Journal articles on the topic 'Metal-support interactions'

To see the other types of publications on this topic, follow the link: Metal-support interactions.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Metal-support interactions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Tauster, S. J. "Strong metal-support interactions." Accounts of Chemical Research 20, no. 11 (November 1987): 389–94. http://dx.doi.org/10.1021/ar00143a001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

BURCH, R. "Metal sulfide-support interactions." Journal of Catalysis 97, no. 2 (February 1986): 385–89. http://dx.doi.org/10.1016/0021-9517(86)90010-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Du, Xiaorui, Hailian Tang, and Botao Qiao. "Oxidative Strong Metal–Support Interactions." Catalysts 11, no. 8 (July 25, 2021): 896. http://dx.doi.org/10.3390/catal11080896.

Full text
Abstract:
The discoveries and development of the oxidative strong metal–support interaction (OMSI) phenomena in recent years not only promote new and deeper understanding of strong metal–support interaction (SMSI) but also open an alternative way to develop supported heterogeneous catalysts with better performance. In this review, the brief history as well as the definition of OMSI and its difference from classical SMSI are described. The identification of OMSI and the corresponding characterization methods are expounded. Furthermore, the application of OMSI in enhancing catalyst performance, and the influence of OMSI in inspiring discoveries of new types of SMSI are discussed. Finally, a brief summary is presented and some prospects are proposed.
APA, Harvard, Vancouver, ISO, and other styles
4

del Arco, M., and V. Rives. "Metal-support and metal oxide-support interactions in Cu/TiO2." Reaction Kinetics and Catalysis Letters 31, no. 1 (March 1986): 239–44. http://dx.doi.org/10.1007/bf02062539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Guenin, M., P. N. Da Silva, and R. Frety. "Influence of chlorine towards metal-support and metal-sulphur support interactions." Applied Catalysis 27, no. 2 (January 1986): 313–23. http://dx.doi.org/10.1016/s0166-9834(00)82927-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Douidah, A., P. Marécot, S. Szabo, and J. Barbier. "Evaluation of the metal–support interactions." Applied Catalysis A: General 225, no. 1-2 (February 2002): 21–31. http://dx.doi.org/10.1016/s0926-860x(01)00627-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nicole, J., D. Tsiplakides, C. Pliangos, X. E. Verykios, Ch Comninellis, and C. G. Vayenas. "Electrochemical Promotion and Metal–Support Interactions." Journal of Catalysis 204, no. 1 (November 2001): 23–34. http://dx.doi.org/10.1006/jcat.2001.3360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

BADYAL, J. P. S. "ChemInform Abstract: Strong Metal-Support Interactions." ChemInform 25, no. 2 (August 19, 2010): no. http://dx.doi.org/10.1002/chin.199402301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Yangyang, Yunshang Zhang, Kun Qian, and Weixin Huang. "Metal–Support Interactions in Metal/Oxide Catalysts and Oxide–Metal Interactions in Oxide/Metal Inverse Catalysts." ACS Catalysis 12, no. 2 (January 6, 2022): 1268–87. http://dx.doi.org/10.1021/acscatal.1c04854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Okamoto, Yasuaki, Takeshi Kubota, Yoshiharu Ohto, and Saburo Nasu. "Metal Oxide−Support Interactions in Fe/ZrO2Catalysts." Journal of Physical Chemistry B 104, no. 35 (September 2000): 8462–70. http://dx.doi.org/10.1021/jp994122t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Huang, Yuhui, Rui Zou, Yanjun Lin, and Chao Lu. "Electronic Metal–Support Interactions for Electrochemiluminescence Signal Amplification." Analytical Chemistry 93, no. 32 (August 4, 2021): 11291–97. http://dx.doi.org/10.1021/acs.analchem.1c02423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Linsmeier, Ch, and E. Taglauer. "Strong metal–support interactions on rhodium model catalysts." Applied Catalysis A: General 391, no. 1-2 (January 2011): 175–86. http://dx.doi.org/10.1016/j.apcata.2010.07.051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Fujiwara, Kakeru, Kikuo Okuyama, and Sotiris E. Pratsinis. "Metal–support interactions in catalysts for environmental remediation." Environmental Science: Nano 4, no. 11 (2017): 2076–92. http://dx.doi.org/10.1039/c7en00678k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Hu, Pingping, Zhiwei Huang, Zakariae Amghouz, Michiel Makkee, Fei Xu, Freek Kapteijn, Alla Dikhtiarenko, Yaxin Chen, Xiao Gu, and Xingfu Tang. "Electronic Metal-Support Interactions in Single-Atom Catalysts." Angewandte Chemie 126, no. 13 (March 5, 2014): 3486–89. http://dx.doi.org/10.1002/ange.201309248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hu, Pingping, Zhiwei Huang, Zakariae Amghouz, Michiel Makkee, Fei Xu, Freek Kapteijn, Alla Dikhtiarenko, Yaxin Chen, Xiao Gu, and Xingfu Tang. "Electronic Metal-Support Interactions in Single-Atom Catalysts." Angewandte Chemie International Edition 53, no. 13 (March 5, 2014): 3418–21. http://dx.doi.org/10.1002/anie.201309248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Liu, Jingyue Jimmy. "Advanced Electron Microscopy of Metal-Support Interactions in Supported Metal Catalysts." ChemCatChem 3, no. 6 (June 7, 2011): 934–48. http://dx.doi.org/10.1002/cctc.201100090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Tang, Hailian, Yang Su, Yalin Guo, Leilei Zhang, Tianbo Li, Ketao Zang, Fei Liu, et al. "Oxidative strong metal–support interactions (OMSI) of supported platinum-group metal catalysts." Chemical Science 9, no. 32 (2018): 6679–84. http://dx.doi.org/10.1039/c8sc01392f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kubička, David, Narendra Kumar, Tapani Venäläinen, Hannu Karhu, Iva Kubičková, Heidi Österholm, and Dmitry Yu Murzin. "Metal−Support Interactions in Zeolite-Supported Noble Metals: Influence of Metal Crystallites on the Support Acidity." Journal of Physical Chemistry B 110, no. 10 (March 2006): 4937–46. http://dx.doi.org/10.1021/jp055754k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Guo, Yu, and Ya-Wen Zhang. "Metal Clusters Dispersed on Oxide Supports: Preparation Methods and Metal-Support Interactions." Topics in Catalysis 61, no. 9-11 (May 15, 2018): 855–74. http://dx.doi.org/10.1007/s11244-018-0957-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Tang, Hailian, Jiake Wei, Fei Liu, Botao Qiao, Xiaoli Pan, Lin Li, Jingyue Liu, Junhu Wang, and Tao Zhang. "Strong Metal–Support Interactions between Gold Nanoparticles and Nonoxides." Journal of the American Chemical Society 138, no. 1 (December 28, 2015): 56–59. http://dx.doi.org/10.1021/jacs.5b11306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Vander Wal, Randall L., Thomas M. Ticich, and Valerie E. Curtis. "Substrate–support interactions in metal-catalyzed carbon nanofiber growth." Carbon 39, no. 15 (December 2001): 2277–89. http://dx.doi.org/10.1016/s0008-6223(01)00047-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

BRAUNSCHWEIG, E. "Reversibility of strong metal-support interactions on Rh/TiO2." Journal of Catalysis 118, no. 1 (July 1989): 227–37. http://dx.doi.org/10.1016/0021-9517(89)90313-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Puskas, Imre, Theo H. Fleisch, Jan B. Hall, Bernard L. Meyers, and Robert T. Roginski. "Metal-support interactions in precipitated, magnesium-promoted cobaltsilica catalysts." Journal of Catalysis 134, no. 2 (April 1992): 615–28. http://dx.doi.org/10.1016/0021-9517(92)90347-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Cargnello, M., P. Fornasiero, and R. J. Gorte. "Opportunities for Tailoring Catalytic Properties Through Metal-Support Interactions." Catalysis Letters 142, no. 9 (August 7, 2012): 1043–48. http://dx.doi.org/10.1007/s10562-012-0883-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Campisi, Sebastiano, Carine Chan-Thaw, and Alberto Villa. "Understanding Heteroatom-Mediated Metal–Support Interactions in Functionalized Carbons: A Perspective Review." Applied Sciences 8, no. 7 (July 17, 2018): 1159. http://dx.doi.org/10.3390/app8071159.

Full text
Abstract:
Carbon-based materials show unique chemicophysical properties, and they have been successfully used in many catalytic processes, including the production of chemicals and energy. The introduction of heteroatoms (N, B, P, S) alters the electronic properties, often increasing the reactivity of the surface of nanocarbons. The functional groups on the carbons have been reported to be effective for anchoring metal nanoparticles. Although the interaction between functional groups and metal has been studied by various characterization techniques, theoretical models, and catalytic results, the role and nature of heteroatoms is still an object of discussion. The aim of this review is to elucidate the metal–heteroatoms interaction, providing an overview of the main experimental and theoretical outcomes about heteroatom-mediated metal–support interactions. Selected studies showing the effect of heteroatom–metal interaction in the liquid-phase alcohol oxidation will be also presented.
APA, Harvard, Vancouver, ISO, and other styles
26

Luo, Zijie, Jia Wang, Wei Zhou, and Junsheng Li. "Catalyst-Support Interactions Promoted Acidic Electrochemical Oxygen Evolution Catalysis: A Mini Review." Molecules 28, no. 5 (February 28, 2023): 2262. http://dx.doi.org/10.3390/molecules28052262.

Full text
Abstract:
In the context of the growing human demand for green secondary energy sources, proton-exchange membrane water electrolysis (PEMWE) is necessary to meet the high-efficiency production of high-purity hydrogen required for proton-exchange membrane fuel cells (PEMFCs). The development of stable, efficient, and low-cost oxygen evolution reaction (OER) catalysts is key to promoting the large-scale application of hydrogen production by PEMWE. At present, precious metals remain irreplaceable in acidic OER catalysis, and loading the support body with precious metal components is undoubtedly an effective strategy to reduce costs. In this review, we will discuss the unique role of common catalyst-support interactions such as Metal-Support Interactions (MSIs), Strong Metal-Support Interactions (SMSIs), Strong Oxide-Support Interactions (SOSIs), and Electron-Metal-Support Interactions (EMSIs) in modulating catalyst structure and performance, thereby promoting the development of high-performance, high-stability, low-cost noble metal-based acidic OER catalysts.
APA, Harvard, Vancouver, ISO, and other styles
27

Gómez-Polo, C., A. Gil, S. A. Korili, J. I. Pérez-Landazabal, V. Recarte, R. Trujillano, and M. A. Vicente. "Magnetic Properties of Nickel and Cobalt Catalysts Supported on Nanoporous Oxides." Journal of Nanoscience and Nanotechnology 8, no. 6 (June 1, 2008): 2905–11. http://dx.doi.org/10.1166/jnn.2008.18317.

Full text
Abstract:
The aim of this work is to use magnetic measurements as a research tool in the study of possible metal-support interactions in nickel and cobalt nanoporous catalysts. Several physicochemical techniques, namely nitrogen adsorption, X-ray diffraction, temperature-programmed reduction and chemical analysis, were used to analyze the role of the preparation method and the nature of the support on the existence of such metal-support interactions and to relate them with the magnetic response of these nanoporous systems. The catalysts were prepared by incipient wetness impregnation and precipitation-deposition with two commercial oxides, γ-Al2O3 and SiO2, as supports. The magnetic behavior of the catalysts is drastically affected by the existence of interactions between the metal and the support during the preparation procedure. The samples with weak metal-support interactions have characteristic magnetic behavior of antiferromagnetic metal oxide nanoparticles, while the ones having strong interactions display spin-glass like behavior.
APA, Harvard, Vancouver, ISO, and other styles
28

Konsolakis, Michalis, and Zisis Ioakeimidis. "Surface/structure functionalization of copper-based catalysts by metal-support and/or metal–metal interactions." Applied Surface Science 320 (November 2014): 244–55. http://dx.doi.org/10.1016/j.apsusc.2014.08.114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ji, L., J. Lin, and H. C. Zeng. "Metal−Support Interactions in Co/Al2O3Catalysts: A Comparative Study on Reactivity of Support." Journal of Physical Chemistry B 104, no. 8 (March 2000): 1783–90. http://dx.doi.org/10.1021/jp993400l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Liu, Jingyue. "ChemInform Abstract: Advanced Electron Microscopy of Metal-Support Interactions in Supported Metal Catalysts." ChemInform 42, no. 41 (September 19, 2011): no. http://dx.doi.org/10.1002/chin.201141203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Mogorosi, Ramoshibidu P., Nico Fischer, Michael Claeys, and Eric van Steen. "Strong-metal–support interaction by molecular design: Fe–silicate interactions in Fischer–Tropsch catalysts." Journal of Catalysis 289 (May 2012): 140–50. http://dx.doi.org/10.1016/j.jcat.2012.02.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Zhang, Yunshang, Jin‐Xun Liu, Kun Qian, Aiping Jia, Dan Li, Lei Shi, Jun Hu, Junfa Zhu, and Weixin Huang. "Structure Sensitivity of Au‐TiO 2 Strong Metal–Support Interactions." Angewandte Chemie International Edition 60, no. 21 (April 16, 2021): 12074–81. http://dx.doi.org/10.1002/anie.202101928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Zhang, Yunshang, Jin‐Xun Liu, Kun Qian, Aiping Jia, Dan Li, Lei Shi, Jun Hu, Junfa Zhu, and Weixin Huang. "Structure Sensitivity of Au‐TiO 2 Strong Metal–Support Interactions." Angewandte Chemie 133, no. 21 (April 16, 2021): 12181–88. http://dx.doi.org/10.1002/ange.202101928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Vaarkamp, Marius, Jeff T. Miller, Frank S. Modica, and Dick C. Koningsberger. "The Influence of Metal-Support Interactions on the Whiteline Intensity." Japanese Journal of Applied Physics 32, S2 (January 1, 1993): 454. http://dx.doi.org/10.7567/jjaps.32s2.454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Shi, Qiaolan, Tianrong Yu, Renfei Wu, and Jian Liu. "Metal–Support Interactions of Single-Atom Catalysts for Biomedical Applications." ACS Applied Materials & Interfaces 13, no. 51 (December 16, 2021): 60815–36. http://dx.doi.org/10.1021/acsami.1c18797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Sault, Allen G., Charles H. F. Peden, and Elaine P. Boespflug. "Metal-Support Interactions in Hydrous Titanium Oxide-Supported Nickel Catalysts." Journal of Physical Chemistry 98, no. 6 (February 1994): 1652–62. http://dx.doi.org/10.1021/j100057a019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ahmadi, M., H. Mistry, and B. Roldan Cuenya. "Tailoring the Catalytic Properties of Metal Nanoparticles via Support Interactions." Journal of Physical Chemistry Letters 7, no. 17 (August 25, 2016): 3519–33. http://dx.doi.org/10.1021/acs.jpclett.6b01198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ozin, Geoffrey A., Francois Hugues, and Saba M. Mattar. "Atomic silver fluorescent probe of metal-support interactions in zeolites." Journal of Physical Chemistry 89, no. 2 (January 1985): 300–304. http://dx.doi.org/10.1021/j100248a025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Mullins, D. R., and K. Z. Zhang. "Metal–support interactions between Pt and thin film cerium oxide." Surface Science 513, no. 1 (July 2002): 163–73. http://dx.doi.org/10.1016/s0039-6028(02)01704-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Soria, J., M. T. Blasco, and J. C. Conesa. "Metal-support interactions in supported nickel catalysts: a FMR study." Surface Science Letters 251-252 (July 1991): A373. http://dx.doi.org/10.1016/0167-2584(91)91015-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

AKUBUIRO, E. "Dopant-induced metal-support interactions 1. Influence on chemisorptive behavior." Journal of Catalysis 103, no. 2 (February 1987): 320–33. http://dx.doi.org/10.1016/0021-9517(87)90124-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Soria, J., M. T. Blasco, and J. C. Conesa. "Metal-support interactions in supported nickel catalysts: a FMR study." Surface Science 251-252 (July 1991): 1018–22. http://dx.doi.org/10.1016/0039-6028(91)91143-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Cammarota, Ryan C., Laura J. Clouston, and Connie C. Lu. "Leveraging molecular metal–support interactions for H2 and N2 activation." Coordination Chemistry Reviews 334 (March 2017): 100–111. http://dx.doi.org/10.1016/j.ccr.2016.06.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Vayenas, C. G., and G. E. Pitselis. "Mathematical Modeling of Electrochemical Promotion and of Metal−Support Interactions." Industrial & Engineering Chemistry Research 40, no. 20 (October 2001): 4209–15. http://dx.doi.org/10.1021/ie010001f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Chen, Kaidong, Yining Fan, and Qijie Yan. "Metal–Support Interactions in Fe/ZrO2Catalysts for Hydrogenation of CO." Journal of Catalysis 167, no. 2 (April 1997): 573–75. http://dx.doi.org/10.1006/jcat.1997.1592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Vayenas, Costas G. "Promotion, Electrochemical Promotion and Metal–Support Interactions: Their Common Features." Catalysis Letters 143, no. 11 (October 22, 2013): 1085–97. http://dx.doi.org/10.1007/s10562-013-1128-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Tan, Kaiyang, Mudit Dixit, James Dean, and Giannis Mpourmpakis. "Predicting Metal–Support Interactions in Oxide-Supported Single-Atom Catalysts." Industrial & Engineering Chemistry Research 58, no. 44 (October 8, 2019): 20236–46. http://dx.doi.org/10.1021/acs.iecr.9b04068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Liu, Lichen, Chengyan Ge, Weixin Zou, Xianrui Gu, Fei Gao, and Lin Dong. "Crystal-plane-dependent metal–support interaction in Au/TiO2." Physical Chemistry Chemical Physics 17, no. 7 (2015): 5133–40. http://dx.doi.org/10.1039/c4cp05449k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Frey, H., A. Beck, X. Huang, J. A. van Bokhoven, and M. G. Willinger. "Dynamic interplay between metal nanoparticles and oxide support under redox conditions." Science 376, no. 6596 (May 27, 2022): 982–87. http://dx.doi.org/10.1126/science.abm3371.

Full text
Abstract:
The dynamic interactions between noble metal particles and reducible metal-oxide supports can depend on redox reactions with ambient gases. Transmission electron microscopy revealed that the strong metal-support interaction (SMSI)–induced encapsulation of platinum particles on titania observed under reducing conditions is lost once the system is exposed to a redox-reactive environment containing oxygen and hydrogen at a total pressure of ~1 bar. Destabilization of the metal–oxide interface and redox-mediated reconstructions of titania lead to particle dynamics and directed particle migration that depend on nanoparticle orientation. A static encapsulated SMSI state was reestablished when switching back to purely oxidizing conditions. This work highlights the difference between reactive and nonreactive states and demonstrates that manifestations of the metal-support interaction strongly depend on the chemical environment.
APA, Harvard, Vancouver, ISO, and other styles
50

Wang, Fei, Jianzhun Jiang, and Bin Wang. "Recent In Situ/Operando Spectroscopy Studies of Heterogeneous Catalysis with Reducible Metal Oxides as Supports." Catalysts 9, no. 5 (May 23, 2019): 477. http://dx.doi.org/10.3390/catal9050477.

Full text
Abstract:
For heterogeneous catalysis, the metal catalysts supported on reducible metal oxides, especially CeO2 and TiO2, have long been a research focus because of their excellent catalytic performance in a variety of catalytic reactions. Detailed understanding of the promotion effect of reducible metal oxides on catalytic reactions is beneficial to the rational design of new catalysts. The important catalytic roles of reducible metal oxides are attributed to their intimate interactions with the supported metals (e.g., strong metal-support interaction, electronic metal-support interaction) and unique support structures (e.g., oxygen vacancy, reversible valence change, surface hydroxyl). However, the structures of the catalysts and reaction mechanisms are strongly affected by environmental conditions. For this reason, in situ/operando spectroscopy studies under working conditions are necessary to obtain accurate information about the structure-activity relationship. In this review, the recent applications of the in situ/operando spectroscopy methodology on metal catalysts with reducible metal oxides as supports are summarized.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography