Academic literature on the topic 'Metal-metal charge transfer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Metal-metal charge transfer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Metal-metal charge transfer"
Lind, Thomas, and Hermann Bank. "Effect of Ligand Metal Charge Transfer and Intravalence Charge Transfer Bands on the Colour of Grossular Garnet." Neues Jahrbuch für Mineralogie - Monatshefte 1997, no. 1 (March 26, 1997): 1–14. http://dx.doi.org/10.1127/njmm/1997/1997/1.
Full textLabadz, A. F., and J. Lowell. "Charge transfer across metal-SiO2interfaces." Journal of Physics D: Applied Physics 24, no. 8 (August 14, 1991): 1416–21. http://dx.doi.org/10.1088/0022-3727/24/8/028.
Full textLachinov, A. N., T. G. Zagurenko, V. M. Kornilov, A. I. Fokin, I. V. Aleksandrov, and R. Z. Valiev. "Charge transfer in a metal-polymer-nanocrystalline metal system." Physics of the Solid State 42, no. 10 (October 2000): 1935–41. http://dx.doi.org/10.1134/1.1318890.
Full textAkande, A. R., and J. Lowell. "Charge transfer in metal/polymer contacts." Journal of Physics D: Applied Physics 20, no. 5 (May 14, 1987): 565–78. http://dx.doi.org/10.1088/0022-3727/20/5/002.
Full textLiu, Tao, Yan-Juan Zhang, Shinji Kanegawa, and Osamu Sato. "Photoinduced Metal-to-Metal Charge Transfer toward Single-Chain Magnet." Journal of the American Chemical Society 132, no. 24 (June 23, 2010): 8250–51. http://dx.doi.org/10.1021/ja1027953.
Full textZhao, Jianjun, Matthias Wasem, Christopher R. Bradbury, and David J. Fermín. "Charge Transfer across Self-Assembled Nanoscale Metal−Insulator−Metal Heterostructures." Journal of Physical Chemistry C 112, no. 18 (April 15, 2008): 7284–89. http://dx.doi.org/10.1021/jp7101644.
Full textGlass, Elliot N., John Fielden, Zhuangqun Huang, Xu Xiang, Djamaladdin G. Musaev, Tianquan Lian, and Craig L. Hill. "Transition Metal Substitution Effects on Metal-to-Polyoxometalate Charge Transfer." Inorganic Chemistry 55, no. 9 (April 15, 2016): 4308–19. http://dx.doi.org/10.1021/acs.inorgchem.6b00060.
Full textChisholm, Malcolm H. "Charge distribution in metal to ligand charge transfer states of quadruply bonded metal complexes." Coordination Chemistry Reviews 282-283 (January 2015): 60–65. http://dx.doi.org/10.1016/j.ccr.2014.03.034.
Full textJiang, Wenjing, Chengqi Jiao, Yinshan Meng, Liang Zhao, Qiang Liu, and Tao Liu. "Switching single chain magnet behaviorviaphotoinduced bidirectional metal-to-metal charge transfer." Chemical Science 9, no. 3 (2018): 617–22. http://dx.doi.org/10.1039/c7sc03401f.
Full textRogers, David M., and J. Olof Johansson. "Metal-to-metal charge-transfer transitions in Prussian blue hexacyanochromate analogues." Materials Science and Engineering: B 227 (January 2018): 28–38. http://dx.doi.org/10.1016/j.mseb.2017.10.003.
Full textDissertations / Theses on the topic "Metal-metal charge transfer"
Schirra, Laura Kristy. "Charge Transfer at Metal Oxide/Organic Interfaces." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/217090.
Full textGregory, David. "Charge transfer studies of alkali-metal/semiconductor interfaces." Thesis, University of Liverpool, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240051.
Full textSiles, P. F., T. Hahn, G. Salvan, M. Knupfer, F. Zhu, D. R. T. Zahn, and O. G. Schmidt. "Tunable charge transfer properties in metal-phthalocyanine heterojunctions." Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-219903.
Full textDieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Rusu, Paul Constantin. "Charge transfer and dipole formation at metal-organic interfaces." Enschede : University of Twente [Host], 2007. http://doc.utwente.nl/58034.
Full textDing, Bowen. "Localised Charge Transfer in Metal-Organic Frameworks for Catalysis." Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/19852.
Full textNewton, Angus William. "Charge transfer and disorder broadening in disordered transition metal alloys." Thesis, University of Liverpool, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343931.
Full textCai, Meng. "Investigation of Charge Transfer in Metal-Organic Frameworks for Electrochemical Applications." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/97400.
Full textDoctor of Philosophy
The increasing demand for clean and efficient energy has triggered a great deal of research interest in developing novel energy conversion and storage technologies. In particular, electrochemical (EC) systems including supercapacitors, Lithium-ion batteries, artificial photosynthetic system, fuel cells, etc. have drawn significant attention. The key component in high-performance EC energy conversion and storage devices is the functional electrode materials. Three-dimensional (3D) porous nanostructures have been widely applied as advanced electrode materials due to their high surface area that enables more liquid/solid interfacial interactions, and pores/channels that allows efficient mass diffusion and transport. Metal-organic frameworks (MOFs), made of organic ligands bridged by inorganic nodes, are a novel kind of porous materials with extraordinarily high surface area and permanent porosity. As a result, there is great potential in developing MOF-based electrode materials for EC applications. As the name itself suggests, EC systems rely on electrochemical reactions that involve transfer of charges (i.e. electrons and ions). Therefore, efficient charge transfer is vital for achieving high performance. While MOFs used for gas separation and storage have been reported, their electrochemical applications are still in early stages. The fundamental understanding of charge transfer in MOFs is in its infancy. As a result, there is an urgent demand for understanding the nature of charge transfer in MOFs. In this dissertation, we investigated the mechanism of charge transfer by independent quantification of electron and ion transfer rate constants. With a better understanding in hand, we also explored two electrochemical applications in MOFs, electrocatalysis and electrogenerated chemiluminescence.
唐素明 and So-ming Glenna Tong. "Theoretical studies of transition metal containing diatomics and DNA electron transfer." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31244828.
Full textForker, Roman. "Electronic Coupling Effects and Charge Transfer between Organic Molecules and Metal Surfaces." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-26163.
Full textZur Analyse der Struktur-Eigenschafts-Beziehungen dünner, epitaktischer Molekülfilme wird in situ differentielle Reflexionsspektroskopie (DRS) als Variante der optischen Absorptionsspektroskopie verwendet. Klare Zusammenhänge zwischen den Spektren und der unterschiedlich starken Kopplung zum jeweiligen Substrat werden gefunden. Während man breite und beinahe unstrukturierte Spektren für eine Quaterrylen (QT) Monolage auf Au(111) erhält, ist die spektrale Form von auf Graphit abgeschiedenem QT ähnlich der isolierter Moleküle. Durch Einfügen einer atomar dünnen organischen Zwischenschicht bestehend aus Hexa-peri-hexabenzocoronen (HBC) mit einem deutlich unterschiedlichen elektronischen Verhalten gelingt sogar eine effiziente elektronische Entkopplung vom darunter liegenden Au(111). Diese Ergebnisse werden durch systematische Variation der Metallsubstrate (Au, Ag und Al), welche von inert bis sehr reaktiv reichen, untermauert. Zu diesem Zweck wird 3,4,9,10-Perylentetracarbonsäuredianhydrid (PTCDA) gewählt, um Vergleichbarkeit der molekularen Filmstrukturen zu gewährleisten, und weil dessen elektronische Anordnung auf verschiedenen Metalloberflächen bereits eingehend untersucht worden ist. Wir weisen ionisiertes PTCDA an einigen dieser Grenzflächen nach und schlagen vor, dass der Ladungsübergang mit der elektronischen Niveauanpassung zusammenhängt, welche mit der Ausbildung von Grenzflächendipolen auf den entsprechenden Metallen einhergeht
Chun, Young Tea. "Charge transfer characteristic of zinc oxide nanowire devices and their applications." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708978.
Full textBooks on the topic "Metal-metal charge transfer"
Ardelean, Jenny V. Optical Characterization of Charge Transfer Excitons in Transition Metal Dichalcogenide Heterostructures. [New York, N.Y.?]: [publisher not identified], 2019.
Find full textKrumbein, Ulrich. Simulation of carrier generation in advanced silicon devices. Konstanz: Hartung-Gorre, 1996.
Find full textAnderson, Kim A. Kinetics of outer-sphere electron transfer reactions in non-aqueous solvents. 1989.
Find full textGribble, Jacquelin D. Kinetics of outer-sphere electron transfer reactions in non-aqueous solutions. 1989.
Find full textLaunay, Jean-Pierre, and Michel Verdaguer. The excited electron: photophysical properties. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814597.003.0004.
Full textHuster, Carl R. A parallel/vector Monte Carlo MESFET model for shared memory machines. 1992.
Find full textBook chapters on the topic "Metal-metal charge transfer"
Stufkens, D. J., A. Oskam, and M. W. Kokkes. "Metal-Ligand Charge Transfer Photochemistry." In ACS Symposium Series, 66–84. Washington, DC: American Chemical Society, 1986. http://dx.doi.org/10.1021/bk-1986-0307.ch006.
Full textFialko, N. S., and V. D. Lakhno. "Charge Transfer in DNA-Metal-Ligand Complexes. Polynucleotides." In Metal-Ligand Interactions, 453–59. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0191-5_20.
Full textLakhno, V. D. "Charge Transfer in DNA-Metal-Ligand Complexes. Oligonucleotides." In Metal-Ligand Interactions, 571–84. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0191-5_24.
Full textKaim, W., F. M. Hornung, R. Schäfer, J. Fiedler, M. Krejcik, and S. Zališ. "Charge Transfer Phenomena in Transition Metal Sulphur Chemistry." In Transition Metal Sulphides, 37–55. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-3577-3_2.
Full textLuo, Zhixun, and Shiv N. Khanna. "Charge Transfer and the Harpoon Mechanism." In Metal Clusters and Their Reactivity, 193–213. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9704-6_12.
Full textVogler, A., and H. Kunkely. "Charge Transfer Excitation of Coordination Compounds. Generation of Reactive Intermediates." In Catalysis by Metal Complexes, 71–111. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-2626-9_4.
Full textChen, Anthony L., and Peter Y. Yu. "Charge-Transfer Gap Closure in Transition-Metal Halides Under Pressure." In The Kluwer International Series in Engineering and Computer Science, 349–61. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0461-6_25.
Full textGeyer, W., Th Ochs, C. Krummel, M. Fleischer, H. Meixner, and D. Kohl. "Surface Reactions at Metal Oxides: Relaxation Spectroscopy and Charge Transfer." In Advanced Gas Sensing - The Electroadsorptive Effect and Related Techniques, 41–53. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-8612-2_2.
Full textDutton, Gregory, and X. Y. Zhu. "Charge Transfer at Molecule—Metal Interfaces: Implication for Molecular Electronics." In ACS Symposium Series, 76–86. Washington, DC: American Chemical Society, 2003. http://dx.doi.org/10.1021/bk-2003-0844.ch007.
Full textLoukova, Galina V. "Ligand-to-Metal Charge Transfer Excited States in Organometallic Compounds." In Springer Handbook of Inorganic Photochemistry, 459–92. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-63713-2_19.
Full textConference papers on the topic "Metal-metal charge transfer"
PHILLIPS, D. L., K. H. LEUNG, C. M. CHE, M. C. TSE, and V. M. MISKOWSKI. "RESONANCE RAMAN INVESTIGATION OF METAL-METAL BONDING INTERACTIONS IN METAL-METAL CHARGE TRANSFER TRANSITIONS OF DINUCLEAR INORGANIC COMPLEXES." In Proceedings of the Third Joint Meeting of Chinese Physicists Worldwide. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776785_0071.
Full textSchmuttenmaer, C. A., J. Cao, M. A. Aeschlimann, H. E. Elsayed-Ali, Y. Gao, R. J. D. Miller, and D. A. Mantell. "Photoexcited charge transfer to adsorbates at metal surfaces." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/oam.1993.thddd.4.
Full textSaito, Yoko, Mariko Miyazaki, Tomio Iwasaki, Naoya Sasaki, Hongmei Jin, Michael B. Sullivan, and Ping Wu. "Force-field with Charge Transfer and Classical Molecular Dynamics Study for Metal-/Metal Oxide/Polyimide Interfaces." In 2008 MRS Fall Meetin. Materials Research Society, 2008. http://dx.doi.org/10.1557/proc-1115-h08-02.
Full textJece, Annija, Armands Ruduss, Kitija A. Štucere, Aivars Vembris, and Kaspars Traskovskis. "TADF active carbene-metal-amide complexes exhibiting through-space charge transfer: an impact of metal atom." In Organic Electronics and Photonics: Fundamentals and Devices III, edited by Sebastian Reineke, Koen Vandewal, and Wouter Maes. SPIE, 2022. http://dx.doi.org/10.1117/12.2621156.
Full textOrman, L. K., D. R. Anderson, and J. B. Hopkins. "Direct structural characterization of charge localization in metal to ligand charge transfer complexes." In AIP Conference Proceedings Volume 172. AIP, 1988. http://dx.doi.org/10.1063/1.37523.
Full textCastaing, V., L. Li, D. Rytz, Y. Katayama, A. D. Sontakke, S. Tanabe, M. Peng, and B. Viana. "Metal-to-metal charge transfer band position control and luminescence quenching by cationic substitution in NaNbO3:Pr3+." In SPIE OPTO, edited by Shibin Jiang and Michel J. F. Digonnet. SPIE, 2017. http://dx.doi.org/10.1117/12.2253177.
Full textStefancu, Andrei, Seunghoon Lee, Zhu Li, Min Liu, Raluca Ciceo-Lucacel, Nicolae Leopold, and Emiliano Cortes. "Metal-molecule charge transfer through Fermi level equilibration in plasmonic systems." In 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2021. http://dx.doi.org/10.1109/cleo/europe-eqec52157.2021.9542635.
Full textZhao, Lianfeng, YunHui L. Lin, and Barry P. Rand. "Charge-transfer states at 2D metal halide perovskite/organic heterojunctions (Conference Presentation)." In Physical Chemistry of Semiconductor Materials and Interfaces XVII, edited by Hugo A. Bronstein and Felix Deschler. SPIE, 2018. http://dx.doi.org/10.1117/12.2320314.
Full textSieland, Fabian, Jenny Schneider, Thorsten Lippmann, and Detlef W. Bahnemann. "Understanding charge transfer processes on metal oxides: a laser-flash-photolysis study." In SPIE Optics + Photonics for Sustainable Energy, edited by Chung-Li Dong. SPIE, 2016. http://dx.doi.org/10.1117/12.2239261.
Full textNoel, Nakita K. "Interfacial Charge-transfer Doping of Metal Halide Perovskites for High Performance Optoelectronics." In 11th International Conference on Hybrid and Organic Photovoltaics. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.hopv.2019.091.
Full textReports on the topic "Metal-metal charge transfer"
Baker, Lawrence Robert. Charge Transfer and Catalysis at the Metal Support Interface. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1174166.
Full textChen, A. L., and P. Y. Yu. Charge-transfer gap closure in transition-metal halides under pressure. Office of Scientific and Technical Information (OSTI), January 1995. http://dx.doi.org/10.2172/69161.
Full textChen, Anthony Li-Chung. Metallization and charge-transfer gap closure of transition-metal iodides under pressure. Office of Scientific and Technical Information (OSTI), May 1993. http://dx.doi.org/10.2172/10182378.
Full textArmstrong, Neal, S. Scott Saavedra, and Jeffrey Pyun. Metal-Tipped and Electrochemically Wired Semiconductor Nanocrystals: Modular Constructs for Directed Charge Transfer. Office of Scientific and Technical Information (OSTI), August 2022. http://dx.doi.org/10.2172/1882419.
Full textBarefoot, Susan F., Bonita A. Glatz, Nathan Gollop, and Thomas A. Hughes. Bacteriocin Markers for Propionibacteria Gene Transfer Systems. United States Department of Agriculture, June 2000. http://dx.doi.org/10.32747/2000.7573993.bard.
Full textHodul, M., H. P. White, and A. Knudby. A report on water quality monitoring in Quesnel Lake, British Columbia, subsequent to the Mount Polley tailings dam spill, using optical satellite imagery. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330556.
Full textFINITE ELEMENT SIMULATION FOR ULTRA-HIGH-PERFORMANCE CONCRETE-FILLED DOUBLE-SKIN TUBES EXPOSED TO FIRE. The Hong Kong Institute of Steel Construction, August 2022. http://dx.doi.org/10.18057/icass2020.p.263.
Full textThe Competitive Advantage of Nations: A Successful Experience, Realigning the Strategy to Transform the Economic and Social Development of the Basque Country. Universidad de Deusto, 2015. http://dx.doi.org/10.18543/xiqr3861.
Full text