Dissertations / Theses on the topic 'Metabolomics and trascriptomics analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Metabolomics and trascriptomics analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
GUARNERIO, Chiara Francesca. "Effects of enod40 overexpression in non legume plants." Doctoral thesis, Università degli Studi di Verona, 2010. http://hdl.handle.net/11562/343215.
Full textENOD40 is an Early Nodulin gene that it is know to play a key role in nodule formation in response to interaction of legume plants with symbiotic Rhizobium bacteria. Homologues of ENOD40 genes have been identified in several plant species and its expression is observed during the initiation and development of new organs, such as nodules, lateral roots, young leaves and stipule primordia. ENOD40 gene has an unusual structure: it lacks a long open reading frame, but several short ORFs are present. Moreover, at nucleotide level, two regions, named box1 and box2, are highly conserved among all ENOD40 genes. In box 1 region, a highly conserved ORF (ORF 1) is present and it seems to encode a putative peptide of 10-13 amino acids. Furthermore, the gene contains regions corresponding to conserved secondary structures of the transcript. Six domains were identified in ENOD40 mRNA and two of these domains are strongly conserved among legume and non legume species. Despite several researches, the roles of the ENOD40 gene has not been so far completely elucidated. Moreover, whether the biological activity should be ascribed to RNA or peptide, or both, is still unclear. For this reason, the two main goals of the research are: to investigate the possible presence of the putative peptide encoded by box1 of the ENOD40 gene in BY-2 cells and to investigate the role of ENOD40 gene in non legume plants, using Arabidopsis thaliana. That ENOD40 could act, at least in part, through the peptide encode by box1 is suggested by several observations, but no one have revealed biochemically the putative peptide. In the first part of the work a purification procedure consisting of membrane cut-off, ion exchange chromatography, solid exchange extraction, HPLC-DAD and mass spectrometry (LC-ESI-MS and MALDI-TOF) was set up to search for the putative peptide in BY-2 cells overexpressing NtENOD40 gene. Unfortunately, despite several attempts to set up the purification procedure and the different and sensitive techniques used for the analysis of the putatively peptide-enriched fractions, only MALDI-TOF PSD analysis gave an initial clue of the possible presence of the peptide in ENOD40 overexpressing BY2 cells. In the second part of the work, the possible role of the gene has been investigated through the metabolomics and transcriptomics characterization of ENOD40 overexpressing Arabidopsis plants. Metabolite and transcriptional profiles of the three Arabidopsis lines overexpressing soybean ENOD40 gene were acquired and compared to those obtained from wild type plants. Afterward, biomarker analysis of metabolomic and transcriptomic dataset was used in order to identify the metabolites and transcripts that showed the higher correlation with the overexpression of ENOD40 gene. In the metabolite profiles, glucosinolate metabolites characterized all the three transformed lines compared with the wild type, while flavonoids mainly characterized wild type plants. With regard to transcriptional profiling, most of the genes upregulated in the three transformed lines (twelve out of twenty-three), were correlated with processes occurring in the cell wall. Thus, the cell wall is the mechanical determinant of cell shape and size ENOD40 gene could be involved in a process that controls the composition and the dynamics of the cell wall. In conclusion, previous morphological studies on the same Arabidopsis thaliana ENOD40 transformed lines used in this work have been showed that these plants are characterised by normal organs containing smaller cells, and on ENOD40 transfected Arabidopsis protoplasts are characterized by reduced expansion, suggested that the gene could have some role in keeping the cells in a “young” state . The observation that ENOD40 transformed Arabidopsis lines accumulate high levels of glucosinolates, that are typical of the young tissues, suggests that, also from the metabolic point of view, the transformed cells have features typical of younger cells, whereas wild type cells use their metabolic resources to accumulate flavonoids, another class of secondary metabolites more typical of differentiated state. With regard to transcriptomic analysis, since transformed plants are morphologically characterized by small cell size, the genes upregulated in the transformed lines, involved in cell wall dynamics and composition, could be involved in the prevention of cell expansion. The role of ENOD40 in maintenance of cells in a “young state” is also supported by the expression patterns of ENOD40 genes reported in literature.
Yet, Idil. "Integrated epigenomics and metabolomics analysis in twins." Thesis, King's College London (University of London), 2016. https://kclpure.kcl.ac.uk/portal/en/theses/integrated-epigenomics-and-metabolomics-analysis-in-twins(4d0fb76b-cc2b-4e31-8950-a7ffb5b91363).html.
Full textMuhamad, Ali Howbeer. "Metabolomics investigation of microbial cell factories." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/metabolomics-investigation-of-microbial-cell-factories(2e2f5f58-d38a-4c77-966b-56ce92aec619).html.
Full textKlünder, Christina. "Metabolomics for toxicity analysis using the chlorophyte Scenedesmus vacuolatus /." Leipzig [u.a.], 2009. http://www.ufz.de/data/ufzdiss_2_2009_9947.pdf.
Full textGloaguen, Yoann. "Supporting analysis, visualisation and biological interpretation of metabolomics datasets." Thesis, University of Glasgow, 2017. http://theses.gla.ac.uk/8433/.
Full textAbdelrazig, Salah M. A. "Mass spectrometry for high-throughput metabolomics analysis of urine." Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/30600/.
Full textBeisken, Stephan Andreas. "Informatics for tandem mass spectrometry-based metabolomics." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708325.
Full textDuffy, Kate I. "Application of metabolomics to the analysis of ancient organic residues." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5670/.
Full textDaub, Carsten O. "Analysis of integrated transcriptomics and metabolomics data a systems biology approach /." [S.l. : s.n.], 2004. http://pub.ub.uni-potsdam.de/2004/0025/daub.pdf.
Full textDaub, Carsten Oliver. "Analysis of integrated transcriptomics and metabolomics data : a systems biology approach." Phd thesis, Universität Potsdam, 2004. http://opus.kobv.de/ubp/volltexte/2005/138/.
Full textWir verwenden das informationstheoretische Konzept der wechselseitigen Information, das ursprünglich für diskrete Daten definiert ist, als Ähnlichkeitsmaß und schlagen eine Erweiterung eines für gewöhnlich für die Anwendung auf kontinuierliche biologische Daten verwendeten Algorithmus vor. Wir vergleichen unseren Ansatz mit bereits existierenden Algorithmen. Wir entwickeln ein geschwindigkeitsoptimiertes Computerprogramm für die Anwendung der wechselseitigen Information auf große Datensätze. Weiterhin konstruieren und implementieren wir einen web-basierten Dienst fuer die Analyse von integrierten Daten, die durch unterschiedliche Messmethoden gemessen wurden. Die Anwendung auf biologische Daten zeigt biologisch relevante Gruppierungen, und rekonstruierte Signalnetzwerke zeigen Übereinstimmungen mit physiologischen Erkenntnissen.
Recent high-throughput technologies enable the acquisition of a variety of complementary data and imply regulatory networks on the systems biology level. A common approach to the reconstruction of such networks is the cluster analysis which is based on a similarity measure.
We use the information theoretic concept of the mutual information, that has been originally defined for discrete data, as a measure of similarity and propose an extension to a commonly applied algorithm for its calculation from continuous biological data. We compare our approach to previously existing algorithms. We develop a performance optimised software package for the application of the mutual information to large-scale datasets. Furthermore, we design and implement a web-based service for the analysis of integrated data measured with different technologies. Application to biological data reveals biologically relevant groupings and reconstructed signalling networks show agreements with physiological findings.
Grinde, Maria Tunset. "Characterization of breast cancer using MR metabolomics and gene expression analysis." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for sirkulasjon og bildediagnostikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19447.
Full textAhmed, Mohamed Fathi Youssef Mohamed. "Development of computational analysis tools for natural products research and metabolomics." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215499.
Full textBACCOLO, GIACOMO. "Chemometrics approaches for the automatic analysis of metabolomics GC-MS data." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/374731.
Full textMetabolomics, which consists of identifying all the metabolites present in the biological samples analysed, is an approach widely applied in various research fields such as biomarker identification, new drug development, food and environmental sciences. Metabolomics is closely linked to the ability of analytical techniques, one of the most widely applied being gas chromatography coupled to mass spectrometry. Modern analytical platforms can generate hundreds of thousands of spectra, detecting an impressive number of distinct molecules. Despite the technical progress achieved on the experimental side, the conversion of signals measured by instruments into useful information is not an obvious step in metabolomic studies. For each identified compound, the goal is to obtain the relative concentration among all analysed samples and the mass spectrum associated with the compound needed to identify the molecule itself. The software available for analysing experimental data has repeatedly been cited as a major source of uncertainty, severely limiting both the quantity and quality of the information extracted. The most applied tools are based on univariate data analysis, considering each sample separately from the others and requiring the operator to set several parameters, affecting the result of the analysis. In this thesis, a new approach, called AutoDise, for the analysis of GC-MS data is described. The processing of the experimental signals is based on PARAFAC2. PARAFAC2 is a model that decomposes multidimensional data, discriminating between different signals in the samples. Due to its properties, PARAFAC2 does not need the data to be pre-processed and does not require parameters to be set, whereas software used in this field requires several parameters to be defined and laborious pre-processing of the data, requiring the intervention of an expert user, and the reproducibility of the results is limited, depending on the parameters chosen by the user. However, fitting PARAFAC2 models involves several steps and an experienced analyst is needed to analyse and interpret the models. AutoDise is an expert system capable of handling all modelling steps and generating a peak table in which each compound is uniquely identified, with fully reproducible results. This is possible thanks to the combination of different diagnostic tools and the application of artificial intelligence models. The performance of the approach was tested on a complex dataset of olive oils obtained by GC-MS analysis. The data were analysed both manually, by experienced users, and automatically with the proposed AutoDise method and the resulting peak tables were compared. The results show that AutoDise outperforms manual analysis both in terms of the number of compounds identified and the quality of identification and quantification. In addition, a GUI was developed to make the algorithm more accessible to people not skilled in the programming language. The thesis includes a tutorial showing the main features and how to use the GUI. Another important part of the thesis was devoted to testing and developing new artificial neural networks to be implemented in the AutoDise software to detect which PARAFAC2 components are providing chemically useful information. To this end, more than 170,000 profiles were manually labelled in order to train, validate and test a convolutional neural network and a bilinear network with short-term memory and a k-nearest neighbour model. The results suggest that deep learning networks can be effectively applied for the automatic classification of chromatographic profiles.
Johnsson, Anna. "Mining for Lung Cancer Biomarkers in Plasma Metabolomics Data." Thesis, Linköping University, Biotechnology, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-57670.
Full textLung cancer is the cancer form that has the highest mortality worldwide and inaddition the survival of lung cancer is very low. Only 15% of the patients are alivefive years from set diagnosis. More research is needed to understand the biologyof lung cancer and thus make it possible to discover the disease at an early stage.Early diagnosis leads to an increased chance of survival. In this thesis 179 lungcancer- and 116 control samples of blood serum were analyzed for identificationof metabolomic biomarkers. The control samples were derived from patients withbenign lung diseases.Data was gained from GC/TOF-MS analysis and analyzed with the help ofthe multivariate analysis methods PCA and OPLS/OPLS-DA. In this thesis it isinvestigated how to pre-treat and analyze the data in the best way in order todiscover biomarkers. One part of the aim was to give directions for how to selectsamples from a biobank for further biological validation of suspected biomarkers.Models for different stages of lung cancer versus control samples were computedand validated. The most influencing metabolites in the models were selected andconfoundings with other clinical characteristics like gender and hemoglobin levelswere studied. 13 lung cancer biomakers were identified and validated by raw dataand new OPLS models based solely upon the biomarkers.In summary the identified biomarkers are able to separate fairly good betweencontrol samples and late lung cancer, but are poor for separation of early lungcancer from control samples. The recommendation is to select controls and latelung cancer samples from the biobank for further confirmation of the biomarkers.NyckelordLung cancer is the cancer form that has the highest mortality worldwide and inaddition the survival of lung cancer is very low. Only 15% of the patients are alivefive years from set diagnosis. More research is needed to understand the biologyof lung cancer and thus make it possible to discover the disease at an early stage.Early diagnosis leads to an increased chance of survival. In this thesis 179 lungcancer- and 116 control samples of blood serum were analyzed for identificationof metabolomic biomarkers. The control samples were derived from patients withbenign lung diseases.Data was gained from GC/TOF-MS analysis and analyzed with the help ofthe multivariate analysis methods PCA and OPLS/OPLS-DA. In this thesis it isinvestigated how to pre-treat and analyze the data in the best way in order todiscover biomarkers. One part of the aim was to give directions for how to selectsamples from a biobank for further biological validation of suspected biomarkers.Models for different stages of lung cancer versus control samples were computedand validated. The most influencing metabolites in the models were selected andconfoundings with other clinical characteristics like gender and hemoglobin levelswere studied. 13 lung cancer biomakers were identified and validated by raw dataand new OPLS models based solely upon the biomarkers.In summary the identified biomarkers are able to separate fairly good betweencontrol samples and late lung cancer, but are poor for separation of early lungcancer from control samples. The recommendation is to select controls and latelung cancer samples from the biobank for further confirmation of the biomarkers.Nyckelord
Öman, Tommy. "Multivariate Analysis of 2D-NMR Spectroscopy : Applications in wood science and metabolomics." Doctoral thesis, Umeå universitet, Kemiska institutionen, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-80201.
Full textSpicer, Rachel. "Fit for purpose? : a metascientific analysis of metabolomics data in public repositories." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/287634.
Full textAlonso, Arnald. "Bioinformatics methods for the genomics and metabolomics analysis of immune-mediated inflammatory diseases." Doctoral thesis, Universitat Politècnica de Catalunya, 2015. http://hdl.handle.net/10803/320191.
Full textDurant la darrera dècada, la genòmica ha jugat un paper clau en la caracterització de la base molecular de les malalties complexes. Els estudis d'associació de genoma complet (GWAS) han permès caracteritzar les regions genètiques que influencien fenotips humans tals com la susceptibilitat a desenvolupar malalties complexes. En metabolòmica, millores en les tecnologies analítiques han impulsat l'obtenció de perfils metabolòmics en grans cohorts de mostres. Els estudis resultants han demostrat també un gran potencial per a identificar biomarcadors d'utilitat en malalties humanes. L'aplicació de les tecnologies high-throughput permet generar grans conjunts de dades de variació biològica i l'extracció de la informació rellevant requereix l'aplicació de potents eines bioinformàtiques. Aquesta tesi es centra en el desenvolupament de nous mètodes per a millorar i agilitzar el processat de dades genòmiques i metabolòmiques high-throughput, així com la seva posterior implementació en forma d'aplicacions bioinformàtiques. Aquestes aplicacions s'han incorporat al flux d'anàlisi del consorci IMID (malalties inflamatòries mediades per immunitat). Aquest consorci és una xarxa espanyola d'investigadors biomèdics amb l'interès comú de l'estudi de malalties autoimmunes i disposa d'una de les col·leccions de mostres més extenses de pacients d'aquestes malalties. La primera eina bioinformàtica implementada consisteix en un conjunt d'algoritmes que integren el genotipat de polimorfismes de nucleòtid simple i variacions de nombre de còpies sobre dades de microarrays de genotipat. Aquesta eina, anomenada GStream, incorpora de forma eficient tot el flux d'anàlisi necessari per al genotipat en GWAS. S'ha demostrat que els algoritmes desenvolupats milloren significativament la precisió del genotipat i augmenten el nombre de variants genètiques identificades respecte a les metodologies anteriors. La utilització d'aquesta eina permet doncs ampliar el nombre de variants genètiques analitzades, incrementant de forma significativa el poder estadístic dels estudis genètics GWAS. La segona eina desenvolupada ha estat FOCUS. Es tracta d'una eina bioinformàtica integrada que inclou totes les etapes de processat d'espectres de ressonància magnètica nuclear per a estudis de metabolòmica. El flux d'anàlisi inclou el control de qualitat, l'alineament/quantificació de pics espectrals i la identificació dels metabolits associats als pics quantificats. Tots els algoritmes han estat dissenyats per a corregir els biaixos que limiten considerablement la qualitat dels resultats i que són un dels reptes tècnics de la metabolòmica actual. FOCUS obté una matriu numèrica d'alta qualitat llesta per a l'anàlisi quimiomètric, i genera uns scores d'identificació que simplifiquen la interpretació biològica dels resultats. FOCUS ha assolit un rendiment significativament superior al de metodologies prèvies. Aquesta tesi conclou amb el primer GWAS de fenotips clínics de malaltia de Crohn. Aquesta malaltia IMID és la malaltia inflamatòria intestinal de major prevalença i és molt heterogènia, amb pacients que presenten graus molt diferents de gravetat. La identificació de variants genètiques associades als fenotips d'aquesta malaltia és, per tant, un dels objectius més rellevants per a la investigació translacional. Un total de 17 fenotips han estat analitzats utilitzant cohorts de descobriment i validació per tal d'identificar i replicar loci de risc associats a cadascun d'ells. Els resultats de l'estudi han permès identificar, per primer cop, regions genètiques associades a l'evolució de la malaltia i a la seva localització. Aquests resultats són de gran rellevància ja que no tan sols han permès identificar noves vies biològiques associades a fenotips clínics, sinó que també demostren, per primer cop, la existència d'un component genètic de la heterogeneïtat a la malaltia de Crohn i que és independent de la variació genètica associada al risc de patir la malaltia.
Porter, Sarah Elizabeth Graham. "Chemometric analysis of multivariate liquid chromatography data : applications in pharmacokinetcs, metabolomics and toxicology /." Available to VCU users online at:, 2006. http://hdl.handle.net/10156/1816.
Full textPorter, Sarah Elizabeth Graham. "Chemometric Analysis of Multivariate Liquid Chromatography Data: Applications in Pharmacokinetics, Metabolomics, and Toxicology." VCU Scholars Compass, 2006. http://scholarscompass.vcu.edu/etd/1156.
Full textDavenport, Peter William. "A metabolomics-based analysis of acyl-homoserine lactone quorum sensing in Pseudomonas aeruginosa." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274674.
Full textTengstrand, Erik. "Data analysis of non-targeted mass spectrometry experiments." Doctoral thesis, Stockholms universitet, Institutionen för miljövetenskap och analytisk kemi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-116820.
Full textAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Submitted.
Shiryaeva, Liudmila. "Proteomics and metabolomics in biological and medical applications." Doctoral thesis, Umeå universitet, Kemiska institutionen, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-43520.
Full textKopka, Joachim. "Applied metabolome analysis : exploration, development and application of gas chromatography-mass spectrometry based metabolite profiling technologies." Thesis, Universität Potsdam, 2008. http://opus.kobv.de/ubp/volltexte/2010/4059/.
Full textDie Aufnahme von Nährstoffen und ihre chemische Umwandlung mittels Reaktionen, die Energie und Baustoffe für Wachstum und Vermehrung bereitstellen, ist eine grundlegende Eigenschaft des Lebens. Diese Eigenschaft wird Stoffwechsel oder, wie im Folgenden, Metabolismus genannt. Im Verlauf der Evolution war alles Leben abhängig von solchen Reaktionen, die essentielle und allen Lebensformen gemeinsame Moleküle erzeugen. Über diese sogenannten Primärmetabolite hinaus sind hochdiverse Reaktionen entstanden. Diese erlauben Organismen, einzigartige sogenannte Sekundärmetabolite zu produzieren, die in der Regel einen zusätzlichen Überlebensvorteil vermitteln. Die Gesamtheit aller Metabolite, die von dem komplexen Reaktionsnetzwerk in Organismen erzeugt werden, nennt man seit 1998 das Metabolom. Die Größe des Metaboloms kann nur geschätzt werden. Neben der Gesamtheit aller Metabolite werden heute drei weitere Arten an Molekülen als wesentlich betrachtet, um die Phänomene des Lebens zu verstehen: erstens die Proteine, deren Summe, das Proteom, auch die Enzyme einschließt, die die obigen metabolischen Reaktionen durchführen, zweitens die Ribonukleinsäuren (RNS), deren Gesamtheit als Transkriptom bezeichnet wird, und drittens die doppelsträngige Desoxyribonukleinsäure (DNS), die das Genom, die Summe aller Gene eines Organismus, ausmacht. Die Untersuchung aller dieser vier molekularen Ebenen des Lebens erfordert Technologien, die idealerweise die vollständige Analyse der Gesamtheit aller DNS-, RNS-, Protein-Moleküle, bzw. Metabolite erlauben. Zu Beginn meiner Arbeiten waren solche Technologien für DNS, RNS, und Proteine verfügbar, aber nicht für Metabolite. Aus diesem Grund habe ich meine Forschungstätigkeit auf das Ziel ausgerichtet, so viele Metabolite wie irgend möglich in einer gemeinsamen Analyse zu erfassen. Zu diesem Zweck habe ich mich auf eine einzelne Technik, nämlich die gekoppelte Gaschromatographie und Massenspektrometrie, kurz GC-MS, konzentriert. Nicht zuletzt durch meine Arbeiten ist GC-MS heute eine der am häufigsten angewandten Technologien und unverzichtbar für das breite Durchmustern der Metabolite. Neben der Etablierung der grundlegenden GC-MS-Profilanalyse-Technologie liegen die Haupterrungenschaften meiner Arbeiten sowohl in den technischen Neuerungen als auch in den Einsichten in metabolische Mechanismen, die es Pflanzen erlauben, erfolgreich auf Umwelteinflüsse zu reagieren. Die technologischen Errungenschaften waren erstens wesentliche Beiträge zur Labor-Automatisierung und zur Auswertung von modernen, auf Flugzeitmassenspektrometrie beruhenden, GC-MS-Profilanalysen, zweitens die Entwicklung einer entsprechenden Prozessierungs-Software, genannt TagFinder, und drittens die Etablierung einer internationalen Datensammlung zur Metabolitidentifizierung aus komplexen Mischungen. Diese massenspektralen und gaschromatographischen Daten haben seit 2005 Eingang in die von mir initiierte Entwicklung der Golm Metabolom Datenbank (GMD) gefunden, die die zunehmend wachsenden GC-MS-Referenzdaten wie auch die Metabolitprofildaten verwaltet und öffentlich zugänglich macht. Darüber hinaus wurden die langfristigen Ziele einer verbesserten Präzision für relative und absolute Quantifizierung wie auch einer Kopplung von Konzentrationsbestimmung und metabolischen Flussanalysen mittels GC-MS verfolgt. Sowohl die Stoffmengen als auch die Geschwindigkeit der Stoffaufnahme und der chemischen Umsetzung, d.h. der metabolische Fluss, sind wesentlich für neue biologische Einsichten. In diesem Zusammenhang wurde von mir die Aufnahme von CO2 durch Pflanzen, der Basis allen Lebens auf der Erde, untersucht. Angewandt auf das Temperaturstress- und Salzstressverhalten von Modell- und Kulturpflanzen, nämlich des Ackerschmalwands (Arabidopsis thaliana), des Hornklees (Lotus japonicus) und der global bedeutendsten Nutzpflanze Reis (Oryza sativa), wurden detaillierte und vergleichende neue metabolische Einsichten in den Zeitverlauf der Temperaturanpassung und die Anpassung an zunehmend salzhaltige Böden erzielt. Metabolismus verändert sich unter diesen Bedingungen allmählich fortschreitend und nicht in plötzlichen Übergängen. Am Beispiel des Hornklees konnte gezeigt werden, dass Metabolitprofilanalysen eine hohe Vorhersagekraft für die Biomasseerzeugung unter Salzeinfluss wie auch für die Aufnahme von Salz durch die Pflanze haben. So mag es in Zukunft möglich werden, GC-MS-Profilanaysen anzuwenden, um den Züchtungsprozess von Kulturpflanzen zu beschleunigen.
Näsström, Elin. "Diagnosis of acute and chronic enteric fever using metabolomics." Doctoral thesis, Umeå universitet, Kemiska institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-140188.
Full textFernández, Albert Francesc. "Machine learning methods for the analysis of liquid chromatography-mass spectrometry datasets in metabolomics." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/283980.
Full textUawisetwathana, Umaporn. "Metabolomics analysis of brown planthopper (BPH)-resistant traits in Thai Jasmine rice (Oryza sativa)." Thesis, Queen's University Belfast, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.696327.
Full textPalisi, Angelica. "NMR-based metabolomic analysis of biological fluids to monitor relevant unsolved diseases." Doctoral thesis, Universita degli studi di Salerno, 2017. http://hdl.handle.net/10556/2565.
Full textMetabolomics and metabonomics encompass the comprehensive profiling of multiple metabolite concentrations and their cellular and systemic fluctuations in response to drugs, diet, lifestyle, environment, stimuli and genetic modulations, in order to characterize the beneficial and adverse effects of such interactions. In the context of biomedical applications, metabolomics will have a preferential role with respect to the other "Omics" sciences for its ability to detect in real time the response of the organisms to pathological stressors. The application of the NMR technique for the metabolomics analysis was applied to bio-fluids deriving from populations of patients respectively affected by salivary gland tumor, antiphospholipid autoimmune syndrome and altered lipid profile. This NMR metabolomic screening was aimed i) at the definition of a metabolomic profile that may be patognomonic of the disease under scrutiny and ii) at the identification of biomarkers to be used with diagnostic and prognostic scope. In the present work, we present a NMR-based metabolomic study of saliva of patients suffering of salivary gland tumors. Our data show that individuals suffering parotid tumor have a characteristic metabolomic profile with abnormalities associated to the metabolism of acetate, alanine, lactate, methanol, phenylalanine, propionate, succinate. We have identified for the first time the metabolomic fingerprint characterizing parotid tumor patients disease having potential application to improve timely diagnosis and appropriate therapeutic approaches. Salivary gland tumor, as many other cancers, is a complex disease, resulting from an interdependent series of biochemical alterations, rather than a single disruptive event. In this case our approach aimed at the identification of a panel of metabolite markers rather than a single biomarker, will improve the sensitivity and specificity for detection. Integrating the protocols of tumor grading and histological classification. Our NMR-based metabolomic study revealed different metabolomic profiles in saliva of male patients affected by salivary gland tumors compared with the profiles of age, gender, and sampling-date matched control individuals. Our approach provide preliminary data for the identification of metabolites that can be used as metabolomics fingerprint of salivary gland tumor. Determination of metabolomics fingerprint, rather than single metabolic biomarker, may fully reflect the multifactorial nature of oncogenesis and the heterogeneity of oncogenic pathways, providing precious elements to integrate diagnostic laboratory and clinical tests. Antiphospholipid syndrome (APS) is a rheumatic inflammatory chronic autoimmune disease inducing hypercoagulable state associated with vascular thrombosis and pregnancy loss in women. Cardiac, cerebral and vascular strokes in these patients are responsible for reduction in life expectancy. Timely diagnosis and accurate monitoring of disease is decisive to improve the accuracy of therapy. In the present work, we present a NMR-based metabolomic study of blood sera of APS patients. Our data show that individuals suffering APS have a characteristic metabolomic profile with abnormalities associated to the metabolism of methyl group donors, ketone bodies and amino acids. We have identified for the first time the metabolomic fingerprint characterizing APS disease having potential application to improve APS timely diagnosis and appropriate therapeutic approaches. The first stratification of APS patients according to the gender offers preliminary indications for the management of the disease according to the gender oriented medicinal approach. Human serum includes a large number of components which derive from endogenous metabolism and nutritional intake. Serum components vary in response to diet. Serum lipid composition is probably the most important benchmark in assessing cardiovascular risk and disease progression. Serum components, also derived from nutritional intake, can affect general metabolism and, more specifically, affect molecular mechanisms and pathways linking nutritional intake and chronic disease risk. To identify the effect exerted by altered lipid composition on the genome expression pattern, response of gene expression to serum samples from hypercholesterolemic and normocholesterolemic male subjects was previously studied. In the present part of my PhD thesis, using a NMR metabolomics approach I studied the metabolomics profile of the aforementioned hypercholesterolemic and normocholesterolemic sera to correlate the previously identified trascriptomic signature of human hepatoma cells to the relative metabolomics profile. Hypercholesterolemic sera previously proved to increase in human hepatoma cells, the mRNA expression of HMGCS2, an enzyme involved in the pathway of keton bodies. Our NMR based metabolomics analysis evidences abnormal concentrations of metabolites involved in the keton bodies pathway. This indicates a correlation between the trascriptomic profile of hepatoma cells treated with hypercholesterolemic sera, and the metabolomics profile of the same sera. [edited by author]
La metabolomica e la metabonomica comprendono il profilo completo di numerosi metaboliti con riferimento alle varie concentrazioni e fluttuazioni sia cellulari che sistemiche in risposta a farmaci, dieta, stile di vita, influenza dell'ambiente, stimoli e modulazioni genetiche, al fine di caratterizzare gli effetti benefici e negativi di tali interazioni. Nel contesto delle applicazioni biomediche, la metabolomica avrà in futuro un ruolo preferenziale rispetto alle altre scienze 'omiche' per la possibilità di rilevare in tempo reale la risposta degli organismi agli stress patologici. L' applicazione della tecnica NMR è stata utilizzata per l' analisi metabolomica di bio-fluidi derivanti da popolazioni di pazienti affetti rispettivamente da tumore delle ghiandole salivari; da sindrome da antifosfolipidi; pazineti con profilo lipidico alterato. Questo screening metabolomico NMR è mirato i) alla definizione di un profilo metabolomico che potrebbe essere patognomonico delle malatte monitorate e ii) l'identificazione di biomarcatori da utilizzare in ambito diagnostico e prognostico. In questo studio metabolomico basato su analisi NMR della saliva di pazienti affetti dai tumori delle ghiandole salivari i nostri dati mostrano caratteristiche anomalie nel profilo metabolomico connesse con il metabolismo di acetato , alanina, lattato, metanolo, fenilalanina, propionato, succinato. Abbiamo identificato per la prima volta l'impronta digitale metabolomica che caratterizza pazienti con tumori della parotide con una potenziale applicazione per migliorare la diagnosi tempestiva ed un approccio terapeutico adeguato. I tumori alle ghiandole salivari, come molti altri tipi di cancro, sono patologie complesse, risultanti da una serie interdipendente di alterazioni biochimiche, piuttosto che un singolo evento dirompente. In questo caso, con un approccio rivolto all'identificazione di un panel di metaboliti marcatori, piuttosto che ad un singolo biomarcatore, miglioreranno ed aumenteranno la sensibilità e la specificità per il rilevament, integrando i protocolli diagnostici classici e la classificazione istologica. Il nostro studio metabolomico NMR-based ha rivelato diversi profili nella saliva di pazienti affetti da tumori delle ghiandole salivari, confrontati in base all' età e al sesso, abbinati con i controlli. Il “finger print”, piuttosto che i singoli biomarkers, può riflettere in pieno la natura multifattoriale ed etrogenea della oncogenesi , fornendo preziosi elementi per integrare i test diagnostici clinici e di laboratorio. La sindrome antifosfolipidi (APS) è una malattia autoimmune, reumatica, infiammatoria cronica associata ad uno stato di ipercoagulabilità: inducendo trombosi vascolari ed aborti spontaeni nelle donne. Ictus cerebrali e vascolari in questi pazienti sono responsabili della riduzione della aspettativa di vita: una diagnosi tempestiva ed un accurato monitoraggio della malattia è determinante per migliorare la precisione della terapia. Nel presente lavoro, vi presentiamo uno studio di metabolomica NMR su siero di pazienti affetti da APS. I nostri dati mostrano che gli individui che soffrono di APS hanno un profilo metabolomico caratteristico con anomalie del metabolismo associate ai donatori di gruppi metilici, di aminoacidi e corpi chetonici. Abbiamo identificato per la prima volta il “finger print” della sindrome da APS con la potenziale applicazione di migliorare la diagnosi tempestiva e favorire un approccio terapeutico adeguato. La prima stratificazione di pazienti APS pazienti in base al sesso offre indicazioni per la gestione della malattia secondo un approccio medico gender oriented. Il siero umano comprende un gran numero di componenti derivanti sia dal metabolismo endogeno sia dall' apporto nutrizionale i quali variano in risposta alla dieta. La composizione lipidica del siero è probabilmente il punto di riferimento più importante nella valutazione del rischio cardiovascolare e della progressione della malattia. Inoltre la composizione lipidica può influenzare il metabolismo e più in particolare, i percorsi molecolari che collegano l' apporto nutrizionale ed rischio di malattia cronica. L'effetto esercitato dalla composizione lipidica modificata sul pattern genomico in risposta all' espressione su campioni di siero da sogetti maschi ipercolesterolemici, confrontati con normocholesterolemici è stato oggetto di un precedente studio. Nell' ultimaparte di questa tesi di dottorato, utilizzando l'approccio metabolomico NMR ho studiato il profilo dei supramenzionati ipercolesterolemici e normocholesterolemici per correlare il profilo trascrittomico ottenuto dalle cellule epatiche umane con il profilo metabolomico del siero umano utilizzato per la cultura, mostrando una aumentata espressione di mRNA di HMGCS2, un enzima coinvolto nel percorso di corpi chetonici. Dall' analisi NMR sono emerse concentrazioni alterate di metaboliti coinvolti della via biosintetica dei corpi chetonici. Questo indica una correlazione tra il profilo trascriptomico di cellule epatiche trattate con sieri ipercolesterolemici, e il profilo metabolomica dei sieri stessi. [a cura dell'autore]
XV n.s. (XXIX )
Diaz, Sílvia de Oliveira. "Pregnancy and newborns disorders followed by urine metabolomics." Doctoral thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/13110.
Full textChapter 1 introduces the scope of the work by identifying the clinically relevant prenatal disorders and presently available diagnostic methods. The methodology followed in this work is presented, along with a brief account of the principles of the analytical and statistical tools employed. A thorough description of the state of the art of metabolomics in prenatal research concludes the chapter, highlighting the merit of this novel strategy to identify robust disease biomarkers. The scarce use of maternal and newborn urine in previous reports enlightens the relevance of this work. Chapter 2 presents a description of all the experimental details involved in the work performed, comprising sampling, sample collection and preparation issues, data acquisition protocols and data analysis procedures. The proton Nuclear Magnetic Resonance (NMR) characterization of maternal urine composition in healthy pregnancies is presented in Chapter 3. The urinary metabolic profile characteristic of each pregnancy trimester was defined and a 21-metabolite signature found descriptive of the metabolic adaptations occurring throughout pregnancy. 8 metabolites were found, for the first time to our knowledge, to vary in connection to pregnancy, while known metabolic effects were confirmed. This chapter includes a study of the effects of non-fasting (used in this work) as a possible confounder. Chapter 4 describes the metabolomic study of 2nd trimester maternal urine for the diagnosis of fetal disorders and prediction of later-developing complications. This was achieved by applying a novel variable selection method developed in the context of this work. It was found that fetal malformations (FM) (and, specifically those of the central nervous system, CNS) and chromosomal disorders (CD) (and, specifically, trisomy 21, T21) are accompanied by changes in energy, amino acids, lipids and nucleotides metabolic pathways, with CD causing a further deregulation in sugars metabolism, urea cycle and/or creatinine biosynthesis. Multivariate analysis models´ validation revealed classification rates (CR) of 84% for FM (87%, CNS) and 85% for CD (94%, T21). For later-diagnosed preterm delivery (PTD), preeclampsia (PE) and intrauterine growth restriction (IUGR), it is found that urinary NMR profiles have early predictive value, with CRs ranging from 84% for PTD (11-20 gestational weeks, g.w., prior to diagnosis), 94% for PE (18-24 g.w. pre-diagnosis) and 94% for IUGR (2-22 g.w. pre-diagnosis). This chapter includes results obtained for an ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) study of pre-PTD samples and correlation with NMR data. One possible marker was detected, although its identification was not possible. Chapter 5 relates to the NMR metabolomic study of gestational diabetes mellitus (GDM), establishing a potentially predictive urinary metabolic profile for GDM, 2-21 g.w. prior to diagnosis (CR 83%). Furthermore, the NMR spectrum was shown to carry information on individual phenotypes, able to predict future insulin treatment requirement (CR 94%). Chapter 6 describes results that demonstrate the impact of delivery mode (CR 88%) and gender (CR 76%) on newborn urinary profile. It was also found that newborn prematurity, respiratory depression, large for gestational age growth and malformations induce relevant metabolic perturbations (CR 82-92%), as well as maternal conditions, namely GDM (CR 82%) and maternal psychiatric disorders (CR 91%). Finally, the main conclusions of this thesis are presented in Chapter 7, highlighting the value of maternal or newborn urine metabolomics for pregnancy monitoring and disease prediction, towards the development of new early and non-invasive diagnostic methods.
O Capítulo 1 descreve o enquadramento deste trabalho identificando as doenças pré-natais relevantes e os métodos de diagnóstico actualmente disponíveis. É depois apresentada a metodologia seguida, assim como uma breve introdução dos princípios dos métodos analíticos e estatísticos aplicados. O capítulo é concluído com uma descrição do estado da arte na área de metabolómica em investigação pré-natal, identificando o mérito desta inovadora estratégia para a identificação de marcadores robustos de doenças pré-natais. A relevância deste trabalho torna-se clara através do escasso uso de urina materna e do recém-nascido em trabalhos anteriores. O Capítulo 2 descreve os procedimentos experimentais utilizados neste trabalho, incluindo condições de amostragem, recolha e preparação das amostras, protocolos de aquisição e de tratamento dos dados. A caracterização da composição da urina materna, através de espectroscopia de Ressonância Magnética Nuclear (RMN) de protão é apresentada no Capítulo 3. Define-se o perfil metabólico urinário característico para cada trimestre de gravidez, tendo sido encontrado um conjunto de 21 metabolitos descritivo das alterações metabólicas ocorridas ao longo da gravidez. 8 metabolitos foram encontrados a variar com a gravidez, pela primeira vez, tendo sido confirmadas variações metabólicas conhecidas. É ainda estudado o efeito do não-jejum (usado neste trabalho) como possível factor de confusão. O Capítulo 4 apresenta o estudo metabolómico de urina materna do 2º trimestre para o diagnóstico de doenças fetais e previsão de complicações mais tarde desenvolvidas. Este estudo compreende a aplicação de um método de selecção de variáveis desenvolvido no âmbito desta tese. Observou-se que as malformações fetais (e, especificamente, do sistema nervoso central, SNC) e as cromossomopatias (e, especificamente, a trissomia 21, T21) são acompanhadas por alterações nos metabolismos energético, dos aminoácidos, lípidos e nucleótidos, enquanto que as cromossomopatias mostraram ser acompanhadas por uma desregulação adicional dos metabolismos dos açúcares, ciclo da ureia e/ou biossíntese da creatinina. A validação dos modelos multivariados revelou taxas de classificação (CR) de 84% para malformações (87%, SNC) e 85% para CD (94%, T21). Para o parto pré-termo, pré-eclampsia (PE) e restrição de crescimento intrauterino (RCIU) observaram-se perfis que podem ajudar à previsão precoce, com CR 84% para pretermo (11-20 semanas de gestação, g.w. pré-diagnóstico), 94% para PE (18-24 g.w. pré-diagnóstico) e 94% para RCIU (2-22 g.w. pré-diagnóstico). Este capítulo inclui resultados obtidos por cromatografia líquida de ultra eficiência acoplada a espectrometria de massa (UPLC-MS) para pré-pretermo e correlação com os dados de RMN. Um possível composto marcador foi detectado mas a sua identificação não foi possível. O Capítulo 5 descreve o estudo metabolómico por RMN da diabetes mellitus gestacional (DMG), estabelecendo-se um perfil metabólico potencialmente preditivo da doença (CR 83%, 2-21 g.w. pré-diagnóstico). Verificou-se ainda que o espectro de RMN contém informação sobre o fenótipo individual, capaz de prever a necessidade futura de tratamento com insulina (CR 94%). No Capítulo 6 demonstra-se o impacto do tipo de parto (CR 88%) e género do bebé (CR 76%) no perfil da urina do recém-nascido. Verificou-se ainda que a prematuridade, depressão respiratória, crescimento grande para a idade gestacional e malformações induzem perturbações metabólicas relevantes (CR 82-92%), assim como algumas doenças maternas como a DMG (CR 82%) e doenças psiquiátricas (91% CR). Finalmente, no Capítulo 7 apresentam-se as principais conclusões deste trabalho, enfatizando o potencial da metabolómica de urina materna e do bebé para o acompanhamento da gravidez e previsão de doenças, visando o desenvolvimento de novos métodos de diagnóstico precoce e não-invasivo.
Pietzke, Matthias [Verfasser]. "Analysis of the metabolic control of cell growth using stable isotope resolved metabolomics / Matthias Pietzke." Berlin : Freie Universität Berlin, 2015. http://d-nb.info/1067442219/34.
Full textParsons, Helen Michelle. "Optimised spectral processing and lineshape analysis in 2-dimensional J-resolved NMR spectroscopy based metabolomics." Thesis, University of Birmingham, 2010. http://etheses.bham.ac.uk//id/eprint/816/.
Full textGutiérrez, Eva Caamaño. "The effect of diet on Plasmodium falciparum development revealed by NMR metabolomics and image analysis." Thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/87354/.
Full textDavoren, Elmarie. "A metabolomics study of selected perturbations of normal human metabolism / Elmarie Davoren." Thesis, North-West University, 2010. http://hdl.handle.net/10394/4219.
Full textThesis (M.Sc. (Biochemistry))--North-West University, Potchefstroom Campus, 2010.
Karimpour, Masoumeh. "Multi-platform metabolomics assays to study the responsiveness of the human plasma and lung lavage metabolome." Doctoral thesis, Umeå universitet, Kemiska institutionen, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-120591.
Full textMetabolomik har använts för att spåra förändringar och störningar i kroppens funktioner genom undersökning av metabolit-profiler. I detta avhandlingasarbete har huvudfokus varit på tillämpning av flera olika analytiska plattformar för metabolomikstudier av det mänskliga metabolomet efter exponering för olika kost och avgasutsläpp från biodieselbränsle. De sofistikerade analytiska plattformarna som användes för detta ändamål var kärnmagnetisk resonans (NMR), samt gaskromatografi (GC) och vätskekromatografi (LC) kopplat till masspektrometri (MS). Varje plattform erbjöd unika karakteriseringsmöjligheter med detektion och identifiering av specifika grupper av metaboliter. Användningen av multipattformmetabolomik förbättrade täckningen av metabolomet och genererade kompletterande resultat som möjliggjorde en bättre förståelse av de biokemiska processer som reflekteras av metabolitprofilerna. Med hjälp av breda analyser har ett stort antal okända metaboliter i plasma identifierats under den postprandial fasen efter en väldefinerad måltid (i Paper I). Dessutom har ett stort antal metaboliter påvisats och identifierats i lungsköljvätska efter exponering av biodieselavgaser jämfört med kontollexponering med filtrerad luft (i Paper II). Parallellt med dessa breda analyser har också riktade analyser genomförts av både lungsköljvätska och plasma. Därigenom har bioaktiva lipider detekterats och kvantifieras efter avgasexponering och resultaten har jämförts med filtrerad luft som kontrollexponering (Paper III och IV). Processning av rådata följt av dataanalys, med både univariata och multivariata metoder möjliggjorde screening och fördjupad undersökning av förändringen i metabolitnivåer. I den första pilotstudien av postprandiala nivåer var syftet att undersöka responsen i plasmametabolomet efter en väldefinierad måltid under den postprandiala fasen vid två olika typer av kost. Resultaten visade att oberoende av kosten, så återvände metabolitnivåerna till sina baslinjenivåer tre timmar efter måltiden. Detta togs i beaktande vid exponeringsstudierna för biodieselavgaser, som designades så att dietens inverkan minimerades. Både breda och riktade analyser resulterade i viktiga resultat. Exempelvis så detekterades olika metabolitprofiler i bronkiell sköljvätska (BW) jämfört med bronkoalveolär sköljvätska (BAL), speciellt med NMR och LC-MS. Dessutom resulterade avgasexponering i förändrade metabolitprofiler, observerade med GC-MS, särskilt i BAL. Dessutom uppvisade fettsyrametaboliter i BW, BAL och plasma förändrade halter efter avgasexponering, uppmätt genom en riktad LC-MS/MS-analys. Sammanfattningsvis så visade sig de nya metoderna som utvecklats för att undersöka förändringar i metabolithalterna i plasma och lungsköljvätska fungera väl ur ett analytiskt perspektiv och resulterade i viktiga biologiska fynd. Fördjupade studier behövs dock för att validera resultaten.
Cortes, Bermudez Diego Fernando. "Functional genomics through metabolite profiling and gene expression analysis in Arabidopsis thaliana." Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/28457.
Full textPh. D.
Duong, Viêt Dung. "Development of numerical approaches for nuclear magnetic resonance data analysis." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEN010/document.
Full textNuclear Magnetic Resonance (NMR) has become one of the most powerful and versatile spectroscopic techniques in analytical chemistry with applications in many disciplines of scientific research. A downside of NMR is however the laborious data analysis workflow that involves many manual interventions. Interactive data analysis impedes not only on efficiency and objectivity, but also keeps many NMR application fields closed for non-experts. Thus, there is a high demand for the development of unsupervised computational methods. This thesis introduces such unattended approaches in the fields of metabonomics and structural biology. A foremost challenge to NMR metabolomics is the identification of all molecules present in complex metabolite mixtures that is vital for the subsequent biological interpretation. In this first part of the thesis, a novel numerical method is proposed for the analysis of two-dimensional HSQC and TOCSY spectra that yields automated metabolite identification. Proof-of principle was successfully obtained by evaluating performance characteristics on synthetic data, and on real-world applications of human urine samples, exhibiting high data complexity. NMR is one of the leading experimental techniques in structural biology. However the conventional process of structure elucidation is quite elaborated. In this second part of the thesis, a novel computational approach is presented to solve the problem of NMR structure determination without explicit resonance assignment based on three-dimensional TOCSY and NOESY spectra. Proof-of principle was successfully obtained by applying the method to an experimental data set of a 12-kilodalton medium- sized protein
Power, Kristin Marie. "Raman and near infrared spectroscopic analysis of amniotic fluid : metabolomics of maternal and fetal health indicators." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112345.
Full textBamba, Mamadou. "Development and application of novel computational intelligence techniques to the multivariate analysis of metabolomics biofluids datasets." Thesis, De Montfort University, 2017. http://hdl.handle.net/2086/16407.
Full textBian, Fang. "Novel Aspects of Fatty Acid Oxidation Uncovered by the Combination of Mass Isotopomer Analysis and Metabolomics." Case Western Reserve University School of Graduate Studies / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=case1144955161.
Full textBanday, Viqar. "Metab-Immune analysis of the non-obese diabetic mouse." Doctoral thesis, Umeå universitet, Immunologi/immunkemi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-119444.
Full textPinto, Joana Isabel Monteiro. "Healthy pregnancy and prenatal disorders followed by blood plasma metabolomics." Doctoral thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/14784.
Full textThe work presented in this thesis aimed to investigate the impact of healthy pregnancy and selected prenatal disorders on the metabolome and lipidome of maternal blood plasma, in order to define new potential biomarkers for non-invasive prediction and diagnosis. Chapter 1 describes the present status and challenges of the clinically relevant prenatal disorders, along with a presentation of the metabolomics strategy applied and the state of the art of metabolomics in prenatal research. All experimental details are described in Chapter 2, comprising sample metadata, sample collection and preparation, data acquisition protocols and data analysis procedures. The plasma metabolome and lipidome viewed by 1D and 2D NMR experiments are presented in Chapter 3. In this chapter, the use of Multiple Quantum NMR spectroscopy was explored, for the first time, for assignment of complex lipid mixtures. Chapter 4 contributes to filling in some existing gaps regarding human plasma degradability during handling and storage, as well as the importance of fasting conditions at collection. The use of heparin collection tubes resulted in no interference of the polysaccharide and full conservation of spectral information, while EDTA tubes produced a number of interfering signals from free and Ca2+/Mg2+ complexed EDTA, the impact of which on metabolomic analysis is discussed. Regarding temperature stability, large changes in lipoproteins and choline compounds were observed in plasma kept at room temperature for 2.5 hours, whereas short-term storage at -20ºC was found suitable up to 7 days, with storage at -80ºC being recommended, particularly for long-term periods (at least up to 2.5 years). Regarding freeze-thaw cycles, no more than 3 consecutive cycles were found advisable, while the use of non-fasting conditions (instead of fasting) was found acceptable. Chapter 5 presents the first NMR metabolomics study of maternal plasma throughout pregnancy, including correlation between plasma and urine metabolites. Some of the metabolic alterations observed confirmed known metabolic effects, while novel changes were observed, suggesting adjustments in energy and gut microflora metabolisms (citrate, lactate and dimethyl sulfone) and alterations in glomerular filtration rate (creatine and creatinine). Correlations studies unveiled specific lipoprotein/protein metabolic aspects of healthy pregnancy with impact on the excreted metabolome, providing further understanding of pregnancy metabolism. In Chapter 6, the impact of prenatal disorders on maternal plasma metabolome and lipidome is described for fetal chromosomal disorders (CD), including Trisomy 21 (T21). High classification rates were obtained for CD (88-89%) and T21 (85-92%) in 1st and 2nd trimesters, based on variable selection of NMR data. In addition, novel metabolic deviations were found through plasma/urine correlations, namely in low density and very low density lipoproteins (LDL+VLDL), sugar and gut microflora metabolisms. Changes in plasma phospholipid profile, namely in phosphatidylcholines, were further confirmed and characterised by hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-LC/MS). In Chapter 7, metabolic biomarkers of pre- and post-diagnosis GDM were sought by NMR metabolomics of whole maternal plasma and plasma lipid profile in the 2nd trimester. Metabolic alterations found to be predictive of GDM comprised increases in cholesterol, fatty acids, triglycerides and small metabolites changes in glucose, amino acids, betaine, urea, creatine and metabolites related with gut microflora. Post-diagnosis GDM was successfully classified using a 26-resonance plasma biomarker corresponding to 10 metabolites and lipids, advancing the possibility of using a multi-metabolite biomarker as a complementary tool in the clinical management of GDM. Chapter 8 describes the results obtained for prenatal disorders shown to have lower impact on maternal plasma metabolome, namely diagnosed fetal malformations and pre-diagnosis premature rupture of membranes, preterm delivery and preeclampsia. Finally, Chapter 9 describes the general conclusions and future perspectives in the context of this thesis, highlighting how this work contributes with new knowledge on prenatal disease mechanisms and possible biomarkers for prenatal diagnosis and prediction methods.
O trabalho apresentado nesta tese teve como principal objetivo investigar o impacto da gravidez saudável e algumas doenças pré-natais no metaboloma e lipidoma de plasma sanguíneo materno, com vista à definição de novos biomarcadores para a previsão e diagnóstico não invasivos daquelas doenças. O Capítulo 1 descreve a perspectiva atual e os desafios das doenças pré-natais mais relevantes, assim como a estratégia metabolómica e estado da arte na investigação pré-natal. Todos os detalhes experimentais do trabalho realizado estão descritos no Capítulo 2, incluindo as condições de amostragem, recolha e preparação das amostras, bem como os protocolos de aquisição e análise dos dados. No Capítulo 3 descreve-se o metaboloma e lipidoma de plasma detectados por RMN 1D e 2D. Neste capítulo, a utilização de espectroscopia de RMN de quantum-múltiplo foi explorada, pela primeira vez, para caracterização de misturas lipídicas complexas. O Capítulo 4 contribui para colmatar algumas falhas no conhecimento sobre a degradibilidade do plasma humano durante o manuseamento da amostra e armazenamento, e a importância de condições de colheita como o jejum. A utilização de tubos de colheita com heparina não mostrou interferência do polissacarídeo nos espectros conservando-se toda a informação espectral, enquanto que os tubos com EDTA deram origem a sinais interferentes provenientes do EDTA livre e complexado com Ca2+/Mg2+, cujo impacto na análise metabolómica é discutido. Relativamente à estabilidade do plasma à temperatura ambiente, foram observadas alterações nas lipoproteínas e compostos de colina a partir de 2.5 horas, enquanto que o armazenamento a -20ºC mostrou ser adequado até 7 dias, sendo o armazenamento a -80ºC aconselhado, particularmente para períodos de tempo longos (pelo menos até 2.5 anos). Relativamente aos ciclos de congelação-descongelação, não se aconselham mais de 3 ciclos consecutivos, enquanto que o efeito da colheita das amostras em não-jejum (em vez de jejum) foi considerado aceitável. O Capítulo 5 apresenta o primeiro estudo de metabolómica por RMN do plasma materno ao longo da gravidez, incluindo correlação entre plasma e urina. Algumas das alterações metabólicas observadas confirmaram efeitos metabólicos conhecidos, tendo outras sido observadas pela primeira vez sugerindo alterações no metabolismo energético, na microflora bacteriana (citrato, lactato e dimetil sulfona) e na taxa de filtração glomerular (creatina e creatinina). Os estudos de correlação revelaram aspetos metabólicos específicos das lipoproteínas/proteínas com impacto no metaboloma excretado. No Capítulo 6 descreve-se o impacto das doenças cromossómicas (CD), incluindo Trissomia 21 (T21) no metaboloma e lipidoma de plasma materno. Obtiveram-se elevadas taxas de classificação para CD (88-89%) e T21 (85-92%) no 1º e 2º trimestres baseadas na seleção de variáveis dos dados de RMN. A correlação de plasma e urina revelou novos desvios metabólicos, nomeadamente no metabolismo das lipoproteínas de baixa densidade e de muito baixa densidade (LDL+VLDL), dos açúcares e da microflora bacteriana. As alterações observadas no perfil de fosfolípidos do plasma, nomeadamente das fosfatidilcolinas, foram confirmadas e caracterizadas por cromatografia liquida hidrofílica acoplada a espetrometria de massa (HILIC-LC/MS). No Capítulo 7 apresentam-se os resultados obtidos na prospecção de biomarcadores metabólicos de diabetes mellitus gestacional (GDM) pré- e pós-diagnóstico por metabolómica de RMN de plasma materno do 2º trimestre. Observaram-se alterações metabólicas com poder de previsão de GDM, nomeadamente um aumento no colesterol, ácidos gordos, triglicerídeos e pequenas variações metabólicas na glucose, aminoácidos, betaína, ureia, creatina e metabolitos relacionados com a microflora bacteriana. O grupo de GDM pós-diagnóstico foi bem classificado utilizando como biomarcador um conjunto de 26 ressonâncias do espectro de plasma correspondendo a lípidos e 10 metabolitos de baixo peso molecular, sugerindo-se a possibilidade de usar este marcador conjunto na gestão clínica da GDM. O Capítulo 8 descreve os resultados obtidos para as doenças pré-natais que mostraram ter um menor impacto no metaboloma de plasma materno, nomeadamente as malformações fetais (FM), e os estados de pré-diagnóstico da rutura prematura das membranas (PROM), parto pré-termo (PTD) e pré-eclampsia. Finalmente, no Capítulo 9 são descritas as conclusões gerais e perspetivas futuras no contexto desta tese, realçando-se como este trabalho contribui para o novo conhecimento dos mecanismos das doenças pré-natais e possíveis biomarcadores para a sua previsão e diagnóstico.
Bell, Madison. "Developing Statistical and Analytical Methods for Untargeted Analysis of Complex Environmental Matrices." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/41626.
Full textPuschmann, Robert. "Analysis and Quantification of Inositol Poly- and Pyrophosphates by NMR Spectroscopy and Mass Spectrometry." Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21044.
Full textInositol pyrophosphates (PP-InsPs) are a well conserved group of second messengers that are involved in a plethora of cellular processes including phosphate homeostasis, insulin signaling, and apoptosis. Despite much effort, it is still mostly unknown how PP-InsPs exert their diverse functions. In order to decipher the mechanisms, researchers have relied either on metabolic labeling with radioactive inositol or on electrophoretic separation on polyacrylamide gels but these methods either lack ease of use or sensitivity. Therefore, two new analytical tools, based on nuclear magnetic resonance (NMR) spectroscopy, and liquid chromatography coupled mass spectrometry (LCMS), were developed. To overcome the limited sensitivity provided by NMR spectroscopy, a high yielding synthesis of NMR-active 13C-labeled inositol was designed and optimized. Furthermore, a chemoenzymatic synthesis of all mammalian PP-InsPs isomers was developed that relied on a scalable purification strategy utilizing precipitation with Mg2+ ions. Human cells were metabolically labeled with 13C-inositol and the prepared PP-InsPs were used as standards to identify peaks in the NMRspectra. These fingerprint signals enabled the quantification of the corresponding molecules. The LCMS-based method was based on the derivatization of the highly charged inositol pyrophosphates to their corresponding methyl esters by trimethylsilyldiazomethane. The permethylated InsPs and PP-InsPs were suitable for LC separation and MS measurement, and provide a sensitivity unmatched by NMR spectroscopy. The method was established using inositol hexakisphosphate, a simpler analog of PP-InsPs, and methylated InsP6 could be detected at quantities as low as 10 femtomole. However, the adaptation of the derivatization for PP-InsPs proved challenging as the reaction caused degradation of the analyte but strategies to circumvent the decay by changing the derivatization agent to diazomethane were promising.
D'Souza, Arun. "PathCaseMAW: A Workbench for Metabolomic Analysis." Case Western Reserve University School of Graduate Studies / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1222895452.
Full textStrigun, Alexander [Verfasser], and Elmar [Akademischer Betreuer] Heinzle. "Assessment of in vitro cardiotoxicity using metabolomics and 13C metabolic flux analysis / Alexander Strigun. Betreuer: Elmar Heinzle." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2012. http://d-nb.info/1052551424/34.
Full textAl-Zubaidi, Mohammed Abdulridha. "Human stem cell metabolomics : headspace volatile gas analysis as an indicator of self-renewal and differentiation status." Thesis, Keele University, 2018. http://eprints.keele.ac.uk/4371/.
Full textJones, Christina Michele. "Applications and challenges in mass spectrometry-based untargeted metabolomics." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54830.
Full textEmamzadeh, Yazdi Simin. "Metabolomic analysis on anti-HIV activity of selected Helichrysum species." Thesis, University of Pretoria, 2019. http://hdl.handle.net/2263/77900.
Full textThesis (PhD)--University of Pretoria, 2019.
Plant Production and Soil Science
PhD
Unrestricted
Ohtani, Yuta. "Molecular breeding of functional spinaches rich in folate and betacyanin based on metabolome analysis." Kyoto University, 2020. http://hdl.handle.net/2433/253323.
Full text0048
新制・課程博士
博士(農学)
甲第22487号
農博第2391号
新制||農||1076(附属図書館)
学位論文||R2||N5267(農学部図書室)
京都大学大学院農学研究科応用生命科学専攻
(主査)教授 植田 充美, 教授 梅澤 俊明, 教授 栗原 達夫
学位規則第4条第1項該当
Haggarty, Jennifer. "Biofilm metabolomics : the development of mass spectrometry and chromatographic methodology for the analysis of dual-species pathogenic biofilms." Thesis, University of Glasgow, 2017. http://theses.gla.ac.uk/8616/.
Full textHuang, Zhengyan. "Differential Abundance and Clustering Analysis with Empirical Bayes Shrinkage Estimation of Variance (DASEV) for Proteomics and Metabolomics Data." UKnowledge, 2019. https://uknowledge.uky.edu/epb_etds/24.
Full text