IESC). IEEE, 2019. http://dx.doi.org/10.1109/iesc47067.2019.8976643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ignatiev, A., N. J. Wu, S. Q. Liu, X. Chen, Y. B. Nian, C. Papaginanni, J. Strozier, and Z. W. Xing. "Resistance Switching Memory Effect in Transition Metal Oxide Thin Films." In 2006 7th Annual Non-Volatile Memory Technology Symposium. IEEE, 2006. http://dx.doi.org/10.1109/nvmt.2006.378886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jankowski, Alan F. "Rate-controlled synthesis of composition-modulated metal oxide thin films." In SPIE's 1994 International Symposium on Optics, Imaging, and Instrumentation, edited by James D. Rancourt. SPIE, 1994. http://dx.doi.org/10.1117/12.185794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography