Academic literature on the topic 'Metabolomics, elicitors, secondary metabolism'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Metabolomics, elicitors, secondary metabolism.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Metabolomics, elicitors, secondary metabolism"
Iula, Giusy, Begoña Miras-Moreno, Youssef Rouphael, Luigi Lucini, and Marco Trevisan. "The Complex Metabolomics Crosstalk Triggered by Four Molecular Elicitors in Tomato." Plants 11, no. 5 (March 1, 2022): 678. http://dx.doi.org/10.3390/plants11050678.
Full textde Felício, Rafael, Patricia Ballone, Cristina Freitas Bazzano, Luiz F. G. Alves, Renata Sigrist, Gina Polo Infante, Henrique Niero, et al. "Chemical Elicitors Induce Rare Bioactive Secondary Metabolites in Deep-Sea Bacteria under Laboratory Conditions." Metabolites 11, no. 2 (February 12, 2021): 107. http://dx.doi.org/10.3390/metabo11020107.
Full textZulak, Katherine G., Aalim M. Weljie, Hans J. Vogel, and Peter J. Facchini. "Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures." BMC Plant Biology 8, no. 1 (2008): 5. http://dx.doi.org/10.1186/1471-2229-8-5.
Full textLauchli, Ryan, and Wilhelm Boland. "Indanoyl amino acid conjugates: Tunable elicitors of plant secondary metabolism." Chemical Record 3, no. 1 (January 2003): 12–21. http://dx.doi.org/10.1002/tcr.10043.
Full textBreitling, Rainer, Ana Ceniceros, Andris Jankevics, and Eriko Takano. "Metabolomics for Secondary Metabolite Research." Metabolites 3, no. 4 (November 11, 2013): 1076–83. http://dx.doi.org/10.3390/metabo3041076.
Full textNguyen, Quoc-Thai, Maria E. Merlo, Marnix H. Medema, Andris Jankevics, Rainer Breitling, and Eriko Takano. "Metabolomics methods for the synthetic biology of secondary metabolism." FEBS Letters 586, no. 15 (February 15, 2012): 2177–83. http://dx.doi.org/10.1016/j.febslet.2012.02.008.
Full textMafakheri, Saeideh, and Akbar Karami. "Integrated Metabolomics and Phytochemical Genomics Approaches for Studies on St. John’s Wort." Natural Products Journal 10, no. 3 (June 16, 2020): 188–92. http://dx.doi.org/10.2174/2210315508666180723154923.
Full textNemat Alla, M., Amira El-Falla, and Madeha Hamed. "SECONDARY METABOLISM, ENZYMATIC ANTIOXIDANTS AND ANTIBACTERIAL ACTIVITIES AS SIGNALING TO SOME STRESS ELICITORS." Journal of Plant Production 3, no. 1 (January 1, 2012): 17–31. http://dx.doi.org/10.21608/jpp.2012.84025.
Full textEngelberth, Jürgen, Thomas Koch, Frank Kühnemann, and Wilhelm Boland. "Channel-Forming Peptaibols Are Potent Elicitors of Plant Secondary Metabolism and Tendril Coiling." Angewandte Chemie International Edition 39, no. 10 (May 15, 2000): 1860–62. http://dx.doi.org/10.1002/(sici)1521-3773(20000515)39:10<1860::aid-anie1860>3.0.co;2-f.
Full textAlcalde, Miguel Angel, Edgar Perez-Matas, Ainoa Escrich, Rosa M. Cusido, Javier Palazon, and Mercedes Bonfill. "Biotic Elicitors in Adventitious and Hairy Root Cultures: A Review from 2010 to 2022." Molecules 27, no. 16 (August 17, 2022): 5253. http://dx.doi.org/10.3390/molecules27165253.
Full textDissertations / Theses on the topic "Metabolomics, elicitors, secondary metabolism"
IULA, GIUSY. "Effetti degli elicitori biotici ed abiotici sul metabolismo secondario di piante di pomodoro." Doctoral thesis, Università Cattolica del Sacro Cuore, 2022. http://hdl.handle.net/10280/115285.
Full textPlants are sessile organisms and therefore, they are subject to different sources of abiotic and biotic stresses. Example of abiotic stresses includes radiation, salinity, floods, drought, extremes in temperature and heavy metals. Unlike vertebrates, plants lack mobile immune cells and an adaptive immune system therefore, they have evolved different strategies to perceive and respond to the stress. Unlike vertebrates, plants lack mobile immune cells and an adaptive immune system therefore, they have evolved different strategies to perceive and respond to the stress. The first layer of plant defense systems are physical barriers, the cuticle and the cell wall, that deny access to a wide range of microbes but, also reduce water loss and protect against UV radiation. In addition to these non- specific defense mechanisms, plants have evolved a sophisticated immune response activated by the perception of highly conserved molecular features of different classes of bacterial and fungal pathogens, referred to as microbe/pathogen- associated molecular patters (M/PAMPS). This results in the activation of a defense response referred to as M/PAMPS- trigged immunity (M/PTI). Despite the activation of this line of defense, some pathogens have evolved strategies to suppress M/PTI. To overcome this infection strategy, plant have evolved specialized immune receptors encoded by resistance (r) genes (R proteins) that recognize these pathogen- specific effectors, thereby leading to an amplified secondary immune response known as effector- trigged immunity (ETI). ETI is characterized by the induction of localized programmed cell death (PCD) (referred to as the hypersensitive response or HR) in order to limit the spread of the infection, activation of defence gene expression and, induction of systemic acquired resistance (SAR) to conferring broad spectrum resistance in plants. SAR increases plant defence not only at point of infection but from whole plant. The systemic plant resistance can also be mediated by beneficial microbes living in the rhizosphere, like bacteria and fungi, this kind of plant resistance is known as induced systemic resistance (ISR). ISR is associated with enhanced ability, the so- called “priming”, to resist to stress conditions. Pricing is a mechanism that does not involve a direct activation of plant defense machinery but, it is an improved of perception and/ or amplification of defense. Priming is an adaptive, low- cost defensive measure because defense responses are only, slightly and transiently, activated by a given priming stimulus. Following the perceptions of a second stress signal (triggering stimulus), defense responses are deployed in a faster, stronger, and/or more sustained manner. Priming can involve various layers of induced defense mechanisms that are active during different levels of plant- pathogen interactions. To better understand the intracellular pathways activated upon the priming phase, molecular studies of priming strategy have been performed. These studies have recorded chromatin changes and the accumulation of mRNA of genes with a signaling role in defense, of signaling proteins and plant recognition receptors (PRRS), metabolites, and other molecular components supporting a faster, stronger, and more sustained response to a triggering stress. However, the complete elucidation of molecular pathways activated upon the perception of primed stimulus is not truly clear therefore, further studies are required. The goal of this work is to investigate on molecular mechanism of priming in the induction of ISR in plants. Metabolomics is a new field of studies that able to detect and measure all the small- molecules, metabolites, present in a given moment into a biological system. Therefore, metabolomics can be the molecular tool to detect all the changes that occur in the plant cells upon the exposure to the pricing agent and it is the perfect tool to link the metabolic change in the cell to the phenotype. To this purpose, tomato (Solanum lycopersicum L.) has been selected as model plant due to its economic interest and because of its diverse secondary metabolism. Tomato plants were grown devoid of chemical or microbiological treatments until growth stage of 9 or more leaves on main shoot unfolded and treated with different priming elicitors: Muscular mycorrhizal fungi (AMF), Trichoderma spp., benzothiadizole as positive control, triazole fungicide, a combination of strobiulurin and triazole fungicide, chitosan molecule and acetic acid (since the chitosan compound is soluble in acid medium therefore, an additional control is required), salicylic acid, polyamine mixture and in presence on nitrogen deficiency and nitrogen surplus. For plants grown under nitrogen deficiency and nitrogen surplus a different grown medium was required to avoid interference, these plants were grown in coconut coir. Tomato plants were harvested after 15 days treatments with chemical compounds and Trichoderma spp. And after 30 days for AMF inoculation. For plants grown under nitrogen deficiency/ surplus the harvest was made at growth stage of first flower bud visible. After biomass of leaves was determined together with extraction of metabolites for UHPLC/qTOF-MS analysis to investigate on molecular pathways. The study demonstrated as plants inoculated with either Arbuscular mycorrhizal fungi (AMF) or Trichoderma spp. Showed a positive effect on plant growth increasing their biomass index. The same beneficial effect on plant growth was observed in plants grown with a nitrogen surplus. While, the biomass index was not increased when plants were treated with benzothiadizole, chitosan, polyamines, salicylic acid or two pesticides, one containing only triazole and second one containing a combination of triazole and strobilurin. Notwithstanding, a broad molecular cell re-programming was also observed to include some common responses between thesis. In particular, the phenylpropanoid biosynthetic pathway was strongly elicited, with the production of defense phenolics like coumarins, bis-noryangonin, anthocyanins, and their glycosylated form in tomato under biotic stress. While, under abiotic stress (benzothiadizole, nitrogen deficiency, nitrogen surplus, chitosan, polyamines, salicylic acid, triazole compounds and a combination of triazole and strobilurin) there was an over expression of quercetin, terpenoid, amide derivate and, also anthocyanins. Another important aspect was the remodeling of membrane lipids and the production of sphingolipids as signal molecules. Under abiotic stress the sterol/phospholipid ratio increased with increasing of membrane rigidity, changes in membrane permeability and activation of stress response to abiotic factors. While, in presence of nutritional alteration (both in deficiency and surplus) the membrane composition changed decreasing the sterol to phospholipid ratio increasing in membrane fluidity probably in one case to boost nutrient uptake and in second one to avoid an intoxication due to a high amount of nitrogen in the cell. At same time, the shaping of phytohormone profiles resulted in the accumulation of auxins, cytokinins, and jasmonate under biotic stress. While, under abiotic stress there was an increasing in gibberellin and cytokinins to boost pant defenses. The treatments with pesticides lead to an increasing in brassinosteroids involved in detoxification pathways. To conclude, the establishment of symbiosis between plant and AMF and Trichoderma impacted several plant secondary metabolism processes in a fashion that supports both plant growth promotion and immunity. While the stress induced by abiotic factors were demonstrated to active similar cellular re- programming. Even if treatments do not increase plant growth, they were efficiently to increase plant survival to future stresses.
Chen, Hui, and 陳輝. "Effects of elicitors on the secondary metabolism of crown gall and hairy root cultures of salvia miltiorrhiza." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B3123995X.
Full textBurdziej, Aleksandra. "Effect of selected elicitors on grapevine (Vitis vinifera) primary and secondary metabolism : focus on stilbenes and triterpenoids." Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0257.
Full textIn the frame of promoting sustainable vitiviniculture, the development of eco-friendly alternatives to synthetic chemical products for phytosanitary treatments against grapevine (Vitis vinifera) pests is gaining importance. One of the bio-control methods that can be proposed is the induction of plant immunity by using elicitors, also called plant defense stimulators (PDS), as these substances are biodegradable and, non-toxic to health and environment. A conferred resistance against various pathogens can be obtained with natural molecules acting most frequently through jasmonic acid (JA), salicylic acid (SA), and/or ethylene (ET) signaling pathways. These pathways are involved in the induction of defense-related genes such as those encoding enzymes responsible for the biosynthesis of stilbenes, which are the most important polyphenolic antimicrobial metabolites (phytoalexins) in Vitaceae. For vineyard protection, PDS can be applied as a complement for pesticides and not as a full replacement since their effectiveness is often variable according to pathogens and environmental conditions. In order to develop the strategies based on PDS use, more studies which could elucidate their mechanism of action are needed. The aim of this thesis was to examine the responses of grapevine to elicitors of different mode of action, as methyl jasmonate (MeJA), implicated in JA signaling pathway, 2,1,3-benzothiadiazole-7-carbothioic acid S-methyl ester (BTH), a synthetic analogue of SA, and phosphonates (PHOS), molecules of a double stimulator-fungicide action. Due to scarce information about steroids and pentacyclic triterpenoids in grapevine, their profile after PDS treatment were characterized in different grapevine experimental models using gas chromatography-mass spectrometry (GC-MS) analyses. Firstly, the effect of elicitation with MeJA was evaluated in cell suspension cultures (in vitro) of V. vinifera. An overproduction of bioactive pentacyclic triterpenoids occurred with differences according to the cultivar studied, i.e., acumulation of betulin and oleanolic acid or phytosterols was noted in respectively Petit Verdot, Gamay Teinturier and Cabernet Sauvignon cell suspension cultures. Then, elicitations were effectuated on the leaves of V. vinifera cv. Cabernet Sauvignon greenhouse cuttings. A stimulatory effect on the potentially defense-related pentacyclic triterpenoids at the expense of the biosynthesis of sterols, which are essential structural components of cell membranes, was shown. By the use of NeoVigen microarrays, and ultra-performance liquid chromatography-mass spectrometry (UHPLC-MS), the accumulation of defense-related transcripts and polyphenols (stilbenes, flavanols and flavonols) were noted after the three elicitors treatments. Grapevine protection conferred by these elicitors was confirmed on foliar discs against the biotrophic oomycete Plasmopara viticola, the causal agent of downy mildew. Furthermore, the impact of PDS on primary metabolism should be evaluated in order to ensure, in the longer term, the best trade-off between growth, yield and defense. Thus, a thorough metabolomic approach using proton nuclear magnetic resonance spectroscopy (1H-NMR) was performed. A reprogramming similar and/or specific to the elicitor applied was noted, particularly within carbohydrates, amino acids, and some of the Krebs cycle intermediates. The research presented in the current dissertation revealed that the thorough comprehension of the interaction between elicitor, plant molecular and metabolic responses and pathogen, is crucial for the development of effective protection strategies based on the use of PDS for grapevine diseases control
Chen, Hui. "Effects of elicitors on the secondary metabolism of crown gall and hairy root cultures of salvia miltiorrhiza /." Hong Kong : University of Hong Kong, 2000. http://sunzi.lib.hku.hk/hkuto/record.jsp?B22054911.
Full textDzakovich, Michael Paul. "Exploring metabolic and genetic diversity in tomato secondary metabolites." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595608017506091.
Full textHall-Ponselè, Andrew M. "Genetic engineering of the primary/secondary metabolic interface in tobacco BY-2 cells." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:be5a3ee3-33c7-455c-b043-409987395f98.
Full textBoutant, Marc. "Etude comparative du métabolisme des lipides chez Streptomyces coelicolor en culture avec le glucose ou le glycérol comme source de carbone." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS507.
Full textStreptomyces are filamentous Gram positive bacteria found in the soil upper layers. The model strain S. coelicolor M145 can produce antiobiotics and accumulate low levels of triacylglycerol when cultivated with glucose or glycerol as carbon source. This strain produces actinorhodin only when glycerol is used as carbone source, but the fatty acids accumulation as esterified oleic acid occurs with both carbon sources. However, the fatty acids accumulation only last for a short period of time, and afterward, a production of secondary metabolites is observed and the previously accumulated fatty acids are consummed. Those results suggest that the carbon source act as an effector for the production of secondary metabolites and the lipids metabolism is some ways linked to the secondary metabolism. With this work, we will try to establish the links between the primary and secondary metabolism via the lipids metabolism with S. coelicolor. First, in order to obtain cultures with an exponential growth phase and a non-exponential growth phase under a nitrogen limitation, a synthetic media and fed-batch feeding strategies have been designed. The nitrogen limitation is usually used to study lipids accumulation with oleaginous microorganisms such as Yarrowia lipilytica or Rhodotorula glutinis, and also during studies of antibiotics production with Streptomyces. The metabolomics study paired with the proteomics study made possible to establish the global directions of carbon, energy and reduced power fluxes during all the obtained growth phases. This work also showed that the microbial population is heterogeneous and 2 to 3 subpopulations can coexist with both carbon sources. The proteomics temporal changes and in particular of transciptional regulators show some late reactions to the nitrogen limitation especially when glycerol is used, probably because of the intracellular accumulation of effector compounds over time, and because of growth kinetics
Burdziej, Aleksandra. "Effect of selected elicitors on grapevine (Vitis vinifera) primary and secondary metabolism: focus on stilbenes and triterpenoids." Doctoral thesis, 2020. https://depotuw.ceon.pl/handle/item/3838.
Full textRozwój przyjaznych dla środowiska alternatywnych metod ochrony winorośli (Vitis vinifera) przeciw szkodnikom zyskuje na znaczeniu w kontekście zapobiegania nadmiernemu użyciu pestycydów i promowania zrównoważonego rolnictwa. Indukcja naturalnej obrony roślin poprzez działanie elicytorów (stymulatorów odporności roślin) jest jedną z najbardziej obiecujących metod kontroli biologicznej, jako że opiera się na zastosowaniu substancji biodegradowalnych i nietoksycznych dla środowiska i zdrowia ludzi. Elicytory zaaplikowane na roślinę wyzwalają w niej mechanizmy obronne, prowadząc do rozwijania odporności na kolejne ataki patogenów. Percepcja elicytora uruchamia szlaki sygnałowe, z których najbardziej kluczowe są te związane z kwasem salicylowym (SA), kwasem jasmonowym (JA) lub etylenem (ET). Konsekwencje aktywowania kaskady reakcji odpornościowych to m.in. indukcja ekspresji genów związanych z obroną, np. kodujących białka związane z patogenezą (PR), czy enzymy odpowiedzialne za biosyntezę wyspecjalizowanych metabolitów o właściwościach przeciwdrobnoustrojowych (przede wszystkim stilbenów u roślin z rodziny Vitaceae). Stymulatory odporności roślin są obecnie stosowane jako uzupełnienie pestycydów, a nie jako środek zastępczy, ponieważ ich skuteczność jest często zmienna w zależności od konkretnego patogena i warunków środowiskowych. W celu opracowania strategii ochrony winorośli przed chorobami całkowicie opartych na elicytorach, potrzeba jest wielu badań, które pozwolą m.in. wyjaśnić mechanizm działania tych środków. Celem niniejszej pracy było zbadanie odpowiedzi winorośli na elicytory o różnej aktywności biologicznej: jasmonian metylu (MeJA), związany ze szlakiem sygnałowym JA, benzotiadiazol (BTH), syntetyczny analog SA oraz sole fosforanowe (PHOS), o działaniu stymulującym, jak i grzybobójczym. Profil steroidów i triterpenoidów pentacyklicznych winorośli scharakteryzowano za pomocą chromatografii gazowej sprzężonej ze spektrometrią mas (GC-MS). Potencjalny wpływ MeJA na profil triterpenoidów oceniono w hodowlach zawiesin komórkowych in vitro V. vinifera. W zależności od badanej odmiany, zaobserwowano wzmożoną biosyntezę triterpenoidów pentacycklicznych, takich jak betulina (Petit Verdot) i kwas oleanolowy (Gamay Teinturier), a także fitosteroli (Cabernet Sauvignon). W elicytowanych liściach szklarniowych sadzonek Cabernet Sauvignon, wykazano konkurencyjność szlaków biosyntezy triterpenoidow, tzn. zwiększona akumulacja triterpenoidow pentacyklicznych, związanych z chemiczną obroną roślin, odbyła się kosztem biosyntezy steroli, związków niezbędnych dla budowy i funkcjonowania błon komórkowych. Dzięki analizom z wykorzystaniem mikromacierzy NeoVigen i ultrasprawnej chromatografii cieczowej ze spektrometrią mas (UHPLC-MS), w liściach poddanych elicytacji stwierdzono akumulację transkryptów związanych z obroną oraz zwiększoną zawartość polifenoli (stilbenów, flawanoli i flawonoli). Biotesty na krążkach liściowych wykazały, że badane elicytory nadały odporność liściom przeciwko Plasmopara viticola, tj. patogenowi wywołującemu mączniaka rzekomego. Ponadto, badanie wpływu elicytorów na metabolizm pierwotny jest istotny w celu zapewnienia roślinie swoistego kompromisu między aktywowaniem kosztownych energetycznie mechanizmów obronnych, a utrzymaniem prawidłowego funkcjonowania podstawowych procesów fizjologicznych. Badania metabolomiczne z wykorzystaniem spektroskopii protonowego jądrowego rezonansu magnetycznego (1H-NMR) wykazały szereg istotnych zmian w profilu węglowodanów, aminokwasów i niektórych substratów cyklu Krebsa w liściach poddanych elicytacji. Wyniki badań przedstawione w niniejszej rozprawie wykazują, iż dokładne zrozumienie interakcji między elicytorem, odpowiedzią molekularną i metaboliczną rośliny a patogenem, ma kluczowe znaczenie dla rozwoju skutecznych strategii obrony winorośli przed chorobami, opartych na stymulatorach odporności roślin.
BRASILI, ELISA. "A non-targeted metabolomics approach to evaluate the effects of biomass growth and chitosan elicitation on primary and secondary metabolism of Hypericum perforatum in vitro roots." Doctoral thesis, 2014. http://hdl.handle.net/11573/917126.
Full textBooks on the topic "Metabolomics, elicitors, secondary metabolism"
Fungal Secondary Metabolism Methods in Molecular Biology Hardcover. Humana Press, 2012.
Find full textBook chapters on the topic "Metabolomics, elicitors, secondary metabolism"
Selvakesavan, Rajendran K., Dariusz Kruszka, Preeti Shakya, Dibyendu Mondal, and Gregory Franklin. "Impact of Nanomaterials on Plant Secondary Metabolism." In Nanomaterial Interactions with Plant Cellular Mechanisms and Macromolecules and Agricultural Implications, 133–70. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20878-2_6.
Full textConstabel, F. "Elicitors in in Vitro Cultures." In Primary and Secondary Metabolism of Plant Cell Cultures II, 297–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74551-5_33.
Full textMatsuda, Fumio, and Kazuki Saito. "Integrative Analysis of Secondary Metabolism and Transcript Regulation inArabidopsis Thaliana." In The Handbook of Plant Metabolomics, 175–95. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527669882.ch9.
Full textV. Yemelyanov, Vladislav, Roman K. Puzanskiy, Mikhail S. Burlakovskiy, Lyudmila A. Lutova, and Maria F. Shishova. "Metabolic Profiling of Transgenic Tobacco Plants Synthesizing Bovine Interferon-Gamma." In Metabolomics - Methodology and Applications in Medical Sciences and Life Sciences. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96862.
Full textJeyapragash, Danaraj, Ayyappan Saravanakumar, and Mariasingarayan Yosuva. "Seagrass Metabolomics: A New Insight towards Marine Based Drug Discovery." In Metabolomics - Methodology and Applications in Medical Sciences and Life Sciences. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97875.
Full textConference papers on the topic "Metabolomics, elicitors, secondary metabolism"
Mannochio-Russo, H., R. F. de Ameida, Bueno PCP, A. Bauermeister, A. M. Caraballo-Rodríguez, P. C. Dorrestein, and V. S. Bolzani. "Untargeted metabolomics sheds light on the secondary metabolism of Malpighiaceae family." In GA – 69th Annual Meeting 2021, Virtual conference. Georg Thieme Verlag, 2021. http://dx.doi.org/10.1055/s-0041-1736863.
Full textReports on the topic "Metabolomics, elicitors, secondary metabolism"
Fait, Aaron, Grant Cramer, and Avichai Perl. Towards improved grape nutrition and defense: The regulation of stilbene metabolism under drought. United States Department of Agriculture, May 2014. http://dx.doi.org/10.32747/2014.7594398.bard.
Full text