Academic literature on the topic 'Metal-binding proteins'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Metal-binding proteins.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Metal-binding proteins"

1

Permyakov, Eugene A. "Metal Binding Proteins." Encyclopedia 1, no. 1 (March 15, 2021): 261–92. http://dx.doi.org/10.3390/encyclopedia1010024.

Full text
Abstract:
Metal ions play several major roles in proteins: structural, regulatory, and enzymatic. The binding of some metal ions increase stability of proteins or protein domains. Some metal ions can regulate various cell processes being first, second, or third messengers. Some metal ions, especially transition metal ions, take part in catalysis in many enzymes. From ten to twelve metals are vitally important for activity of living organisms: sodium, potassium, magnesium, calcium, manganese, iron, cobalt, zinc, nickel, vanadium, molybdenum, and tungsten. This short review is devoted to structural, physical, chemical, and physiological properties of proteins, which specifically bind these metal cations.
APA, Harvard, Vancouver, ISO, and other styles
2

Hennig, H. F. K. O. "Metal-Binding Proteins as Metal Pollution Indicators." Environmental Health Perspectives 65 (March 1986): 175. http://dx.doi.org/10.2307/3430178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hennig, H. F. "Metal-binding proteins as metal pollution indicators." Environmental Health Perspectives 65 (March 1986): 175–87. http://dx.doi.org/10.1289/ehp.8665175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Findlay, Wendy A., Gary S. Shaw, and Brian D. Sykes. "Metal-ion binding by proteins." Current Biology 2, no. 3 (March 1992): 126. http://dx.doi.org/10.1016/0960-9822(92)90246-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tainer, John A., Victoria A. Roberts, and Elizabeth D. Getzoff. "Metal-binding sites in proteins." Current Opinion in Biotechnology 2, no. 4 (August 1991): 582–91. http://dx.doi.org/10.1016/0958-1669(91)90084-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Findlay, Wendy A., Gary S. Shaw, and Brian D. Sykes. "Metal ion binding by proteins." Current Opinion in Structural Biology 2, no. 1 (February 1992): 57–60. http://dx.doi.org/10.1016/0959-440x(92)90177-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Berg, Jeremy M. "Nucleic acid-binding proteins: More metal-binding fingers." Nature 319, no. 6051 (January 1986): 264–65. http://dx.doi.org/10.1038/319264a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

MOHAN, ABHILASH, SHARMILA ANISHETTY, and PENNATHUR GAUTAM. "GLOBAL METAL-ION BINDING PROTEIN FINGERPRINT: A METHOD TO IDENTIFY MOTIF-LESS METAL-ION BINDING PROTEINS." Journal of Bioinformatics and Computational Biology 08, no. 04 (August 2010): 717–26. http://dx.doi.org/10.1142/s0219720010004884.

Full text
Abstract:
Metal-ion binding proteins play a vital role in biological processes. Identifying putative metal-ion binding proteins is through knowledge-based methods. These involve the identification of specific motifs that characterize a specific class of metal-ion binding protein. Metal-ion binding motifs have been identified for the common metal ions. A robust global fingerprint that is useful in identifying a metal-ion binding protein from a non-metal-ion binding protein has not been devised. Such a method will help in identifying novel metal-ion binding proteins and proteins that do not possess a canonical metal-ion binding motif. We have used a set of physico-chemical parameters of metal-ion binding proteins encoded by the genes CzcA, CzcB and CzcD as a training set to supervised classifiers and have been able to identify several other metal ion binding proteins leading us to believe that metal-ion binding proteins have a global fingerprint, which cannot be pinned down to a single feature of the protein sequence.
APA, Harvard, Vancouver, ISO, and other styles
9

Lu, Yi, and Joan S. Valentine. "Engineering metal-binding sites in proteins." Current Opinion in Structural Biology 7, no. 4 (August 1997): 495–500. http://dx.doi.org/10.1016/s0959-440x(97)80112-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Klemba, Michael, Kevin H. Gardner, Stephen Marino, Neil D. Clarke, and Lynne Regan. "Novel metal-binding proteins by design." Nature Structural & Molecular Biology 2, no. 5 (May 1995): 368–73. http://dx.doi.org/10.1038/nsb0595-368.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Metal-binding proteins"

1

Flowers, Andrew E. "Metal-binding proteins in tropical marine invertebrates." Thesis, Queensland University of Technology, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hennig, Helmke Friedrich-Karl Otto. "Baseline surveys and metal binding proteins as metal pollution indicators." Doctoral thesis, University of Cape Town, 1985. http://hdl.handle.net/11427/22479.

Full text
Abstract:
Bibliography: pages 304-309.
The field of metal determination as a part of pollution studies, has been critically examined and metal pollution may be defined in one simple statement: The presence of metal binding proteins confirms toxic metal pollution. It has been shown that current methods of metal determination in biological systems are of little use. This has been illustrated by both a review of metal concentration in Southern African coastal water, sediments and biotopes, and by a comparative baseline study of organisms from Gough Island and Mar ion Island. These showed that extrapolation of results from one geographical area to another are invalid and that this interpretation is made difficult by factors such as age, sex, size life stage of the organisms. Furthermore, it was shown that many reports on metal pollution do not even mention fundamental information such as the size or the sex of the animals. Metal pollution could be linked to metal binding protein through an independent pollution er i ter ia, for example, the out of season moulting of crayfish. The new definition of metal pollution has then been tested by application to five different organisms (crayfish, Jasus lalandii; hermit crab, Diogenes brevirostris; shrimp, Palaemon pacificus; black mussel, Choromytilus meridionalis and limpet, Patella granularis) kept under identical conditions and it was shown that a much more meaningful interpretation of the results could be made. The new definition was al so tested with two naturally occurring metal accumulating organisms (whelk, Bullia digitalis and "kikuyu" grass) and it was shown that dramatic increases in metal may not necessarily be toxic. It was concluded that less effort and time should be spent on metal analysis in determination of metal pollution and attention should rather be directed to the presence or absence of metal-binding proteins.
APA, Harvard, Vancouver, ISO, and other styles
3

Limson, Janice Leigh. "Electrochemical studies of metal-ligand interactions and of metal binding proteins." Thesis, Rhodes University, 1999. http://hdl.handle.net/10962/d1018239.

Full text
Abstract:
Electrochemical methods were researched for the analysis of metals, proteins and the identification of metal binding proteins. Adsorptive cathodic stripping voltamrnetry for metal analysis combines the inherent sensitivity of electrochemical techniques with the specificity of ligands for the nonfaradaic preconcentration of analytes at the electrode. The utility of catechol, resorcinol, 4-methylcatechol and 4-t-butylcatechol as ligands was explored for the sensitive analysis of copper, bismuth, cadmium and lead on a mercury film glassy carbon electrode. Metal complexes of lead, copper and bismuth with resorcinol showed the largest increase in current with increase in metal concentration, whereas complexes of these metals with 4-t-butylcatechol showed the lowest current response. Cadmium showed the highest current responses with 4-methylcatechol. The four metals could be determined simultaneously in the presence of resorcinol, although considerable interference was observed between bismuth and copper. The electroanalysis of cysteine and cysteine containing proteins at carbon electrodes are impaired by slow electron transfer rates at carbon electrodes, exhibiting high overpotentials, greater than 1 V vs Ag! Agel. Metallophthalocyanines have been shown to promote the electrocatalysis of cysteine at lowered potentials. Chemical modification of electrodes with appropriate modifiers is a means of incorporating specificity into electroanalysis, with applications in electrocatalysis. A glassy carbon electrode was modified by electrodeposition of cobalt (II) tetrasulphophthalocyanine [Co(II)TSPct to produce a chemically modified glassy carbon electrode (CMGCE). The CoTSPc-CMGCE catalysed the oxidation of cysteine in the pH range 1 to 10. The significance of this electrode is an application for analysis of proteins at biological pH's. A biscyanoruthenium(II) phthalocyanine CMGCE catalysed the oxidation of cysteine at 0.43 V vs Ag/AgCl a significant lowering in the overpotential for the oxidation of cysteine. Metallothionein, a metal binding protein, is believed to be involved in metal homeostasis and detoxification in the peripheral organs of living systems. A method for the quantitative determination of this protein utilising its high cysteine content was presented. At pH 8.4 Tris-HCl buffer, and using a CoTSPc-CMGCE modified by electrodeposition of the modifier, the anodic peaks for the oxidation of metallothionein was observed at 0. 90 V vs Ag/ AgCI. Ferredoxin is a simple iron-sulphur protein. One tenth of its residues are cysteine. Ferredoxin is involved in simple electron transfer processes during photosynthesis and respiration. Electrochemical studies of spinach ferredoxin were conducted at a CoTSPc-CMGCE. Anodic currents for the oxidation of the cysteine fragment of ferredoxin was observed at 0.85 V vs Ag/AgCl in HEPES buffer at pH 7.4, representing a new method for analysis of this protein. Voltammetric studies of its ferric/ferrous transition have shown quasi-reversible waves atE~ -0.62 V vs Ag/AgCl only in the presence of promoters. At a CoTSPc-CMGCE, a cathodic wave attributed to the reduction of Fe(III)/Fe(II) was observed at Epc -0.34 V vs Ag/AgCl. This represents an alternative method for voltammetric studies of the ferric/ferrous transition at significantly lowered potentials. Melatonin, a pineal gland hormone functions m setting and entraining circadian rhythms and in neuroprotection as a free radical scavenger and general antioxidant. Using adsorptive cathodic stripping voltammetry, the binding affinities of melatonin, serotonin and tryptophan for metals, were measured. The results showed that the following metal complexes were formed: aluminium with melatonin, serotonin and tryptophan; cadmium with melatonin and tryptophan; copper with melatonin and serotonin; iron (III) with melatonin and serotonin; lead with melatonin, tryptophan and serotonin, zinc with melatonin and tryptophan and iron (II) with tryptophan. The studies suggest a further role for melatonin in the reduction of free radical generation and in metal detoxification and may explain the accumulation of aluminium in Alzheimer's disease.
APA, Harvard, Vancouver, ISO, and other styles
4

Wheeler, Lucas. "The Evolution of Metal and Peptide Binding in the S100 Protein Family." Thesis, University of Oregon, 2018. http://hdl.handle.net/1794/23178.

Full text
Abstract:
Proteins perform an incredible array of functions facilitated by a diverse set of biochemical properties. Changing these properties is an essential molecular mechanism of evolutionary change, with major questions in protein evolution surrounding this topic. How do new functional biochemical features evolve? How do proteins change following gene duplication events? I used the S100 protein family as a model to probe these aspects of protein evolution. The S100s are signaling proteins that play a diverse range of biological roles binding Calcium ions, transition metal ions, and other proteins. Calcium drives a conformational change allowing S100s to bind to diverse peptide regions of target proteins. I used a phylogenetic approach to understand the evolution of these diverse biochemical features. Chapter I comprises an introduction to the disseration. Chapter II is a co-authored literature review assessing available evidence for global trends in protein evolution. Chapter III describes mapping of transition metal binding onto a maximum likelihood S100 phylogeny. Transition metal binding sites and metal-driven structural changes are a conserved, ancestral features of the S100s. However, they are highly labile at the amino acid level. Chapter IV further characterizes the biophysics of metal binding in the S100A5 lineage, revealing that the oft–cited Ca2+/Cu2+ antagonism of S100A5 is likely due to an experimental artifact of previous studies. Chapter V uses the S100 family to investigate the evolution of binding specificity. Binding specificity for a small set of peptides in the duplicate S100A5 and S100A6 clades. Ancestral sequence reconstruction reveals a pattern of clade-level conservation and apparent subfunctionalization along both lineages. In chapter VI, peptide phage display, deep-sequencing, and machine-learning are combined to quantitatively reconstruct the evolution of specificity in S100A5 and S100A6. S100A5 has subfunctionalized from the ancestor, while S100A6 specificity has shifted. The importance of unbiased approaches to measure specificity are discussed. This work highlights the lability of conserved functions at the biochemical level, and measures changes in specificity following gene duplication. Chapter VII summarizes the results of the dissertation, considers the implications of these results, and discusses limitations and future directions. This dissertation includes both previously published/unpublished and co- authored material.
APA, Harvard, Vancouver, ISO, and other styles
5

Lindsay, William Pirie. "Expression of recombinant metal-binding proteins in E. Coli and in Synechococcus PCC7942 : examination of metal binding in vivo and in vitro." Thesis, Durham University, 1992. http://etheses.dur.ac.uk/5727/.

Full text
Abstract:
Metallothioneins (MTs), cysteine-rich proteins and polypeptides, are proposed to detoxify excess intracellular metal ions via sequestration. Three genes, each encoding a protein related to this group of molecules, were expressed in Escherichia coli and in Synechococcus PCC7942 (variant PIM8) in order to examine the metal binding properties of their products. Phenotypic alterations, in terms of metal-tolerance and - accumulation, were assessed in cells expressing these genes. The genes which were expressed were: (1) smtA from Synechococcus PCC7942, which is designated to be the first isolated prokaryotic MT gene; (2) PsMT(_A), a gene from pea (Pisum sativum L) which encodes a protein with similarity to class I MT; and (3) a synthetic gene encoding(Glu-Cys)(_3)Gly, an analogue of the phytochelatin (PC; class III MT) molecule (γGlu-Cys)(_3)Gly. The protein encoded by smtA was shown to have high affinity for metal ions (Hg, Cd, Cu, Zn), supporting the designation of smtA as a prokaryotic MT gene. Comparison with mammalian MT revealed that the affinity of the product of smtA for Zn was higher than that of the mammalian protein, suggesting a role for this protein in Zn homoeostasis and/or detoxification in Synechococcus sp. E. coli cells expressing smtA exhibited increased accumulation of Zn and Cd (3-fold and 1.4-fold respectively relative to control cells), but no increase in tolerance toward Zn, Cd or Cu. Comparison of the metal-affinity of the product of PsMT(_A) with that of mammalian MT revealed that this protein also has high affinities for Cu, Cd and Zn. These data support the hypothesis that PsMTp^ is a higher plant MT gene. Affinity of the product of this gene for Cu was higher than that of mammalian MT, suggesting a role for this protein in Cu homoeostasis and/or detoxification. Expression of PsMT(_A) in E. coli resulted in increased accumulation of Cu, Cd and Zn. Cu accumulation was increased more substantially than either Zn or Cd accumulation in cells expressing PsMT(_A). No increase in tolerance toward any of these metals was observed in E. coli expressing this gene. There is evidence that PCs are involved in Cd detoxification in higher plants. Genes encoding enzymes involved in the synthesis of these molecules have not been isolated, precluding gene transfer experiments for investigation of their function. Expression of a gene encoding (Glu-Cys) gGly in E. coli resulted in increased tolerance toward Cd, but not Cu or Zn. Thus, a predicted function of a secondary metabolite (PC) was observed when a gene product based on the structure of this molecule was expressed in a heterologous system. No significant increase in accumulation of Cd, Cu or Zn was detected in cells expressing this gene.smtA transcripts were shown to increase in abundance in response to elevated concentrations of Cd in Synechococcus PCC7942 (variant PIM8). Sequences derived from the smt locus were fused to a synthetic gene encoding (Glu-Cys)(_3)Gly, and introduced into Synechococcus PCC7942(variant PIM8). Transcripts encoding (Glu-Cys)gGly increased in response to exposure of these cells to Cd. Cells containing this construct exhibited increased tolerance toward Cd. Data concerning expression of(Glu-Cys)(_3)Gly in E. coli and Synechococcal cells support the hypothesis that PCs may have a role in detoxification of excess intracellular Cd. Comparison of the data obtained in these studies has been used to assess the factors affecting metal-accumulation and -tolerance as a result of expression of heterologous metal-ligands in microbial cells.
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Xiaoyan. "Synucleins and their roles in the pathology of Parkinson's disease as metal binding proteins." Thesis, University of Bath, 2009. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.512329.

Full text
Abstract:
α-synuclein is an abundant and conserved presynaptic brain protein (Uversky 2007). It has received extensive attention since its aggregation was identified as the main component of Lewy bodies and Lewy neurites, which is the pathological hallmark of several neurodegenerative diseases, collectively known as synucleinopathies, including Parkinson's Disease (PD) (Uversky 2007). Considerable information has been collected about the structural properties and conformational behavior of α-synuclein, although the precise function is still under investigation. Metal ions such as copper and iron, can accelerate the aggregation and fibrillation of α-synuclein. Metal ions may exert their dual physiopathological properties through the interaction with α-synuclein, converting protein structure and/or inducing oxidative stress. In this study, isothermal titration calorimetry and electron paramagnetic resonance were used to determine the metal-binding property of the synuclein proteins, proving the presence of four Cu(II) binding sites per molecular of α-synuclein, with the coordination modes of 1N3O and 2N2O. Furthermore, α-synuclein has a catalytic action on the redox cycling of Cu(II), which was assessed by the application of cyclic voltammetry. However, this property is absent on β-synuclein and γ-synuclein, which belong to the synuclein family and have been suggested to be the physiological regulators of α-synuclein expression. In vivo, immunofluoresence studies revealed that Cu(II) increases the aggregates formation in mammalian doperminergic neuron cells overexpressing α-synuclein and the PD-associated mutants, while no aggregates have been found in cells overexpressing β-synuclein and γ-synuclein.
APA, Harvard, Vancouver, ISO, and other styles
7

Keech, Angus Miles. "Role of cobalt(II) and manganese(II) as optical and magnetic probes of metal binding sites in proteins." Thesis, University of East Anglia, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Ying. "Mechanism of metal delivery and binding to transport sites of Cu+-transporting ATPases." Link to electronic thesis, 2005. http://www.wpi.edu/Pubs/ETD/Available/etd-042905-112044/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fallas, Andrea Jennifer. "C1, SAP and ZiCo : structural studies of three metal‑binding proteins from a crystallographic perspective." Thesis, University of Sussex, 2011. http://sro.sussex.ac.uk/id/eprint/7414/.

Full text
Abstract:
Atomic resolution models of proteins are crucial for understanding their biological mechanisms and provide insights into the relationship between protein sequence and structure. Many protein structures incorporate metal ions, exploiting their unique chemistry as reaction centres or for structural stability. This thesis describes the progress made towards solving the structures of three such metal-binding proteins by means of X-ray crystallography. Complement component C1 is a large protein complex that initiates the first line of immune defence and requires calcium for structural stability. Fragments of C1 have already been solved at high resolution, but there are no accurate models of the assembled complex. In this work, a new method for purifying intact C1 from human serum was developed and the purified complex was characterised by various methods. Finally, attempts were made to crystallise native human C1 with a view to obtaining high-resolution structures of the entire complex. Serum amyloid P is another serum protein, also thought to be involved in the immune response. It is often found associated with amyloid deposits, although SAP binds a variety of ligands in a calcium-dependent manner. While the structure of SAP has been determined, its physiological function is still not fully understood. SAP was purified using established methods and its ligand-binding properties were investigated under various conditions using dynamic light scattering, in an attempt to gather more information about the possible function of this molecule. Finally, ZiCo is a small peptide that was designed to switch between a multimeric coiled coil and a monomeric zinc finger fold on binding zinc. The system has been characterised extensively in solution, but high-resolution structures are required to validate the design. ZiCo was crystallised and diffraction data were collected. The structure of the peptide was partially solved, indicating that the multimeric form of the ZiCo peptide is indeed a trimeric coiled coil.
APA, Harvard, Vancouver, ISO, and other styles
10

Roy, Poorna Roy. "Analyzing and classifying bimolecular interactions:I. Effects of metal binding on an iron-sulfur cluster scaffold proteinII. Automatic annotation of RNA-protein interactions for NDB." Bowling Green State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1496412736120654.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Metal-binding proteins"

1

Conference on High Affinity Metal-Binding Proteins in Non-Mammalian Species (1984 : Research Triangle Park) and Conference on phthalic acid esters (1984 : Guildford, England)., eds. Metal-binding proteins: Phthalic acid esters. Research Triangle Park, N.C: National Institute of Environmental Health Sciences, National Institutes of Health, Dept. of Health and Human Services, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Canada. Dept. of Fisheries and Oceans. Field Services Branch. Examination of tissue metal burdens and metal-binding proteins in the Golden King Crab (Lithodes Aequispina Benedict) from Alice Arm and Hastings Arm, British Columbia. Vancouver, B.C: Dept. of Fisheries and Oceans, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kägi, Jeremias H. R., 1930- and Kojima Yutaka 1933-, eds. Metallothionein II: Proceedings of the Second International Meeting on Metallothionein and Other Low Molecular Weight Metal-binding Proteins : Zürich, August 21-24, 1985. Basel: Birkhäuser Verlag, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

O, Hill H. A., Sadler P. J, and Thompson A. J, eds. Metal sites in proteins and models: Redox centres. Berlin: Springer, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Metal-binding proteins: Phthalic acid esters. Research Triangle Park, N.C: National Institute of Environmental Health Sciences, National Institutes of Health, Dept. of Health and Human Services, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Harford, Catherine A. Metal-binding motifs in proteins: Effects of metals on protein structure and function. 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Piscator and J. Kägi. Metallothionein: Proceedings of the »First International Meeting on Metallothionein and Other Low Molecular Weight Metal-Binding Proteins« Zürich, July 17-22 1978. Birkhauser Verlag, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Piscator and J. Kägi. Metallothionein: Proceedings of the »First International Meeting on Metallothionein and Other Low Molecular Weight Metal-Binding Proteins« Zürich, July 17-22 1978. Birkhauser, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Smith, Scott Douglas. Copper metalloproteomics: Using immobilized metal affinity chromatography, two-dimensional gel electrophoresis and mass spectrometry to search for hepatocellular proteins with copper-binding ability. 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Eng, Susan Y. Metal binding studies on pig intestinal calcium binding protein. 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Metal-binding proteins"

1

Urich, Klaus. "Plasma Proteins, Yolk Proteins and Metal-Binding Proteins." In Comparative Animal Biochemistry, 184–219. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-06303-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Anderson, H. A., M. A. Eastman, L. G. Pedersen, R. G. Hiskey, and A. T. Hagler. "Hexapeptide metal binding domains in proteins." In Peptides, 51–53. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-010-9595-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Özcengiz, G., O. Zarrinabadi, and N. G. Alaeddinoğlu. "Metal-Binding Proteins from Kluyveromyces spp." In Recent Advances in Biotechnology, 491–92. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2468-3_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Forsén, Sture. "Protein Engineering and Biophysical Studies of Metal Binding Proteins." In Protein Structure and Engineering, 291–308. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-5745-2_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kanaujia, Shankar Prasad. "Understanding Toxic Metal–Binding Proteins and Peptides." In Handbook of Metal-Microbe Interactions and Bioremediation, 201–28. Boca Raton : Taylor & Francis, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315153353-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sun, Hongzhe, Mark C. Cox, Hongyan Li, and Peter J. Sadler. "Rationalisation of metal binding to transferrin: Prediction of metal-protein stability constants." In Metal Sites in Proteins and Models, 71–102. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-62870-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tsigelny, Igor, Takehiko Matsumura, Thomas Südhof, and Palmer Taylor. "Metal Binding Motifs in Cholinesterases and Neuroligins." In Structure and Function of Cholinesterases and Related Proteins, 407–12. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-1540-5_112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Watt, Ian, and Peter Kille. "Metal binding proteins: Molecular engineering of improvements in metal specificity." In Metallothionein IV, 137–43. Basel: Birkhäuser Basel, 1999. http://dx.doi.org/10.1007/978-3-0348-8847-9_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gedamu, L., S. L. A. Samson, S. Schieman, and W. Paramchuk. "Metal regulation of mammalian metal responsive element (MRE) binding proteins." In Metallothionein IV, 253–59. Basel: Birkhäuser Basel, 1999. http://dx.doi.org/10.1007/978-3-0348-8847-9_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tykva, T., J. Vortruba, J. Vesely, W. E. Kollmer, and D. Berg. "HEAVY METAL BINDING TO PROTEINS EXTRACTED FROM RATS." In Proceedings of the 4. International Workshop, Neuherberg, F. R. G., April 1986, edited by Peter Brätter, 521–26. Berlin, Boston: De Gruyter, 1987. http://dx.doi.org/10.1515/9783111692449-048.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Metal-binding proteins"

1

Kosmachevskaya, Olga, Natalya Novikova, and Alexey Topunov. "ADDITIONAL METAL-BINDING CENTERS IN PROTEINS: DAMAGE OR PROTECTION?" In NEW TECHNOLOGIES IN MEDICINE, BIOLOGY, PHARMACOLOGY AND ECOLOGY. Institute of information technology, 2021. http://dx.doi.org/10.47501/978-5-6044060-1-4.44.

Full text
Abstract:
The problem of the formation of additional metal-binding centers in proteins under conditions of increased production of reactive species is considered. In some cases, the formation of a complex of a metal with a post-translationally altered protein is a modulation mechanism its activity and stability.
APA, Harvard, Vancouver, ISO, and other styles
2

KÖhlin, A., and J. Stenflo. "HIGH AFFINITY CALCIUM BINDING TO DOMAINES OF PROTEIN C THAT ARE HOMOLOGUS TO THE EPIDERMAL GROWTH FACTOR." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643645.

Full text
Abstract:
In addition to γ-carboxyglutamic acid (Gla)-dependent calcium binding all of the vitamin K-dependent plasma proteins, except prothrombin, have one or two high affinity calcium binding sites that do not require the Gla residues. A common denominator among these proteins (factors IX, X, protein C, protein Z and protein S) is that they have domaines that are homologus to the epidermal growth factor (EGF) precursor. In factors VII,IX,X, protein C and in protein Z the aminoterminal of two EGF homology regions contain one residue of β-hydroxyaspartic acid (Hya) whereas in protein S the aminoterminal EGF homology region contains Hya and the three following contain one β-hydroxyasparagine residue each.In an attempt to elucidate the role of the EGF homology regions in the Gla independent calcium binding we have isolated a tryptic fragment (residue 44-138) from the light chain of human protein C. The fragment was isolated using a monoclonal antibody that recognizes a calcium ion stabilized epitope that is expressed both in intact protein C and in protein C lacking the Gla domaine.The antibody bound the isolated EGF homology region in the presence of calcium ions but not in EDTA containing buffer. A calcium ion titration showed half maximal binding at approximately 200 μM Ca2+. The metal ion induced conformational change in the isolated fragment was also studied with affinity purified rabbit antibodies against Gla domainless protein C. Antibodies that bound in the presence of calcium ions and that could be eluted with EDTA recognized the metal ion induced conformational change in the isolated EGF homology domain. Our results suggest that one or both of the EGF homology regions are involved in the Gla-independent high affinity calcium binding in the vitamin K-dependent plasma proteins.
APA, Harvard, Vancouver, ISO, and other styles
3

Sugo, T., S. Tanabe, K. Shinoda, and M. Matsuda. "MONOCLONAL ANTIBODIES THAT RECOGNIZE Ca2+-INDUCED CONFORMER OF PROTEIN C, INDEPENDENT OF GLA RESIDUES." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643644.

Full text
Abstract:
Monoclonal antibodies (MCA’s) were prepared against human protein C (PC) according to Köhler & Milstein, and those that recognize the Ca2+-dependent PC conformers were screened by direct ELISA in the presence of 2 mM either CaCl2 or EDTA. Out of nine MCAߣs thus screened, five MCA's designated as HPC-1˜5, respectively, were found to react with PC in the presence of Ca2+ but not EDTA. By SDS-PAGE coupled with Western Blotting performed in the presence of 2 mM CaCl2, we found that two MCA’s HPC-1 and 2, recognized the light chain, and two others, HPC-3 and 4, recognized the heavy chain of PC. But another MCA, HPC-5 was found to react with only non-reduced antigens. Further study showed that HPC-1 and 5 failed to react with the Gla-domainless PC, i.e. PC from which the N-terminal Gla-domain of the light chain had been cleaved off by α-chymotrypsin. However, all the other three MCA's retained the reactivity with the antigen in the presence of Ca2+ even after the Gla-domain had been removed. The binding of these MCA’s to PC in the presence of Ca2+ was found to be saturable with respect to the Ca2+ concentration and the half maximal binding for each MCA was calculated to be about 0.5+mM. Moreover, many other divalent cations such as Mg2+, Mn2+ , Ba2+, Zn2+, Co2+, Sr2+, were found to substitute for Ca2+ in inducing the metal ion-dependent but Gla-domain-independent conformer of PC.Cross-reactivity to other vitamin K-aependent plasma proteins was examined by direct ELISA; HPC-2 and 3 reacted solely to PC, but HPC-1 and 4 also reacted with prothrombin and HPC-5 with both prothrombin and factor X.These findings indicated that there are two or more metal binding sites besides the Gla-domain, possibly one in the light chain and the other(s) in the heavy chain. The presence of these metal binding sites may contribute to the unique conformer of vitamin K-dependent plasma proteins including protein C.
APA, Harvard, Vancouver, ISO, and other styles
4

Furis, B. C., M. J. Jorgensem, M. J. Rabiet, A. B. Contor, C. L. Brown, C. B. Shoemaker, and B. Furie. "RECOGNITION SITE DIRECTING GAMMA-CARBOXYLATION RESIDES ON THE PROPEPTIDES OF FACTOR IX AND PROTRROMBIN." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643992.

Full text
Abstract:
Factor IX and prothrombin vitamin K-dependent proteins that participate in blood coagulation undergo post-translationalmodification in which glutamic acid residues in the amino terminus of the protein are converted to gamma-carboxyglutamic acid residues. This modification confers divalent metal ion binding ability upon the proteins.As a consequence of binding divalent metal ions these proteins undergoconformational changes necessary for biological function.The vitamin K-dependent proteins are synthesized with an NH2-terminal extension. The region distal to the NH2-terminus of the mature protein is a prototypic signal sequence while the proximal region is a propeptide with homology among the vitamin K-dependent proteins. The boundary between the pre and pro sequences has been established for factor IX by analysis of three naturally occurring factor IX mutants factor IX Cambridge factor IX Oxford-3 and factor IX San Dimas, in which processing is incomplete.For human factor IX the propeptide extends from residue -18 to -1. The homology among the propeptides of vitamin K-dependent proteins suggests that the propeptide may designate adjacent gamma-carboxyglutamic acids for carboxylation. To test this hypothesis alterations in sequence were introduced into the propeptide region of human factor IX cDNA by oligonucleotide directed site specific mutagenesis.Mutated genes were expressed in Chinese hamster ovary cells. Rapid and efficient isolationof the mutant proteins by immunoaffinity chromatography permitted detailed analysis of the mutants on quantities of protein easily obtainable at low expression levels. The extent of gamma-carboxylation was assessed by the ability of the mutant proteins to interact with conformation specific antibodies directed against the gamma-carboxyglutamic acid-dependent metal stabilized native structure of factor IX as well as by direct amino acid analysis. Unmodified recombinant factor IX contained, on average, 9 gamma-carboxyglutamic acid residues, as compared to 12 for plasma factor IX. About 70% of the recombinant wild type factor IX bound to the conformation specific antibodies. Deletion of the propiece or point mutations at residues -10 or -16 led to secretion of uncarboxylated factor IX unreaotive with antibodies specific for the native structure but with the NH2-terminus of mature factor IX. In order to assess the universality of these observations we have recently cloned human prothrombin cDNA and expressed the gene in the same Chinese hamster ovary cell system used for factor IX. In contrast to factor IX, at low levels ofexpressionof the prothrombin gene, the prothrombin is fully carboxylated relative to a plasma prothrombin standard.The recombinant prothrombin exhibits the same specific clotting activity as plasma derivedprothrombin and is fully native as evaluated by conformation specific antibodies. At high levels of expression the capacityof the cells to carboxylate prothrombin can be exceeded leading to secretion of under carboxylated prothrombin. However, the absolute amount of fully carboxylated prothrombin that can be produced in this system appears to be a least fivefold greater that the absolute amount of highly carboxylated factor IX that can be synthesized.The elimination of carboxylation observed upon mutation of the propiece of factor IX suggest that the propiece contains a recognition element required for carboxylation of the protein. Assignment of a functional role to the propiece of factor IX represents the first determination of function for any pro sequence. It is anticipated that extension of these studies to prothrombin will demonstrate that this recognition signal is used by all the members of this class of proteins. In order to determine if the propiece is sufficient to designate a protein for gamma-carboxylation we are currently constructing chimeric proteins incorporating the propieceof prothrombin into the cDNA of normally uncarboxylated proteins.
APA, Harvard, Vancouver, ISO, and other styles
5

Durand, Erwann, Nastassia Kaugarenia, Nathalie Barouh, Pierre Villeneuve, and Romain Kapel. "Antioxidant chelating peptides production from Rapeseed meal proteins proteolysis." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/whcd7145.

Full text
Abstract:
The oxidative chemical degradation produced by reactive species (free radicals, oxygen, etc.) is responsible for the deterioration of most of the formulated products. One of the main properties of an antioxidant lies in its capacity to limit the chemical propagation of oxidation by reducing free radicals. Another strategy to prevent oxidation is binding transition metals, since they are ubiquitous and deeply involved in the initiation and propagation of lipids oxidation. Naturally occurring phospholipids, polyphenols, proteins, or peptides that can bind metal ions could be more valued than synthetic molecules, for human wellbeing, but also to align with consumer preferences. Yet, EDTA salts and sodium citrate remain the most common metal chelators in foods. In this study, we went to investigate a strategy to develop naturally produced antioxidants peptides from edible plant biomass, such as rapeseed. Several enzymatic hydrolyses of total rapeseed protein isolate with various proteases have been performed, and the produced peptides were screened for their antioxidant capacity. Peptides generated with Prolyve® allowed for particularly high Fe2+ chelation capacity (EC50 = 247 ± 27 µg). Accordingly, the enzymatic processing step with Prolyve® was modeled and optimized to minimize reaction costs and maximize peptide recovery. Then, lipid oxidation was studied in the presence or in the absence of chelating peptides, in micellar, bulk, and oil-in-water emulsion systems, and compared with EDTA salts and sodium citrate. Results clearly emphasized a very interesting potential from the peptides sample to prevent lipid oxidation by chelation of transition metals in emulsified models.This result is particularly important to develop the potential of applications of rapeseed meal in various food formulations. In addition, this study emphasized an approach aiming at developing food chelator peptides from plant proteins, having multifunctional properties, and through sustainable processing.
APA, Harvard, Vancouver, ISO, and other styles
6

Brodsky, G. L., and S. P. Bajaj. "DETERMINATION OF NUMBER OF γ-CARBOXYGLUTAMIC ACID (GLA) RESIDUES INVOLVED IN FORMING THE TWO HIGH AFFINITY METAL BINDING SITES IN PROTHROMBIN AND FACTOR X." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643934.

Full text
Abstract:
Prothrombin and factor X possess two high affinity and several low affinity lanthanide ion binding sites. In both proteins, the association constant of the high affinity sites is at least 50-fold greater than that of the low affinity sites. Moreover, metal bound to these high affinity sites is extremely difficult to displace. It has been proposed that one of the two high affinity sites in factor X involves Gla residues while the other involves β-hydroxyaspartic acid and no Gla residues. It is also known that ^H can be specifically incorporated into Gla residues at an acidic pH. We have determined that under nondenaturing conditions when Gla (synthetic or in proteins) is complexed to metal at pH 5.5, this specific 3H incorporation is blocked. Furthermore, we have found that β-hydroxyaspartic acid does not incorporate in the presence or absence of metal. When we incubated prothrombin or factor X (41 μM) with 3H2O in the presence of Tb3+ or Gd3+ (82 μM), we blocked 5.6 Gla residues per prothrombin and 5.5 Gla residues per factor X from 3H incorporation. Under these conditions, we calculated that >95% of the high affinity sites are occupied by metal. Thus, in prothrombin, an average of 2.8 Gla residues are involved in forming each high affinity site. If the Gla residues in factor X participate in forming only one of the two high affinity sites, then all 5.5 Gla residues blocked from incorporation must be involved in forming that site. However, this seems highly unlikely. We conclude that, as in prothrombin, both high affinity sites in factor X involve Gla residues (average 2.75/site). However, our data does not exclude the possibility of existence of a heterologous site containing both β-hydroxyaspartic acid and Gla residues.
APA, Harvard, Vancouver, ISO, and other styles
7

Rabiet, M. J., B. C. Furie, and B. Furie. "MOLECULAR DEFECT IN PROTHROMBIN MADRID: SUBSTITUTION OF ARGININE 273 BY CYSTEINE PRECLUDES ACTIVATION." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643936.

Full text
Abstract:
Prothrombin Madrid, a mutant prothrombin, was detected in a patient with a excessive bleeding history. The defect was characterized by a low coagulant activity contrasting with a normal level of prothrombin antigen in plasma. Activation of the purified protein was impaired by the absence of one of the two factor Xa catalyzed cleavages, generating meizothrombin which expressed a thrombin-like activity but was inactive on fibrinogen (Guillin et al., Ann. N.Y. Acad. Sci. 370:414, 1981). Prothrombin and prothrombin Madrid were isolated directly from plasma, with high yield, by immunoaffinity chromatography using conformation specific antibodies immobilized on Sepharose. After reduction and alkylation, purified proteins were hydrolyzed by trypsin. Resulting peptides were separated by reverse phase HPLC. Comparison of the two peptide maps showed that the prothrombin Madrid digest contained an additional peptide, identified by automated Edman degradation as residues 269 to 287 in prothrombin with the substitution of cysteine for arginine at position 273. Peptide 274—287, present in the prothrombin digest, was missing in the prothrombin Madrid digest. The mutation, precluding cleavage by factor Xa and normal generation of thrombin, is identical to the one described for prothrombin Barcelona. The two patients families are not related, raising the possibility that the gene coding for the cysteine 273 mutation in prothrombin is more common than anticipated. Of the seven mutants of vitamin E-dependant blood clotting proteins structurally characterized to date, three are functionally defective due to the presence of the propeptide on the mature amino-ternfinus (factor IX Cambridge, Oxford 3 and San Dimas) and three are due to an alteration that precludes zymogen activation (faotor TX Chapel Hill, prothrombin Barcelona and Madrid). This sample remains too small to anticipate the different classes of point mutations seen in the human population but functional abnormalities of protein processing, metal and lipid binding, zymogen activation, substrate recognition and enzyme catalysis will likely be important phenotypes. However genetic defects may be limited to a discrete group of point mutations that have significant functional implication for the proteins
APA, Harvard, Vancouver, ISO, and other styles
8

Jorgensen, M. J., MJ Rabiet, A. B. Cantor, B. Furie, C. L. Brown, C. B. Shoemaker, and B. C. Furie. "VITAMIN K-DEPENDENT γ-CARBOXYLATION OF FACTOR IX REQUIRES A RECOGNITION SITE CONTAINED WITHIN THE PROPEPTIDE." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643564.

Full text
Abstract:
The vitamin K-dependent proteins, including Factor IX (FIX), are calcium-binding proteins that undergo vitamin K-dependent post-translational modification to convert amino terminal glutamic aoid residues to Gla residues. Sequence homology among the propeptides of these proteins suggests a role for this region in designating the adjacent glutamic acid-rich domain for γ-carboxylation during intraoellular processing. Mutations vere made in the propeptide (residues -1 to -18) of FIX, and the effects on γ-carboxylation were assessed. The human FIX cDNA coding sequenoe was modified using oligonucleotide-directed site-specific mutagenesis and was expressed in Chinese hamster ovary cells. The extent of γ-carboxylation of secreted FIX was determined by (1) ability to interact with conformation-specific antibodies directed against the Gla-dependent, metal-stabilized, native structure of FIX, and (2) direct Gla analysis of the alkaline hydrolysate. Using the unmodified coding sequence, 64 ± 17 % of recombinant Factor IX bound to the conformation-specific antibodies, and 9.4 ± 0.7 Gla residues were found (compared with 12 Gla in plasma FIX). When the 18-residue propeptide was deleted, secreted FIX contained no detectable native FIX antigen and no detectable Gla. Similarly, point mutations leading to substitution of Ala for Phe at residue -16 or Glu for Ala at residue -10 led to secretion of FIX containing 2% and 6% native antigen, respectively, and approximately 1-2 Gla residues. The molecular weight of each of the reoombinant FIX species, as estimated by SDS-PAGE, was identical to that of plasma FIX. NH2-terminal sequence analysis of the mutant FIX speoies yielded the NH2-terminal sequence of plasma FIX. These data indicate that the mutations made in the propeptide did not interfere with intracellular proteolytic prooessing of FIX. We conolude that the FIX propeptide participates in defining a recognition site that designates an adjacent glutamic acid-rich domain for γ-carboxylation. The association of the propeptide with the γ-carboxylation recognition site provides the first demonstration of a specific function served by a propeptide in post-translational protein processing.
APA, Harvard, Vancouver, ISO, and other styles
9

Küçükbay, Serkan, and Hasan Oğul. "Predicting Metal-Binding Sites of Protein Residues." In 2015 Federated Conference on Computer Science and Information Systems. PTI, 2015. http://dx.doi.org/10.15439/2015f391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tobysheva, P. D., L. A. Khamidullina, I. S. Puzyrev, and A. V. Pestov. "Biological activity of complexes based on polycarbonyl ligands: assessment of the mode of action using molecular docking." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.249.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Metal-binding proteins"

1

Regan, Lynne. Signal Transduction by Designed Metal-Binding Proteins. Fort Belvoir, VA: Defense Technical Information Center, August 2003. http://dx.doi.org/10.21236/ada416956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Arnold, Frances H. Design and Construction of Synthetic Metal-Binding Proteins. Fort Belvoir, VA: Defense Technical Information Center, June 1989. http://dx.doi.org/10.21236/ada209949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Holmes, D., and T. Leib. Detection and characterization of novel metal-binding proteins: Final report. Office of Scientific and Technical Information (OSTI), December 1988. http://dx.doi.org/10.2172/6075368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stanley J. Opella. Structural Biology of The sequestration & Transport of Heavy Metal Toxins: NMR Structure Determination of Proteins Containing the CYS-X-Y-Metal Binding Motif. Office of Scientific and Technical Information (OSTI), March 2004. http://dx.doi.org/10.2172/822065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Opella, S. J. Structural biology of the sequestration and transport of heavy metal toxins: NMR structure determination of proteins containing the -Cys-X-Y-Cys-metal binding motifs. 1997 annual progress report. Office of Scientific and Technical Information (OSTI), January 1997. http://dx.doi.org/10.2172/13583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hodges, Thomas K., and David Gidoni. Regulated Expression of Yeast FLP Recombinase in Plant Cells. United States Department of Agriculture, September 2000. http://dx.doi.org/10.32747/2000.7574341.bard.

Full text
Abstract:
Research activities in both our laboratories were directed toward development of control of the FLP/frt recombination system for plants. As described in the text of the research proposal, the US lab has been engaged in developing regulatory strategies such as tissue-specific promoters and the steroid-inducible activation of the FLP enzyme while the main research activities in Israel have been directed toward the development and testing of a copper-regulated expression of flp recombinase in tobacco (this is an example of a promoter activation by metal ions). The Israeli lab hat additionally completed experiments of previous studies regarding factors affecting the efficiency of recombinase activity using both a gain-of-function assay (excisional-activation of a gusA marker) and loss of function assay (excision of a rolC marker) in tobacco. Site-specific recombinase systems, in particular the FLP/frt and R/RS systems of yeast and the Cre/lox system of bacteriophage P1, have become an essential component of targeted genetic transformation procedures both in animal and plant organisms. To provide more flexibility in transgene excisions by the recombinase systems as well as gene targeting, and to widen possible applications, the development of controlled or regulated recombination systems is highly desirable and was therefore the subject of this research proposal. There are a few possible mechanisms to regulate expression of a recombinase system. They include: 1) control of the recombination system by having the target sites (e.g. frt) in one plant and the flp recombinase gene in another, and bringing the two together by cross fertilization. 2) regulation of promoter activities by external stimuli such as temperature, chemicals, metal ions, etc. 3) regulation of promoter activities by internal signals, i.e. cell- or tissue-specific, or developmental regulation. 4) regulation of enzyme activity by providing cofactors essential for biochemical reactions to take place such as steroid molecules in conjunction with a steroid ligand-binding protein (domains). During the course of this research our major emphasis have been focused toward studying the feasibility of hybrid seed production in Arabidopsis, using FLP/frt. Male-sterility was induced using the antisence of a pollen- and tapetum-specific gene, bcp1, isolated from Arabidopsis. The sterility inducing gene was flanked by frt sites. Upon cross pollination of flowers of male-sterile plants with pollen from FLP-containing plants, viable seeds were produced, and the progeny hybrid plants developed normally. The major achievement from this work is the first demonstration of using a site-specific recombinase to restore fertility in male-sterile plants (see attached paper, Luo et al., Plant J 2000; 23:423-430). The implication from this finding is that site-specific recombination systems can be applied in crop plants as a useful alternative method for hybrid seed production.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography