Journal articles on the topic 'Metal-graphene Junction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Metal-graphene Junction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Konig, Matthias, Gunther Ruhl, Amit Gahoi, Sebastian Wittmann, Tobias Preis, Joerg-Martin Batke, Ioan Costina, and Max C. Lemme. "Accurate Graphene-Metal Junction Characterization." IEEE Journal of the Electron Devices Society 7 (2019): 219–26. http://dx.doi.org/10.1109/jeds.2019.2891516.
Full textShao, Rui Qiang. "Graphene-Silicon Schottky Junction Fabricating by Laser Reduced Graphene Oxides." Advanced Materials Research 709 (June 2013): 139–42. http://dx.doi.org/10.4028/www.scientific.net/amr.709.139.
Full textIndykiewicz, K., C. Bray, C. Consejo, F. Teppe, S. Danilov, S. D. Ganichev, and A. Yurgens. "Current-induced enhancement of photo-response in graphene THz radiation detectors." AIP Advances 12, no. 11 (November 1, 2022): 115009. http://dx.doi.org/10.1063/5.0117818.
Full textHong, Seokmin, Youngki Yoon, and Jing Guo. "Metal-semiconductor junction of graphene nanoribbons." Applied Physics Letters 92, no. 8 (February 25, 2008): 083107. http://dx.doi.org/10.1063/1.2885095.
Full textHuang, Ko-Fan, Önder Gül, Takashi Taniguchi, Kenji Watanabe, and Philip Kim. "Andreev reflection between aluminum and graphene across van der Waals barriers." Low Temperature Physics 49, no. 6 (June 1, 2023): 662–69. http://dx.doi.org/10.1063/10.0019423.
Full textHe, Chunhui, Qian Zhang, Shuhui Tao, Cezhou Zhao, Chun Zhao, Weitao Su, Yannick J. Dappe, Richard J. Nichols, and Li Yang. "Carbon-contacted single molecule electrical junctions." Physical Chemistry Chemical Physics 20, no. 38 (2018): 24553–60. http://dx.doi.org/10.1039/c8cp02877j.
Full textShen, Caihua, Juan Liu, N. Jiao, C. X. Zhang, Huaping Xiao, R. Z. Wang, and L. Z. Sun. "Transport properties of graphene/metal planar junction." Physics Letters A 378, no. 18-19 (March 2014): 1321–25. http://dx.doi.org/10.1016/j.physleta.2014.03.008.
Full textKumar, Ravinder, and Derick Engles. "Modeling the Charge Transport in Graphene Nano Ribbon Interfaces for Nano Scale Electronic Devices." Journal of Multiscale Modelling 06, no. 01 (March 2015): 1450003. http://dx.doi.org/10.1142/s1756973714500036.
Full textJung, Jaedong, Honghwi Park, Heungsup Won, Muhan Choi, Chang-Ju Lee, and Hongsik Park. "Effect of Graphene Doping Level near the Metal Contact Region on Electrical and Photoresponse Characteristics of Graphene Photodetector." Sensors 20, no. 17 (August 19, 2020): 4661. http://dx.doi.org/10.3390/s20174661.
Full textTsai, Yu-Yang, Chun-Yu Kuo, Bo-Chang Li, Po-Wen Chiu, and Klaus Y. J. Hsu. "A Graphene/Polycrystalline Silicon Photodiode and Its Integration in a Photodiode–Oxide–Semiconductor Field Effect Transistor." Micromachines 11, no. 6 (June 17, 2020): 596. http://dx.doi.org/10.3390/mi11060596.
Full textKou, Rong, Yuyan Shao, Donghai Mei, Zimin Nie, Donghai Wang, Chongmin Wang, Vilayanur V. Viswanathan, et al. "Stabilization of Electrocatalytic Metal Nanoparticles at Metal−Metal Oxide−Graphene Triple Junction Points." Journal of the American Chemical Society 133, no. 8 (March 2, 2011): 2541–47. http://dx.doi.org/10.1021/ja107719u.
Full textXia, Fengnian, Vasili Perebeinos, Yu-ming Lin, Yanqing Wu, and Phaedon Avouris. "The origins and limits of metal–graphene junction resistance." Nature Nanotechnology 6, no. 3 (February 6, 2011): 179–84. http://dx.doi.org/10.1038/nnano.2011.6.
Full textZhao, Xiuming, and Maodu Chen. "Charge transfer mechanism of SERS for metal–molecule–metal junction supported by graphene and boron-doped graphene." RSC Adv. 4, no. 108 (November 18, 2014): 63596–602. http://dx.doi.org/10.1039/c4ra10141c.
Full textAhmadi, Ramin, and Mohammad Taghi Ahmadi. "Contact Effect On Twisted Graphene Based Schottky Transistor." ECS Journal of Solid State Science and Technology 11, no. 3 (March 1, 2022): 031005. http://dx.doi.org/10.1149/2162-8777/ac5eb3.
Full textAhmadi, Ramin, Mohammad Taghi Ahmadi, Seyed Saeid Rahimian Koloor, and Michal Petrů. "Monolayer Twisted Graphene-Based Schottky Transistor." Materials 14, no. 15 (July 23, 2021): 4109. http://dx.doi.org/10.3390/ma14154109.
Full textCUI, LILING, BINGCHU YANG, XINMEI LI, JUN HE, and MENGQIU LONG. "ELECTRONIC TRANSPORT PROPERTIES OF TRANSITION METAL (Cu, Fe) PHTHALOCYANINES CONNECTING TO V-SHAPED ZIGZAG GRAPHENE NANORIBBONS." International Journal of Modern Physics B 28, no. 08 (February 24, 2014): 1450019. http://dx.doi.org/10.1142/s0217979214500192.
Full textMendoza, Cesar D., and F. L. Freire. "Single-Layer Graphene/Germanium Interface Representing a Schottky Junction Studied by Photoelectron Spectroscopy." Nanomaterials 13, no. 15 (July 26, 2023): 2166. http://dx.doi.org/10.3390/nano13152166.
Full textLee, Jun-Ho, Inchul Choi, Nae Bong Jeong, Minjeong Kim, Jaeho Yu, Sung Ho Jhang, and Hyun-Jong Chung. "Simulation of Figures of Merit for Barristor Based on Graphene/Insulator Junction." Nanomaterials 12, no. 17 (August 31, 2022): 3029. http://dx.doi.org/10.3390/nano12173029.
Full textKai, Shuangshuang, Baojuan Xi, Xiaolei Liu, Lin Ju, Peng Wang, Zhenyu Feng, Xiaojian Ma, and Shenglin Xiong. "An innovative Au-CdS/ZnS-RGO architecture for efficient photocatalytic hydrogen evolution." Journal of Materials Chemistry A 6, no. 7 (2018): 2895–99. http://dx.doi.org/10.1039/c7ta10958j.
Full textGutiérrez, Diego, Jesús Alejandro de Sousa, Marta Mas-Torrent, and Núria Crivillers. "Resistive Switching Observation in a Gallium-Based Liquid Metal/Graphene Junction." ACS Applied Electronic Materials 2, no. 10 (September 14, 2020): 3093–99. http://dx.doi.org/10.1021/acsaelm.0c00296.
Full textRocha Robledo, Ana K., Mario Flores Salazar, Bárbara A. Muñiz Martínez, Ángel A. Torres-Rosales, Héctor F. Lara-Alfaro, Osvaldo Del Pozo-Zamudio, Edgar A. Cerda-Méndez, Sergio Jiménez-Sandoval, and Andres De Luna Bugallo. "Interlayer charge transfer in supported and suspended MoS2/Graphene/MoS2 vertical heterostructures." PLOS ONE 18, no. 7 (July 25, 2023): e0283834. http://dx.doi.org/10.1371/journal.pone.0283834.
Full textZhao, Yi, Deyin Zhao, Zhenzhen Ma, Gong Li, Dan Zhao, and Xin Li. "Ion Sensitive GO-Si Based Metal-Semiconductor Junction Resistor Gas Sensor." Coatings 11, no. 11 (October 28, 2021): 1310. http://dx.doi.org/10.3390/coatings11111310.
Full textLi, Changli, Yequan Xiao, Li Zhang, Yanbo Li, Jean-Jacques Delaunay, and Hongwei Zhu. "Efficient photoelectrochemical water oxidation enabled by an amorphous metal oxide-catalyzed graphene/silicon heterojunction photoanode." Sustainable Energy & Fuels 2, no. 3 (2018): 663–72. http://dx.doi.org/10.1039/c7se00504k.
Full textTeraoka, Masahiro, Yuzuki Ono, and Hojun Im. "Capacitance characterization of graphene/n-Si Schottky junction solar cell with MOS capacitor." Materials Research Express 10, no. 8 (August 1, 2023): 085602. http://dx.doi.org/10.1088/2053-1591/acf09c.
Full textRahmani, Meisam, Razali Ismail, Mohammad Taghi Ahmadi, Mohammad Javad Kiani, Mehdi Saeidmanesh, F. A. Hediyeh Karimi, Elnaz Akbari, and Komeil Rahmani. "The Effect of Bilayer Graphene Nanoribbon Geometry on Schottky-Barrier Diode Performance." Journal of Nanomaterials 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/636239.
Full textXu, Dikai, Xuegong Yu, Dace Gao, Cheng Li, Mengyao Zhong, Haiyan Zhu, Shuai Yuan, Zhan Lin, and Deren Yang. "Self-generation of a quasi p–n junction for high efficiency chemical-doping-free graphene/silicon solar cells using a transition metal oxide interlayer." Journal of Materials Chemistry A 4, no. 27 (2016): 10558–65. http://dx.doi.org/10.1039/c6ta02868c.
Full textAhmad, H., and T. M. K. Thandavan. "High photoresponsivity and external quantum efficiency of ultraviolet photodetection by mechanically exfoliated planar multi-layered graphene oxide sheet prepared using modified Hummer's method and spin coating technique." Materials Express 10, no. 7 (July 1, 2020): 998–1009. http://dx.doi.org/10.1166/mex.2020.1717.
Full textLai, Qingxue, Qingwen Gao, Qi Su, Yanyu Liang, Yuxi Wang, and Zhi Yang. "Bottom-up synthesis of high-performance nitrogen-enriched transition metal/graphene oxygen reduction electrocatalysts both in alkaline and acidic solution." Nanoscale 7, no. 35 (2015): 14707–14. http://dx.doi.org/10.1039/c5nr02984h.
Full textZhou, Huawei, Junxue Guo, Can Wang, Xuejing Liu, Shaozhen Shi, Jiazhen Wei, Xipeng Pu, et al. "2D Schottky Junction between Graphene Oxide and Transition‐Metal Dichalcogenides: Photoresponsive Properties and Electrocatalytic Performance." Advanced Materials Interfaces 6, no. 6 (January 13, 2019): 1801657. http://dx.doi.org/10.1002/admi.201801657.
Full textDavydov, S. Yu, and O. V. Posrednik. "Model of a “Two-Dimensional Metal–Graphene-Like Compound” Junction: Consideration for Interaction between the Components." Semiconductors 55, no. 7 (July 2021): 595–600. http://dx.doi.org/10.1134/s1063782621070071.
Full textYoon, Hoon Hahn, Wonho Song, Sungchul Jung, Junhyung Kim, Kyuhyung Mo, Gahyun Choi, Hu Young Jeong, Jong Hoon Lee, and Kibog Park. "Negative Fermi-Level Pinning Effect of Metal/n-GaAs(001) Junction Induced by a Graphene Interlayer." ACS Applied Materials & Interfaces 11, no. 50 (November 22, 2019): 47182–89. http://dx.doi.org/10.1021/acsami.9b12074.
Full textZhang, Zengxing, Yunxian Guo, Xiaojuan Wang, Dong Li, Fengli Wang, and Sishen Xie. "Direct Growth of Nanocrystalline Graphene/Graphite Transparent Electrodes on Si/SiO2for Metal-Free Schottky Junction Photodetectors." Advanced Functional Materials 24, no. 6 (September 1, 2013): 835–40. http://dx.doi.org/10.1002/adfm.201301924.
Full textWang, Haotian. "Transition-Metal Single Atom Catalysts for Highly Efficient Artificial Photosynthesis." ECS Meeting Abstracts MA2018-01, no. 31 (April 13, 2018): 1919. http://dx.doi.org/10.1149/ma2018-01/31/1919.
Full textXiang, Yiqiu, Ling Xin, Jiwei Hu, Caifang Li, Jimei Qi, Yu Hou, and Xionghui Wei. "Advances in the Applications of Graphene-Based Nanocomposites in Clean Energy Materials." Crystals 11, no. 1 (January 7, 2021): 47. http://dx.doi.org/10.3390/cryst11010047.
Full textXiang, Yiqiu, Ling Xin, Jiwei Hu, Caifang Li, Jimei Qi, Yu Hou, and Xionghui Wei. "Advances in the Applications of Graphene-Based Nanocomposites in Clean Energy Materials." Crystals 11, no. 1 (January 7, 2021): 47. http://dx.doi.org/10.3390/cryst11010047.
Full textPifferi, Valentina, Anna Testolin, Chiara Ingrosso, Maria Lucia Curri, Ilaria Palchetti, and Luigi Falciola. "Au Nanoparticles Decorated Graphene-Based Hybrid Nanocomposite for As(III) Electroanalytical Detection." Chemosensors 10, no. 2 (February 8, 2022): 67. http://dx.doi.org/10.3390/chemosensors10020067.
Full textGoudarzi, H., and M. Khezerlou. "Tunneling conductance in a gapped graphene-based normal metal–insulator–d-wave superconductor junction: Case of massive Dirac electrons." Physica E: Low-dimensional Systems and Nanostructures 43, no. 2 (December 2010): 604–9. http://dx.doi.org/10.1016/j.physe.2010.10.002.
Full textHajati, Y., A. Heidari, M. Z. Shoushtari, and G. Rashedi. "Spin-dependent barrier effects on the transport properties of graphene-based normal metal/ferromagnetic barrier/d-wave superconductor junction." Journal of Magnetism and Magnetic Materials 362 (August 2014): 36–41. http://dx.doi.org/10.1016/j.jmmm.2014.03.018.
Full textKitaura, Ryo. "(Invited, Digital Presentation) Ultrathin Lateral Heterostructures Based on Two-Dimensional Semiconductors." ECS Meeting Abstracts MA2022-01, no. 10 (July 7, 2022): 784. http://dx.doi.org/10.1149/ma2022-0110784mtgabs.
Full textYamamura, A., S. Honda, J. Inoue, and H. Itoh. "Magnetoresistance in Metal/graphene/metal Junctions." Journal of the Magnetics Society of Japan 34, no. 1 (2010): 34–38. http://dx.doi.org/10.3379/msjmag.0912re0013.
Full textHuang, Ke, Junfeng Lu, Donglin Li, Xianjia Chen, Dingfeng Jin, and Hongxiao Jin. "Au- or Ag-Decorated ZnO-Rod/rGO Nanocomposite with Enhanced Room-Temperature NO2-Sensing Performance." Nanomaterials 13, no. 16 (August 18, 2023): 2370. http://dx.doi.org/10.3390/nano13162370.
Full textGhosal, Sanghamitra, and Partha Bhattacharyya. "ZnO/RGO Heterojunction Based near Room Temperature Alcohol SENSOR with Improved Efficiency." Engineering Proceedings 6, no. 1 (May 17, 2021): 25. http://dx.doi.org/10.3390/i3s2021dresden-10073.
Full textChaves, Ferney A., David Jiménez, Jaime E. Santos, Peter Bøggild, and José M. Caridad. "Electrostatics of metal–graphene interfaces: sharp p–n junctions for electron-optical applications." Nanoscale 11, no. 21 (2019): 10273–81. http://dx.doi.org/10.1039/c9nr02029b.
Full textJin, Xin, Yu-Yang Zhang, Sokrates T. Pantelides, and Shixuan Du. "Integration of graphene and two-dimensional ferroelectrics: properties and related functional devices." Nanoscale Horizons 5, no. 9 (2020): 1303–8. http://dx.doi.org/10.1039/d0nh00255k.
Full textCasalino, Maurizio. "Silicon Meets Graphene for a New Family of Near-Infrared Schottky Photodetectors." Applied Sciences 9, no. 18 (September 5, 2019): 3677. http://dx.doi.org/10.3390/app9183677.
Full textYan, Weixian, and Min Guo. "Electron transmission across normal metal-strained graphene–normal metal junctions." Physica B: Condensed Matter 599 (December 2020): 412484. http://dx.doi.org/10.1016/j.physb.2020.412484.
Full textMochizuki, Yoneko, and Hideo Yoshioka. "Transport properties of normal metal–graphene nanoribbon–normal metal junctions." Physica E: Low-dimensional Systems and Nanostructures 42, no. 4 (February 2010): 722–25. http://dx.doi.org/10.1016/j.physe.2009.10.035.
Full textArachchige, Hashitha M. M. Munasinghe, Nanda Gunawardhana, Dario Zappa, and Elisabetta Comini. "UV Light Assisted NO2Sensing by SnO2/Graphene Oxide Composite." Proceedings 2, no. 13 (November 23, 2018): 787. http://dx.doi.org/10.3390/proceedings2130787.
Full textSemkin, Valentin, Dmitry Mylnikov, Elena Titova, Sergey Zhukov, and Dmitry Svintsov. "Gate-controlled polarization-resolving mid-infrared detection at metal–graphene junctions." Applied Physics Letters 120, no. 19 (May 9, 2022): 191107. http://dx.doi.org/10.1063/5.0088724.
Full textDe Sanctis, Adolfo, Jake Mehew, Monica Craciun, and Saverio Russo. "Graphene-Based Light Sensing: Fabrication, Characterisation, Physical Properties and Performance." Materials 11, no. 9 (September 18, 2018): 1762. http://dx.doi.org/10.3390/ma11091762.
Full text