Academic literature on the topic 'Metabolism; Bioremediation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Metabolism; Bioremediation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Metabolism; Bioremediation"
Mao, Xin Yu, Xiao Hou Shao, Jiang Qiang Mao, Chao Yin, Long Wang, Hao Bo Sun, Zhong Lin Tang, and Ting Ting Chang. "Environment Research with Progress of Bioremediations for Aquaculture Effluent." Advanced Materials Research 977 (June 2014): 264–69. http://dx.doi.org/10.4028/www.scientific.net/amr.977.264.
Full textLu, Jie, and Meng Hong Li. "Removal of Chloroform in Groundwater by Bioremediation." Advanced Materials Research 113-116 (June 2010): 142–45. http://dx.doi.org/10.4028/www.scientific.net/amr.113-116.142.
Full textOstrem Loss, Erin M., and Jae-Hyuk Yu. "Bioremediation and microbial metabolism of benzo(a)pyrene." Molecular Microbiology 109, no. 4 (August 2018): 433–44. http://dx.doi.org/10.1111/mmi.14062.
Full textYamamura, Shigeki, and Seigo Amachi. "Microbiology of inorganic arsenic: From metabolism to bioremediation." Journal of Bioscience and Bioengineering 118, no. 1 (July 2014): 1–9. http://dx.doi.org/10.1016/j.jbiosc.2013.12.011.
Full textChen, Jun Jie, Xu Hui Gao, Long Fei Yan, and De Guang Xu. "Recent Progress in Monoaromatic Pollutants Removal from Groundwater through Bioremediation." International Letters of Natural Sciences 34 (February 2015): 62–69. http://dx.doi.org/10.18052/www.scipress.com/ilns.34.62.
Full textMiazek, Krystian, and Beata Brozek-Pluska. "Effect of PHRs and PCPs on Microalgal Growth, Metabolism and Microalgae-Based Bioremediation Processes: A Review." International Journal of Molecular Sciences 20, no. 10 (May 20, 2019): 2492. http://dx.doi.org/10.3390/ijms20102492.
Full textBOUWER, E. "Bioremediation of organic compounds ? putting microbial metabolism to work." Trends in Biotechnology 11, no. 8 (August 1993): 360–67. http://dx.doi.org/10.1016/0167-7799(93)90159-7.
Full textChauhan, Archana, Fazlurrahman, John G. Oakeshott, and Rakesh K. Jain. "Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation." Indian Journal of Microbiology 48, no. 1 (March 2008): 95–113. http://dx.doi.org/10.1007/s12088-008-0010-9.
Full textVerma, Shikha, Pankaj Kumar Verma, Alok Kumar Meher, Sanjay Dwivedi, Amit Kumar Bansiwal, Veena Pande, Pankaj Kumar Srivastava, Praveen Chandra Verma, Rudra Deo Tripathi, and Debasis Chakrabarty. "A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation." Metallomics 8, no. 3 (2016): 344–53. http://dx.doi.org/10.1039/c5mt00277j.
Full textYun, Jiae, Toshiyuki Ueki, Marzia Miletto, and Derek R. Lovley. "Monitoring the Metabolic Status of Geobacter Species in Contaminated Groundwater by Quantifying Key Metabolic Proteins with Geobacter-Specific Antibodies." Applied and Environmental Microbiology 77, no. 13 (May 6, 2011): 4597–602. http://dx.doi.org/10.1128/aem.00114-11.
Full textDissertations / Theses on the topic "Metabolism; Bioremediation"
Harford-Cross, Charles F. "The oxidation of polycyclic aromatic hydrocarbons by cytochrome P450â†câ†aâ†m." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325950.
Full textRashamuse, Konanani Justice. "The bioaccumulation of platinum (IV) from aqueous solution using sulphate reducing bacteria: role of a hydrogenase enzyme." Thesis, Rhodes University, 2003. http://hdl.handle.net/10962/d1004063.
Full textCardenes, Genilton de Oliveira, and 92981958476. "Avaliação do potencial de acinetobacter junii SB132 na degradação de hidrocarbonetos do diesel." Universidade Federal do Amazonas, 2017. https://tede.ufam.edu.br/handle/tede/6763.
Full textRejected by PPGBIOTEC Biotecnologia (ppg_biotec.ufam@yahoo.com.br), reason: O arquivo da Dissertação está faltando a ficha catalográfica. on 2018-11-06T20:40:25Z (GMT)
Submitted by Genilton Cardenes (genilton_cardenes@outlook.com) on 2018-11-08T19:53:33Z No. of bitstreams: 3 Ata de defesa de dissertação.pdf: 313772 bytes, checksum: c312101e5d7eadad598267ac8a263549 (MD5) Carta de encaminhamento BDTD e termo de autorização para publicação.pdf: 776943 bytes, checksum: f8362a56a57c08b24e6f2f4266042eb4 (MD5) Avaliação do potencial de Acinetobacter junii SB132 na degradação de hidrocarbonetos do diesel.pdf: 2974599 bytes, checksum: 772fb4ba6951912ffcf1ffe6fc6dfc4e (MD5)
Approved for entry into archive by PPGBIOTEC Biotecnologia (ppg_biotec.ufam@yahoo.com.br) on 2018-11-12T19:16:22Z (GMT) No. of bitstreams: 3 Ata de defesa de dissertação.pdf: 313772 bytes, checksum: c312101e5d7eadad598267ac8a263549 (MD5) Carta de encaminhamento BDTD e termo de autorização para publicação.pdf: 776943 bytes, checksum: f8362a56a57c08b24e6f2f4266042eb4 (MD5) Avaliação do potencial de Acinetobacter junii SB132 na degradação de hidrocarbonetos do diesel.pdf: 2974599 bytes, checksum: 772fb4ba6951912ffcf1ffe6fc6dfc4e (MD5)
Rejected by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br), reason: * A carta inserida deve ser a "Carta de Encaminhamento para o Autodepósito" disponível em http://biblioteca.ufam.edu.br/servicos/teses-e-dissertacoes * O Termo de Autorização é dispensável. A menos que a Tese/Dissertação seja Confidencial e/ou passível de patente, conforme orientações em http://biblioteca.ufam.edu.br/servicos/teses-e-dissertacoes Dúvidas? ddbc@ufam.edu.br on 2018-11-12T20:52:58Z (GMT)
Submitted by Genilton Cardenes (genilton_cardenes@outlook.com) on 2018-11-13T20:07:30Z No. of bitstreams: 3 Ata de defesa de dissertação.pdf: 313772 bytes, checksum: c312101e5d7eadad598267ac8a263549 (MD5) Avaliação do potencial de Acinetobacter junii SB132 na degradação de hidrocarbonetos do diesel.pdf: 2974599 bytes, checksum: 772fb4ba6951912ffcf1ffe6fc6dfc4e (MD5) Carta de encaminhamento BDTD.pdf: 315084 bytes, checksum: e83e1b1d1918636fcffa71de997b062d (MD5)
Approved for entry into archive by PPGBIOTEC Biotecnologia (ppg_biotec.ufam@yahoo.com.br) on 2018-11-14T18:58:47Z (GMT) No. of bitstreams: 3 Ata de defesa de dissertação.pdf: 313772 bytes, checksum: c312101e5d7eadad598267ac8a263549 (MD5) Avaliação do potencial de Acinetobacter junii SB132 na degradação de hidrocarbonetos do diesel.pdf: 2974599 bytes, checksum: 772fb4ba6951912ffcf1ffe6fc6dfc4e (MD5) Carta de encaminhamento BDTD.pdf: 315084 bytes, checksum: e83e1b1d1918636fcffa71de997b062d (MD5)
Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-11-14T20:20:28Z (GMT) No. of bitstreams: 3 Ata de defesa de dissertação.pdf: 313772 bytes, checksum: c312101e5d7eadad598267ac8a263549 (MD5) Avaliação do potencial de Acinetobacter junii SB132 na degradação de hidrocarbonetos do diesel.pdf: 2974599 bytes, checksum: 772fb4ba6951912ffcf1ffe6fc6dfc4e (MD5) Carta de encaminhamento BDTD.pdf: 315084 bytes, checksum: e83e1b1d1918636fcffa71de997b062d (MD5)
Made available in DSpace on 2018-11-14T20:20:28Z (GMT). No. of bitstreams: 3 Ata de defesa de dissertação.pdf: 313772 bytes, checksum: c312101e5d7eadad598267ac8a263549 (MD5) Avaliação do potencial de Acinetobacter junii SB132 na degradação de hidrocarbonetos do diesel.pdf: 2974599 bytes, checksum: 772fb4ba6951912ffcf1ffe6fc6dfc4e (MD5) Carta de encaminhamento BDTD.pdf: 315084 bytes, checksum: e83e1b1d1918636fcffa71de997b062d (MD5) Previous issue date: 2017-10-26
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Industrial exploitation of petroleum as well as the use of its derivatives has been growing due to its importance for society. Petroleum is a complex mixture of several organic compounds, mainly hydrocarbons compounds. The occurrence of contamination of the environment with these components is worrisome because in addition to its difficult degradation, oil requires many stages of processing, from its extraction, transportation, refining to the storage of the derivatives, dramatically increasing its exposure to the environment. An alternative to hydrocarbons degradation is the use of bacteria, by process called biodegradation, that depends ecosystem conditions and the local environment. Thus, bioremediation is a treatment process that uses microorganisms that degrade and transform existing organic pollutants in less complex and generally more easily degradable compounds, which can even reach mineralization. In this study we used the Acinetobacter junii SB132 bacterium previously isolated from aquatic macrophytes of Rio Negro near the city of Manaus (AM). Its hydrocarbon degradation capacity was tested in presence of diesel oil as the only carbon and energy source. In this work, the results obtained by gas chromatography coupled to mass spectrometry (GC-MS) showed that the alkanes of the diesel oil were degraded on average 58% by A. junii SB132 at 30 °C after 4 days of culture. The individual alkanes of diesel oil were degraded between 60 % -87 %. Proteomic study revealed proteins and metabolic pathway of A. junii SB132 involved in the degradation of hydrocarbons, specially alkanes. This study suggests that this degrading bacterial lineage of hydrocarbons has a great potential for bioremediation of the environment contaminated by diesel.
Atualmente, a exploração industrial do petróleo bem como o uso de seus derivados vem crescendo cada vez mais devido à sua importância econômica para a sociedade. O petróleo é uma mistura complexa de vários compostos orgânicos, constituído principalmente por hidrocarbonetos. A ocorrência de contaminação do meio ambiente com estes compostos é agravada, pois, além da sua difícil degradação, o petróleo requer muitas etapas de processamento, desde a sua extração, transporte, refino até a armazenagem dos derivados, aumentando drasticamente a sua exposição ao meio ambiente. Uma alternativa para a degradação de hidrocarbonetos é o uso de bactérias e tal processo, nomeado biodegradação, depende das condições do ecossistema e do meio ambiente local. Com isso, a biorremediação é um processo de tratamento que utiliza microrganismos que degradam e transformam compostos orgânicos poluentes existentes nos ambientes contaminados em compostos menos complexos e geralmente mais facilmente degradáveis, podendo chegar até a sua mineralização. Neste estudo foi utilizada a bactéria Acinetobacter junii SB132 previamente isolada a partir de macrófitas aquáticas do Rio Negro nas proximidades da cidade de Manaus (AM). Sua capacidade de degradação de hidrocarbonetos foi avaliada fornecendo óleo diesel como única fonte de carbono. Os resultados obtidos pela técnica de cromatografia gasosa acoplada à espectrometria de Massas (GC-MS) mostraram que os alcanos do óleo diesel foram degradados em média 58 % por A. junii SB132 após 4 dias de cultivo em meio mínimo a 30 °C. Os alcanos individuais de óleo diesel foram degradados entre 60% -87%. A partir de proteínas extraídas dessa linhagem também foram feitas análises por ESI-MS que identificaram proteínas e rotas metabólicas envolvidas na degradação de hidrocarbonetos como a via de degradação, especialmente de alcanos. Esse estudo sugere que essa linhagem bacteriana possui um grande potencial para biorremediação de ambiente contaminado por diesel.
Richardson, Adam David. "Metabolism of 2,4,6-trinitrotoluene by Clostridium acetobutylicum: Pathway identification and lab-scale evaluation of contaminated soil bioremediation." Thesis, 1998. http://hdl.handle.net/1911/17207.
Full textTseng, Han-Wei, and 曾瀚緯. "Study of Bioremediation of Stimulated Groundwater Contaminated by Dichloroethylene with Anaerobic Dechlorination Combined with Aerobic Co-metabolism treatment." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/85324915633636557917.
Full text國立中興大學
環境工程學系所
101
Due to incomplete anaerobic biodegradation of PCE, dichloroethylene (DCE) accumulates in saturated groundwater aquifers. A column study was conducted to simulate the degradation of DCE through aerobic co-metabolism using methane as the primary substrate. In addition, a comparison of the DCE degradation efficiency and the microorganism community structure with previous research was conducted. Results of the biostimulation study showed that PCE could be readily degraded in the anaerobic environment after 60 days of column operating, leading to increase in the by-product – DCE formation. DCE could not be effectively degraded in the subsequent aerobic column, with a removal efficiency of 65%. However, when the system was operated at aerobic co-metabolism process, the degradation of DCE improved to 100%. The by-product of DCE – vinyl chloride (VC), could also be degraded simultaneously. Batch experiments showed that various methods of methane addition affects the degradation rate of DCE due to the rate of oxygen consumption. With the addition of hydrogen peroxide, the removal rate of DCE increased significantly with the excess consumption of oxygen and methane by aerobic microorganisms. Also, the kinetics of DCE degradation follows a first-order reaction rate.
Perry, Verlin. "Metabolic Activities and Diversity of Microbial Communities Associated with Anaerobic Degradation." 2014. http://scholarworks.gsu.edu/biology_diss/147.
Full textBooks on the topic "Metabolism; Bioremediation"
Traczewska, Teodora Małgorzata. Biotoksyczność produktów mikrobiologicznych przemian antracenu i fenantrenu w wodzie oraz możliwość ich usuwania. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2003.
Find full textPelmont, Jean. Biodégradations et métabolismes: Les bactéries pour les technologies de l'environment. Les Ulis: EDP Science, 2005.
Find full textSoil Microbial Systems Laboratory (U.S.). In-depth laboratory review October 19-21, 1994: Soil Microbial Systems Laboratory : soil quality, sustainable agriculture, composted waste, arbuscular mycorrhizae, pesticide metabolism, bioremediation, biocontrol management system. Beltsville, Md.]: The Laboratory, 1994.
Find full textKumar, Anil, ed. Biotreatment of industrial effluents. Burlington, MA: Elsevier Butterworth-Heinemann, 2005.
Find full text1951-, Singh Vedpal, and Stapleton Raymond D, eds. Biotransformations: Bioremediation technology for health and environmental protection. Amsterdam: Elsevier Science Ltd., 2002.
Find full textM.N.V. Prasad (Editor), Kenneth S. Sajwan (Editor), and Ravi Naidu (Editor), eds. Trace Elements in the Environment: Biogeochemistry, Biotechnology, and Bioremediation. CRC, 2005.
Find full text(Editor), Gennadii Efremovich Zaikov, and G. E. Zaikov (Editor), eds. New Research on the Environment And Biotechnology. Nova Science Publishers, 2006.
Find full textLovley, Derek R. Environmental Microbe-Metal Interactions. ASM Press, 2000.
Find full textWang, Shanquan, Jianzhong He, Chaofeng Shen, and Michael J. Manefield, eds. Organohalide Respiration: New Findings in Metabolic Mechanisms and Bioremediation Applications. Frontiers Media SA, 2019. http://dx.doi.org/10.3389/978-2-88945-848-6.
Full textBiochemical Mechanisms of Detoxification in Higher Plants : Basis of Phytoremediation. Springer, 2006.
Find full textBook chapters on the topic "Metabolism; Bioremediation"
Hoagland, Robert E., Robert M. Zablotowicz, and Martin A. Locke. "Propanil Metabolism by Rhizosphere Microflora." In Bioremediation through Rhizosphere Technology, 160–83. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/bk-1994-0563.ch014.
Full textBasu, Partha, and John F. Stolz. "Application of Proteomics in Bioremediation." In Microbial Metal and Metalloid Metabolism, edited by Peter Chovanec, 247—P2. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555817190.ch13.
Full textStaicu, Lucian C., and Larry L. Barton. "Bacterial Metabolism of Selenium—For Survival or Profit." In Bioremediation of Selenium Contaminated Wastewater, 1–31. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57831-6_1.
Full textMalik, Sonia, Sara Adrián L. Andrade, Mohammad Hossein Mirjalili, Randolph R. J. Arroo, Mercedes Bonfill, and Paulo Mazzafera. "Biotechnological Approaches for Bioremediation: In Vitro Hairy Root Culture." In Transgenesis and Secondary Metabolism, 1–23. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27490-4_28-1.
Full textCorsini, Anna, and Lucia Cavalca. "Arsenic Microbiology: From Metabolism to Water Bioremediation." In Handbook of Metal-Microbe Interactions and Bioremediation, 493–507. Boca Raton : Taylor & Francis, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315153353-35.
Full textBoopathy, Raj. "Anaerobic Metabolism and Bioremediation of Explosives-Contaminated Soil." In Soil Biology, 151–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89621-0_8.
Full textBruneel, Odile, Marina Héry, Elia Laroche, Ikram Dahmani, Lidia Fernandez-Rojo, and Corinne Casiot. "Microbial Transformations of Arsenic From Metabolism to Bioremediation." In Handbook of Metal-Microbe Interactions and Bioremediation, 521–41. Boca Raton : Taylor & Francis, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315153353-37.
Full textZehnder, A. J. B. "Bioremediation of Environments Contaminated with Organic Xenobiotics: Putting Microbial Metabolism to Work." In Bioavailability of Organic Xenobiotics in the Environment, 79–92. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9235-2_5.
Full textPailan, Santanu, Kriti Sengupta, and Pradipta Saha. "Microbial Metabolism of Organophosphates: Key for Developing Smart Bioremediation Process of Next Generation." In Microorganisms for Sustainability, 361–410. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2679-4_14.
Full textKrishna Paidi, Murali, Praveen Satapute, Shakeel Ahmed Adhoni, Lakkanagouda Patil, and Milan V Kamble. "Physiological and Metabolic Aspects of Pesticides Bioremediation by Microorganisms." In Biodegradation, Pollutants and Bioremediation Principles, 296–311. First edition. | Boca Raton : CRC Press, Taylor & Francis: CRC Press, 2021. http://dx.doi.org/10.1201/9780429293931-16.
Full textReports on the topic "Metabolism; Bioremediation"
Lovley, Derek R. Diagnosis of In Situ Metabolic State and Rates of Microbial Metabolism During In Situ Uranium Bioremediation with Molecular Techniques. Office of Scientific and Technical Information (OSTI), November 2012. http://dx.doi.org/10.2172/1097098.
Full textLovley, Derek R. Diagnosis of In Situ Metabolic State and Rates of Microbial Metabolism During In Situ Uranium Bioremediation with Molecular Techniques. Office of Scientific and Technical Information (OSTI), November 2012. http://dx.doi.org/10.2172/1055767.
Full textTURICK, CHARLES. Microbial Metabolite Production for Accelerated Metal and Radionuclide Bioremediation (Microbial Metabolite Production Report). Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/835058.
Full textBuchanan, M. V. Monitoring Genetic and Metabolic Potential for In-Site Bioremediation: Mass Spectrometry. Office of Scientific and Technical Information (OSTI), July 2000. http://dx.doi.org/10.2172/885583.
Full textBuchanan, Michelle V., Gregory B. Hurst, Mary E. Lidstrom, Anne Auman, Phillip F. Britt, Andria Costello, Mitchel Doktycz, and Yongseong Kim. Monitoring Genetic & Metabolic Potential for In Situ Bioremediation: Mass Spectrometry. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/827402.
Full textBuchanan, Michelle V., Phillip F. Britt, Mitchel J. Doktycz, Gregory B. Hurst, and Mary E. Lidstrom. Monitoring Genetic and Metabolic Potential for In-Situ Bioremediation: Mass Spectrometry. Office of Scientific and Technical Information (OSTI), June 2000. http://dx.doi.org/10.2172/827403.
Full textBuchanan, Michelle V. Monitoring Genetic and Metabolic Potential for in situ Bioremediation: Mass Spectrometry. Office of Scientific and Technical Information (OSTI), December 2000. http://dx.doi.org/10.2172/827404.
Full textBuchanan, M. V., G. B. Hurst, P. F. Britt, S. A. McLuckey, and M. J. Doktycz. Monitoring genetic and metabolic potential for in situ bioremediation: Mass spectrometry. 1997 annual progress report. Office of Scientific and Technical Information (OSTI), September 1997. http://dx.doi.org/10.2172/13438.
Full textBuchanan, M. V., G. B. Hurst, M. J. Doktycz, P. F. Britt, K. Weaver, M. Lidstrom, and A. Costello. Monitoring genetic and metabolic potential for in situ bioremediation: Mass spectrometry. 1998 annual progress report. Office of Scientific and Technical Information (OSTI), January 1998. http://dx.doi.org/10.2172/13439.
Full text