Academic literature on the topic 'Metal oxide'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Metal oxide.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Metal oxide"

1

Cha, Wu-Shin, Junsik Lee, Malkeshkumar Patel, Kibum Lee, and Joondong Kim. "Flexible and Transparent Heater with Oxide/Metal/Oxide Structure." Transactions of The Korean Institute of Electrical Engineers 72, no. 1 (January 31, 2023): 87–92. http://dx.doi.org/10.5370/kiee.2023.72.1.87.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kang, Kilmo, Ju-Hyung Yun, Yun Chang Park, and Joondong Kim. "Metal-Oxide-Semiconductor Photoelectric Devices." Journal of the Korean Institute of Electrical and Electronic Material Engineers 27, no. 5 (May 1, 2014): 276–81. http://dx.doi.org/10.4313/jkem.2014.27.5.276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shin, Hyeong-Won, Taek-Kyun Jung, Hyo-Soo Lee, and Seung-Boo Jung. "Peel strengths of the Composite Structure of Metal and Metal Oxide Laminate." Journal of the Microelectronics and Packaging Society 20, no. 4 (December 30, 2013): 13–16. http://dx.doi.org/10.6117/kmeps.2013.20.4.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tresback, Jason S., Alexander L. Vasiliev, and Nitin P. Padture. "Engineered metal–oxide–metal heterojunction nanowires." Journal of Materials Research 20, no. 10 (October 2005): 2613–17. http://dx.doi.org/10.1557/jmr.2005.0347.

Full text
Abstract:
Using a unique combination of template-based synthesis methods involving anodization, electroplating, and selective oxidation, we have synthesized engineered metal–oxide–metal (MOM) heterojunction nanowires in the Au–SnO2–Au and Au–NiO–Au systems for possible use in nanoelectronics. The template-based synthesis method used here is generic, and it has the potential to provide control over the structure and characteristics of the resulting MOM nanowires. By virtue of their heterojunction structure, MOM nanowires have the potential to overcome some of the drawbacks associated with all-oxide nanowire building blocks, and they present a rare opportunity to measure directly fundamental functional properties of nanoscale oxides.
APA, Harvard, Vancouver, ISO, and other styles
5

PLUMEJEAU, Sandrine, Johan Gilbert ALAUZUN, and Bruno BOURY. "Hybrid metal oxide@biopolymer materials precursors of metal oxides and metal oxide-carbon composites." Journal of the Ceramic Society of Japan 123, no. 1441 (2015): 695–708. http://dx.doi.org/10.2109/jcersj2.123.695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Majhi, Sanjit Manohar, Ali Mirzaei, Hyoun Woo Kim, and Sang Sub Kim. "Reduced Graphene Oxide (rGO)-Loaded Metal-Oxide Nanofiber Gas Sensors: An Overview." Sensors 21, no. 4 (February 14, 2021): 1352. http://dx.doi.org/10.3390/s21041352.

Full text
Abstract:
Reduced graphene oxide (rGO) is a reduced form of graphene oxide used extensively in gas sensing applications. On the other hand, in its pristine form, graphene has shortages and is generally utilized in combination with other metal oxides to improve gas sensing capabilities. There are different ways of adding rGO to different metal oxides with various morphologies. This study focuses on rGO-loaded metal oxide nanofiber (NF) synthesized using an electrospinning method. Different amounts of rGO were added to the metal oxide precursors, and after electrospinning, the gas response is enhanced through different sensing mechanisms. This review paper discusses rGO-loaded metal oxide NFs gas sensors.
APA, Harvard, Vancouver, ISO, and other styles
7

Zarzycki, Arkadiusz, Juliusz Chojenka, Marcin Perzanowski, and Marta Marszalek. "Electrical Transport and Magnetic Properties of Metal/Metal Oxide/Metal Junctions Based on Anodized Metal Oxides." Materials 14, no. 9 (May 4, 2021): 2390. http://dx.doi.org/10.3390/ma14092390.

Full text
Abstract:
In this paper, we describe magnetoelectric properties of metal/metal-oxide/metal junctions based on anodized metal oxides. Specifically, we use Ti and Fe metallic layers separated by the porous metal-oxides of iron or titanium formed by the anodization method. Thus, we prepare double junctions with at least one ferromagnetic layer and measure magnetoresistance, as well as their current-voltage and magnetic characteristics. We find that magnetoresistance depends on that junction composition and discuss the nature of differential resistance calculated from I-V characteristics. Our findings show that a top metallic layer and the interface between this layer and anodized oxide, where strong interatomic diffusion is expected, have the strongest influence on this observed behavior.
APA, Harvard, Vancouver, ISO, and other styles
8

Takagaki. "Rational Design of Metal Oxide Solid Acids for Sugar Conversion." Catalysts 9, no. 11 (October 29, 2019): 907. http://dx.doi.org/10.3390/catal9110907.

Full text
Abstract:
Aqueous-phase acid-catalyzed reactions are essential for the conversion of cellulose-based biomass into chemicals. Brønsted acid and Lewis acid play important roles for these reactions, including hydrolysis of saccharides, isomerization and epimerization of aldoses, conversion of d-glucose into 5-hydroxymethylfurfural, cyclodehydration of sugar alcohols and conversion of trioses into lactic acid. A variety of metal oxide solid acids has been developed and applied for the conversion of sugars so far. The catalytic activity is mainly dependent on the structures and types of solid acids. Amorphous metal oxides possess coordinatively unsaturated metal sites that function as Lewis acid sites while some crystal metal oxides have strong Brønsted acid sites. This review introduces several types of metal oxide solid acids, such as layered metal oxides, metal oxide nanosheet aggregates, mesoporous metal oxides, amorphous metal oxides and supported metal oxides for sugar conversions.
APA, Harvard, Vancouver, ISO, and other styles
9

Głab, StanisŁAw, Adam Hulanicki, Gunnar Edwall, and Folke Ingman. "Metal-Metal Oxide and Metal Oxide Electrodes as pH Sensors." Critical Reviews in Analytical Chemistry 21, no. 1 (August 1989): 29–47. http://dx.doi.org/10.1080/10408348908048815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Yangyang, Yunshang Zhang, Kun Qian, and Weixin Huang. "Metal–Support Interactions in Metal/Oxide Catalysts and Oxide–Metal Interactions in Oxide/Metal Inverse Catalysts." ACS Catalysis 12, no. 2 (January 6, 2022): 1268–87. http://dx.doi.org/10.1021/acscatal.1c04854.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Metal oxide"

1

Gillispie, Meagen Anne. "Metal oxide-based transparent conducting oxides." [Ames, Iowa : Iowa State University], 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Field, Marianne Alice Louise. "Transition metal oxides and oxide-halides." Thesis, University of Southampton, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Guo, Muyao, and 郭牧遥. "Metal oxide photocatalysis." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hub.hku.hk/bib/B50434457.

Full text
Abstract:
Photocatalysis has been attracting much research interest because of its wide applications in renewable energy and environmental remediation. Among the photocatalysts, metal oxide semiconductors are the best choice due to distinctive properties, durability and cost effectiveness. However, the mechanisms of photocatalysis are still not entirely clear and the photocatalytic activity of the metal oxide materials needs to be improved. Therefore, this thesis concentrates on the study of the photocatalytic mechanism and the factors affecting the photocatalytic activity. The photocatalysis of different commercial metal oxide nanoparticles has been studied. Different photocatalytic experiments have been designed to find out the mechanisms of photocatalysis. It is found that the dominant mechanism of photocatalysis is direct charge transfer between metal oxide and organic compounds. Reactive oxygen species, such as hydroxyl radicals also play a minor role in the photocatalysis. ZnO tetrapods were synthesized by evaporating Zn powder in the flow of Ar gas at high temperature in this study. They exhibit excellent photocatalytic activity. By the comparison between ZnO tetrapods and different ZnO nanoparticles, it is found that the photocatalytic activity of the metal oxide is strongly affected by the native defects, especially by the nonradiative defects. 1D TiO2 nanotubes and ZnO nanorods were synthesized by anodization and hydrothermal growth respectively. ZnO nanorods with alumina and titania shell were prepared by solution-based methods. These structures are interesting as supported catalysts, which is important for practical applications, since it enables simple removal of photocatalyst from treated water. The core shell structures are expected to improve the stability of ZnO. The results also imply that the photocatalytic avtivity of materials is affected by the native defects. Two different solution based methods hydrothermal growth and electrodeposition to grow CuxO layer were used. The hydrothermal grown CuxO exhibit excellent photocatalytic activity and good photocorrosion resistance. It was also found that the photocatalytic activity of the CuxO prepared by hydrothermal methods can be recovered by simple immersion of the sample into the precursor solution.
published_or_final_version
Physics
Master
Master of Philosophy
APA, Harvard, Vancouver, ISO, and other styles
4

Machin, Sophie Elizabeth. "Metal oxide nanowires." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Huichun. "Metal oxide-facilitated oxidation of antibacterial agents." Diss., Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/available/etd-07072004-152317/unrestricted/zhang%5Fhuichun%5F200407%5Fphd.pdf.

Full text
Abstract:
Thesis (Ph. D.)--School of Civil and Environmental Engineering, Georgia Institute of Technology, 2005. Directed by Ching-Hua Huang.
Wine, Paul, Committee Member ; Pavlostathis, Spyros, Committee Member ; Mulholland, James, Committee Member ; Yiacoumi, Sotira, Committee Member ; Huang, Ching-Hua, Committee Chair. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
6

Dodd, Linzi Emma. "Fabrication optimisation of metal-oxide-metal diodes." Thesis, Durham University, 2014. http://etheses.dur.ac.uk/9474/.

Full text
Abstract:
This thesis is based on the design, research and development of devices required to successfully recover waste heat and convert it into electrical power through the use of Microsystems Technology. This takes place using optical nano-antennas, in the same way a radio antenna picks up a radio station. The main aim of this project is the rectification of this signal into a useful DC voltage. Here we have used high frequency metal-oxide-metal (MOM) diodes, which involve the use of two dissimilar metals separated by a native oxide. In order to make successful MOM diodes, the following must be considered: maximise the work function difference between the metals for asymmetry in I-V characteristics, produce a uniform oxide layer that is sufficiently thin (a few nm) for electron tunnelling to occur and reduce the diode size to sub-micron dimensions to increase the cut-off frequency. Currently the diodes consist of titanium, titanium oxide and platinum, which provides a high enough work function difference that the I-V characteristics show significant asymmetry and figure of merit values are among the best published. It has been found, using ToFSIMS and TEM analysis of the oxide, that the thickness of the oxide can be controlled between 1 nm and 7 nm using RIE etching and subsequent oxygen plasma regrowth. Different oxides have been fabricated with different stoichiometries depending on the process used. Furnace oxidation grows a complex oxide in the range 6.9 to 7.6 nm thick. By contrast a more simple oxide can be produced using a controlled reactive ion etch and subsequent plasma oxidation, with thicknesses in the range 1 to 6 nm. The final significant issue involves the cross-sectional area of the diodes, which also determines their cut-off frequency. Extrapolation of existing diode results suggests that, if made sufficiently small, they would function at high enough frequencies for rectification of radiation in the terahertz regime. Furthermore, phase shift lithography has been used to demonstrate 200 to 400nm lines in diode features, with alternative possible high scale processes discussed for future fabrication.
APA, Harvard, Vancouver, ISO, and other styles
7

Sayle, D. C. "Computer simulation of heteroepitaxial oxide/oxide and metal/oxide interfaces." Thesis, University of Bath, 1992. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nguyen, Thanh Dinh. "Metal oxide, Mixed oxide, and hybrid metal@oxide nanocrystals: size-and shape-controlled synthesis and catalytic applications." Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/28408/28408.pdf.

Full text
Abstract:
Le contrôle de la taille et de la morphologie de nanocristaux d’oxydes métalliques simples, d’oxydes mixtes et d’oxydes métalliques hybrides est un sujet de grand intérêt. La dépendance de leur propriétés physio-chimiques avec leurs taille et morphologies, génèrent une variété de leur applications dans plusieurs domaines. Cependant, le dévellopement des nanocristaux en controllant la taille, la forme, l’assemblage et l’homogénéité de la composition chimique pour l’optimisation de propriété spécifiques demandent la combinaison de nombreux parametres de synthèse. Les trois différentes approches ont été développées dans le cadre de la thèse pour la synthèse d’une variété de nouveaux nanomatériaux d’oxydes simples, d’oxydes mixtes et d’oxydes métalliques hybrides dont la taille et la forme ont été bien controllées. Ces méthodes ont été nommées comme des méthodes solvo-hydrothermiques assistées par des molécules structurantes à l’état monophasique (eau ou eau/éthanol) et à l’état biphasique (eau-toluène). Nos approches de synthèse ont permi de préparer des nanocristaux des oxydes de métaux de transition (V, Cr, Mn, Co, Ni, In), et des terres rares (Sm, Ce, La, Gd, Er, Ti, Y, Zr), ainsi que des oxydes métalliques mixtes (tungstate, orthovanadate, molybdate). Ces nanomatériaux sont sous forme colloïdale mono-dispersée qui présente une cristallinité élevée. La taille et la forme de tels nanocristaux peuvent facilement être contrôlées par une simple variation des paramètres de synthèse telle que la concentration de précurseurs, la nature de la molécule structurante, la température et le temps de réaction. A large variété de techniques a été utilisée pour la caracterisation de ces nanomatériaux telles que TEM/HRTEM, SEM, SAED, EDS, XRD, XPS, FTIR, TGA-DTA, UV-vis, photoluminescence, BET. Les propriétés catalytiques de ces matériaux ont aussi été étudiées. Dans ce travail, le contrôle de la cinétique de croissance des nucléides ainsi que le mécanisme gouvernant la forme qui conduit à la taille et la morphologie finale du nanocrystal ont été proposé. L’effet de la taille et de la forme des nanoparticules d’oxyde métallique hybrides sur les propriétés catalytiques pour la réaction d’oxydation du CO et la photo-dégradation du bleue de méthylène a été aussi étudié. Car les catalyseurs existant actuellement à base de métaux nobles sont très couteux et en plus très sensibles à l’empoisonnement par le gas H2S ou les émissions polluantes de SOx. L’activité catalytique des nanocristaux d’oxydes métallique hybrides Cu@CeO2 de formes cubiques dans l’oxydation de CO et de Ag@TiO2 de formes de ceinture dans la photo dégradation du bleue de méthylène ont montré la dépendance de la taille et la forme des nanocristaux avec leur propriétés catalytiques.
The ability to finely control the size and shape of metal oxide, mixed metal oxide, hybrid metal/oxide nanocrystals has become an area of great interest, as many of their physical and chemical properties are highly dependent on morphology, and the more technological applications will be possible for their use. Large-scale synthesis of such high-quality nanocrystals is the first and key step to this area of science. A tremendous effort has recently been spent in attempt to control these novel properties through manipulation of size, shape, structure, and composition. Flexibly nanocrystal size/shape control for both monodisperse single and multiple-oxide nanomaterial systems, however, remains largely empirical and still presents a great challenge. In this dissertation, new synthetic approaches have been developed and described for the synthetic design of a series of colloidal monodisperse metal oxide, mixed metal oxide, hybrid metal-oxide nanocrystals with controlled size and shape. These materials were generally characterized using TEM/HRTEM, SEM, SAED, EDS, XRD, XPS, FTIR, TGA-DTA, UV-vis, photoluminescence, BET techniques. Effect of the size and shape of these obtained hybrid metal-oxide nanocrystals on the catalytic properties is illustrated. We have developed three different new surfactant-assistant pathways for the large-scale synthesis of three types of nanomaterials including metal oxide, mixed metal oxide, hybrid noble-metal-oxide colloidal monodisperse nanocrystals. Namely, the solvo-hydrothermal surfactant-assisted methods in one-phase (water or water/ethanol) and two-phase (water-toluene) systems were used for the synthesis of metal oxide (transition metal-V, Cr, Mn, Co, Ni, In and rare earth-Sm, Ce, La, Gd, Er, Ti, Y, Zr) and mixed metal oxide (tungstate, orthovanadate, molybdate). The seed-media growth with the assistant of bifunctional surfactant was used for the synthesis of hybrid noble metal@oxide (Ag@TiO2, (Cu or Ag)@CeO2, Au/tungstate, Ag/molybdate, etc.) nanocrystals. A significant feature of our synthetic approaches was pointed out that most resulting nanocrystal products are monodisperse, high crystallinity, uniform shape, and narrow distribution. The size and shape of such nanocrystals can be controlled easily by simple tuning the reaction parameters such as the concentration of precursors and surfactants, the nature of surfactant, the temperature and time of synthetic reaction. The prepared nanocrystals with the functional surface were used as the building blocks for the self-assembly into hierarchical mesocrystal microspheres. The effective ways how to control the growth kinetics of the nuclei and the shape-guiding mechanisms leading to the manipulation of morphology of final products were proposed. Our current approaches have several conveniences including used nontoxic and inexpensive reagents (most using inorganic metal salts as starting precursors instead of expensive and toxic metallic alkoxides or organometallics), relatively mild conditions, high-yield, and large-scale production; in some causes, water or ethanol was used as environmentally benign reaction solvent. Catalytic activity and selectivity are governed by the nature of the catalyst surface, making shaped nanocrystals ideal substrates for understanding the influence of surface structure on heterogeneous catalysis at the nanoscale. Finally, this work was concentrated on demonstration of heterogeneous catalytic activity of hybrid metal-oxide nanomaterials (Cu@CeO2, Ag@TiO2) as a typical example. We synthesized the high-crystalline titanium oxide and cerium oxide nanocrystals with control over their shape and surface chemistry in high yield via the aqueous surfactant-assist method. The novel hybrid metal-oxide nanocrystals were produced by the depositing noble metal ion (Cu, Ag, Au) precursors on the pre-synthesized oxide seeds via seed-mediated growth. The catalytic activity of these metal-oxide nanohybrids of Cu@CeO2 nanocubes for CO oxidation conversion and Ag@TiO2 nanobelts for Methylene Blue photodegradation with size/shape-dependent properties were verified.
APA, Harvard, Vancouver, ISO, and other styles
9

Nguyen, Thanh-Dinh. "Metal oxide, Mixed oxide, and hybrid metal@oxide nanocrystals : size-and shape-controlled synthesis and catalytic applications." Doctoral thesis, Université Laval, 2011. http://hdl.handle.net/20.500.11794/22994.

Full text
Abstract:
Le contrôle de la taille et de la morphologie de nanocristaux d’oxydes métalliques simples, d’oxydes mixtes et d’oxydes métalliques hybrides est un sujet de grand intérêt. La dépendance de leur propriétés physio-chimiques avec leurs taille et morphologies, génèrent une variété de leur applications dans plusieurs domaines. Cependant, le dévellopement des nanocristaux en controllant la taille, la forme, l’assemblage et l’homogénéité de la composition chimique pour l’optimisation de propriété spécifiques demandent la combinaison de nombreux parametres de synthèse. Les trois différentes approches ont été développées dans le cadre de la thèse pour la synthèse d’une variété de nouveaux nanomatériaux d’oxydes simples, d’oxydes mixtes et d’oxydes métalliques hybrides dont la taille et la forme ont été bien controllées. Ces méthodes ont été nommées comme des méthodes solvo-hydrothermiques assistées par des molécules structurantes à l’état monophasique (eau ou eau/éthanol) et à l’état biphasique (eau-toluène). Nos approches de synthèse ont permi de préparer des nanocristaux des oxydes de métaux de transition (V, Cr, Mn, Co, Ni, In), et des terres rares (Sm, Ce, La, Gd, Er, Ti, Y, Zr), ainsi que des oxydes métalliques mixtes (tungstate, orthovanadate, molybdate). Ces nanomatériaux sont sous forme colloïdale mono-dispersée qui présente une cristallinité élevée. La taille et la forme de tels nanocristaux peuvent facilement être contrôlées par une simple variation des paramètres de synthèse telle que la concentration de précurseurs, la nature de la molécule structurante, la température et le temps de réaction. A large variété de techniques a été utilisée pour la caracterisation de ces nanomatériaux telles que TEM/HRTEM, SEM, SAED, EDS, XRD, XPS, FTIR, TGA-DTA, UV-vis, photoluminescence, BET. Les propriétés catalytiques de ces matériaux ont aussi été étudiées. Dans ce travail, le contrôle de la cinétique de croissance des nucléides ainsi que le mécanisme gouvernant la forme qui conduit à la taille et la morphologie finale du nanocrystal ont été proposé. L’effet de la taille et de la forme des nanoparticules d’oxyde métallique hybrides sur les propriétés catalytiques pour la réaction d’oxydation du CO et la photo-dégradation du bleue de méthylène a été aussi étudié. Car les catalyseurs existant actuellement à base de métaux nobles sont très couteux et en plus très sensibles à l’empoisonnement par le gas H2S ou les émissions polluantes de SOx. L’activité catalytique des nanocristaux d’oxydes métallique hybrides Cu@CeO2 de formes cubiques dans l’oxydation de CO et de Ag@TiO2 de formes de ceinture dans la photo dégradation du bleue de méthylène ont montré la dépendance de la taille et la forme des nanocristaux avec leur propriétés catalytiques.
The ability to finely control the size and shape of metal oxide, mixed metal oxide, hybrid metal/oxide nanocrystals has become an area of great interest, as many of their physical and chemical properties are highly dependent on morphology, and the more technological applications will be possible for their use. Large-scale synthesis of such high-quality nanocrystals is the first and key step to this area of science. A tremendous effort has recently been spent in attempt to control these novel properties through manipulation of size, shape, structure, and composition. Flexibly nanocrystal size/shape control for both monodisperse single and multiple-oxide nanomaterial systems, however, remains largely empirical and still presents a great challenge. In this dissertation, new synthetic approaches have been developed and described for the synthetic design of a series of colloidal monodisperse metal oxide, mixed metal oxide, hybrid metal-oxide nanocrystals with controlled size and shape. These materials were generally characterized using TEM/HRTEM, SEM, SAED, EDS, XRD, XPS, FTIR, TGA-DTA, UV-vis, photoluminescence, BET techniques. Effect of the size and shape of these obtained hybrid metal-oxide nanocrystals on the catalytic properties is illustrated. We have developed three different new surfactant-assistant pathways for the large-scale synthesis of three types of nanomaterials including metal oxide, mixed metal oxide, hybrid noble-metal-oxide colloidal monodisperse nanocrystals. Namely, the solvo-hydrothermal surfactant-assisted methods in one-phase (water or water/ethanol) and two-phase (water-toluene) systems were used for the synthesis of metal oxide (transition metal-V, Cr, Mn, Co, Ni, In and rare earth-Sm, Ce, La, Gd, Er, Ti, Y, Zr) and mixed metal oxide (tungstate, orthovanadate, molybdate). The seed-media growth with the assistant of bifunctional surfactant was used for the synthesis of hybrid noble metal@oxide (Ag@TiO2, (Cu or Ag)@CeO2, Au/tungstate, Ag/molybdate, etc.) nanocrystals. A significant feature of our synthetic approaches was pointed out that most resulting nanocrystal products are monodisperse, high crystallinity, uniform shape, and narrow distribution. The size and shape of such nanocrystals can be controlled easily by simple tuning the reaction parameters such as the concentration of precursors and surfactants, the nature of surfactant, the temperature and time of synthetic reaction. The prepared nanocrystals with the functional surface were used as the building blocks for the self-assembly into hierarchical mesocrystal microspheres. The effective ways how to control the growth kinetics of the nuclei and the shape-guiding mechanisms leading to the manipulation of morphology of final products were proposed. Our current approaches have several conveniences including used nontoxic and inexpensive reagents (most using inorganic metal salts as starting precursors instead of expensive and toxic metallic alkoxides or organometallics), relatively mild conditions, high-yield, and large-scale production; in some causes, water or ethanol was used as environmentally benign reaction solvent. Catalytic activity and selectivity are governed by the nature of the catalyst surface, making shaped nanocrystals ideal substrates for understanding the influence of surface structure on heterogeneous catalysis at the nanoscale. Finally, this work was concentrated on demonstration of heterogeneous catalytic activity of hybrid metal-oxide nanomaterials (Cu@CeO2, Ag@TiO2) as a typical example. We synthesized the high-crystalline titanium oxide and cerium oxide nanocrystals with control over their shape and surface chemistry in high yield via the aqueous surfactant-assist method. The novel hybrid metal-oxide nanocrystals were produced by the depositing noble metal ion (Cu, Ag, Au) precursors on the pre-synthesized oxide seeds via seed-mediated growth. The catalytic activity of these metal-oxide nanohybrids of Cu@CeO2 nanocubes for CO oxidation conversion and Ag@TiO2 nanobelts for Methylene Blue photodegradation with size/shape-dependent properties were verified.
APA, Harvard, Vancouver, ISO, and other styles
10

Eskhult, Jonas. "Electrochemical Deposition of Nanostructured Metal/Metal-Oxide Coatings." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8186.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Metal oxide"

1

He, Jinliang. Metal Oxide Varistors. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527684038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bachheti, Rakesh Kumar, Archana Bachheti, and Azamal Husen, eds. Metal and Metal-Oxide Based Nanomaterials. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-7673-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Surface Chemistry Studies of Transition Metal Oxides: Titanium Oxide and Iron Oxide. [New York, N.Y.?]: [publisher not identified], 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wu, Junqiao, Jinbo Cao, Wei-Qiang Han, Anderson Janotti, and Ho-Cheol Kim, eds. Functional Metal Oxide Nanostructures. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-9931-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ueda, Wataru, ed. Crystalline Metal Oxide Catalysts. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5013-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nicollian, E. H. MOS (metal oxide semiconductor) physics and technology. Hoboken, N.J: Wiley-Interscience, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Metal oxide chemistry and synthesis: From solution to oxide. Chichester: John Wiley, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ramanathan, Subramaniam. Electrochemical studies on metal-metal oxide pH sensors. Salford: University of Salford, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hirota, T. Method to prepare oxide films. Washington, D.C: National Aeronautics and Space Administration, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bentarzi, Hamid. Transport in Metal-Oxide-Semiconductor Structures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16304-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Metal oxide"

1

Chadwick, Alan V., and Shelly L. P. Savin. "Metal Oxide Nanoparticles." In Low-Dimensional Solids, 1–76. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470661406.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gooch, Jan W. "Metal Oxide Catalysts." In Encyclopedic Dictionary of Polymers, 454. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_7357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Weik, Martin H. "metal-oxide semiconductor." In Computer Science and Communications Dictionary, 1009. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_11446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gates, B. C. "Metal Oxide Supports." In Inorganic Reactions and Methods, 40–41. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145319.ch19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Biwu, and Juewen Liu. "Metal Oxide Nanozymes." In Nanozymes, 29–46. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003109228-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hussain, Aftab M. "Metal Oxide Semiconductors." In Introduction to Flexible Electronics, 81–94. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003010715-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dhakar, Nilesh K. "Metal and Metal Oxide Nanosponges." In Nanosponges, 143–71. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527341009.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yao, Yao, Robert F. Davis, and Lisa M. Porter. "Metal Organic Chemical Vapor Deposition 2." In Gallium Oxide, 171–84. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37153-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Weller, Mark T. "Transition metal oxides." In Inorganic Materials Chemistry. Oxford University Press, 1995. http://dx.doi.org/10.1093/hesc/9780198557982.003.0004.

Full text
Abstract:
This chapter evaluates transition metal oxides, reviewing binary transition metal oxide structures. The structure of many binary oxides can be predicted on the basis of the relative sizes of the metal and oxide ions and filling of holes in a close peaked oxide lattice. Such predictions of structure are more difficult for ternary phases. The combination of two or more metals in an oxide generates a wealth of structural possibilities dependent on the relative sizes of the two metal ions and the oxide ion. In addition, the stoichiometry of the ternary oxide may be changed by varying the proportions of the two component oxides and, for transition and lanthanide elements, the oxidation state. The chapter then looks at the perovskite structure, insertion compounds, lithium niobate, the spinel structure, and the K2NiF4 structure.
APA, Harvard, Vancouver, ISO, and other styles
10

Dey, Kajal. "Metal Oxide Nanomaterials." In Oxide Nanostructures, 1–98. Pan Stanford Publishing, 2014. http://dx.doi.org/10.1201/b15633-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Metal oxide"

1

PATRONOV, Georgi, Irena KOSTOVA, and Dan TONCHEV. "RARE EARTH METALS IN ZINC OXIDE RICH BOROPHOSPHATE GLASSES." In METAL 2019. TANGER Ltd., 2019. http://dx.doi.org/10.37904/metal.2019.941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kwon, Min-Suk. "Theoretical Investigation of CMOS-Compatible Metal-Oxide-Silicon-Oxide-Metal Waveguides." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/iprsn.2011.imb4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

KLIMECKA-TATAR, Dorota. "QUality CONTROL BASE ON surface roughness CHARACTERISTIC – OXIDE layer on PURE titanium." In METAL 2020. TANGER Ltd., 2020. http://dx.doi.org/10.37904/metal.2020.3659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ko, Seung Hwan, and Junhyuk Bang. "Laser based metal/metal-oxide nanomaterial processing." In Laser-based Micro- and Nanoprocessing XVI, edited by Rainer Kling and Akira Watanabe. SPIE, 2022. http://dx.doi.org/10.1117/12.2607922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

GĄDEK-MOSZCZAK, Aneta, and Joanna KORZEKWA. "APPLICATION OF THE IMAGE ANALYSIS METHODS FOR QUANTITATIVE DESCRIPTION OF THE AL2O3 OXIDE LAYERS." In METAL 2019. TANGER Ltd., 2019. http://dx.doi.org/10.37904/metal.2019.801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

KUNČICKÁ, Lenka, Marek BENČ, Petr KAČOR, and Martin MAREK. "effect of oxidE dispersion on ELECTRic CONDUCTIVITY of rotary swaged powder-based copper composites." In METAL 2023. TANGER Ltd., 2023. http://dx.doi.org/10.37904/metal.2023.4636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Protsenko, Victor, Yulia Bondarenko, Dmytro Kruglyak, Aleksei Kirichenko, and Oksana Vodennikova. "PRODUCTION OF TITANIUM-BASED ALLOYS BY METALLOTHERMIC REDUCTION OF OXIDE TITANIUM-CONTAINING RAW MATERIALS." In METAL 2021. TANGER Ltd., 2021. http://dx.doi.org/10.37904/metal.2021.4261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

MIGAS, Damian, Grzegorz MOSKAL, Bartosz CHMIELA, and Hanna MYALSKA-GŁOWACKA. "Microstructural characterization of oxide scales formed on γ–γ′ Co-Al-W-based superalloys." In METAL 2022. TANGER Ltd., 2022. http://dx.doi.org/10.37904/metal.2022.4506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Perkins, Joshua, and Behrad Gholipour. "Color tunable bilayer refractory metal-oxide meta-coatings." In Metamaterials, Metadevices, and Metasystems 2020, edited by Nader Engheta, Mikhail A. Noginov, and Nikolay I. Zheludev. SPIE, 2020. http://dx.doi.org/10.1117/12.2569042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chuang, Ricky W., Wei-Che Chuang, and Cheng-Liang Huang. "Bismuth ferrite (BiFeO3)-based metal-semiconductor-metal photodetectors realized by the design of the experiments approach." In Oxide-based Materials and Devices XV, edited by Ferechteh H. Teherani and David J. Rogers. SPIE, 2024. http://dx.doi.org/10.1117/12.3005156.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Metal oxide"

1

Vohs, John M. Surface Science Studies of Nano-crystalline Metal Oxide and Metal-Metal Oxide Core-Shell Catalysts. Office of Scientific and Technical Information (OSTI), April 2018. http://dx.doi.org/10.2172/1430658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lad, R. J. Structure, adhesion, and stability of metal/oxide and oxide/oxide interfaces. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/6335383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lad, R. J. Structure, adhesion, and stability of metal/oxide and oxide/oxide interfaces. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/6895283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lad, R. J. Structure, adhesion, and stability of metal/oxide and oxide/oxide interfaces. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5766870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Valone, Steven M., Michael I. Baskes, Jonathan R. Allen, David H. Dunlap, and Susan R. Atlas. CMIME Update on Metal-Metal Oxide Atomistic Models. Office of Scientific and Technical Information (OSTI), May 2013. http://dx.doi.org/10.2172/1082229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Valone, Steven M., Michael I. Baskes, Joshua Gibson, Jonathan R. Allen, David H. Dunlap, and Susan R. Atlas. CMIME Update on Metal-Metal Oxide Atomistic Models. Office of Scientific and Technical Information (OSTI), April 2013. http://dx.doi.org/10.2172/1073728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dosch, R., H. Stephens, F. Stohl, B. Bunker, and C. Peden. Hydrous metal oxide-supported catalysts. Office of Scientific and Technical Information (OSTI), February 1990. http://dx.doi.org/10.2172/7015232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dr. Ramana Reddy. Reduction of Metal Oxide to Metal using Ionic Liquids. Office of Scientific and Technical Information (OSTI), April 2012. http://dx.doi.org/10.2172/1056478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Egami, Takeshi, and John M. Vohs. Utilizing metal-oxide and oxide-oxide interactions for improved automotive emissions control catalysts. Final report. Office of Scientific and Technical Information (OSTI), February 2003. http://dx.doi.org/10.2172/810694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Batzill, Matthias. Photocatalysis of Modified Transition Metal Oxide Surfaces. Office of Scientific and Technical Information (OSTI), February 2018. http://dx.doi.org/10.2172/1423046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography