Academic literature on the topic 'Metabolic processes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Metabolic processes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Metabolic processes"
Zemskov, Andrei M., Tatiyana A. Berezhnova, Veronika A. Zemskova, Kseniya S. Dyadina, Yana V. Kulintsova, and Anton V. Larin. "Immune-metabolic genesis of pathological processes." Research Results in Pharmacology 5, no. 4 (December 12, 2019): 19–31. http://dx.doi.org/10.3897/rrpharmacology.5.38386.
Full textShipman, Jason, Jeffrey Guy, and Naji N. Abumrad. "Repair of metabolic processes." Critical Care Medicine 31, Supplement (August 2003): S512—S517. http://dx.doi.org/10.1097/01.ccm.0000081547.31084.23.
Full textGutfreund, H. "Control of metabolic processes." FEBS Letters 284, no. 1 (June 17, 1991): 133. http://dx.doi.org/10.1016/0014-5793(91)80780-7.
Full textSanchez, Sergio, and Arnold L. Demain. "Metabolic regulation of fermentation processes." Enzyme and Microbial Technology 31, no. 7 (December 2002): 895–906. http://dx.doi.org/10.1016/s0141-0229(02)00172-2.
Full textMcHugh, Jessica. "Targeting autoimmune-specific metabolic processes." Nature Reviews Rheumatology 14, no. 12 (November 12, 2018): 686. http://dx.doi.org/10.1038/s41584-018-0126-1.
Full textТатарчук, Т. Ф., Н. Ю. Педаченко, and З. Б. Хомінська. "Metabolic syndrome and hyperproliferative endometrial processes." Reproductive Endocrinology, no. 16 (July 11, 2014): 61. http://dx.doi.org/10.18370/2309-4117.2014.16.61-69.
Full textHeinrich, Reinhart, and Christine Reder. "Metabolic control analysis of relaxation processes." Journal of Theoretical Biology 151, no. 3 (August 1991): 343–50. http://dx.doi.org/10.1016/s0022-5193(05)80383-2.
Full textSegraves, Daniel. "Data City: Urban Metabolic Decision Processes." Architectural Design 83, no. 4 (July 2013): 120–23. http://dx.doi.org/10.1002/ad.1628.
Full textŽurauskienė, Justina, Paul Kirk, Thomas Thorne, John Pinney, and Michael Stumpf. "Derivative processes for modelling metabolic fluxes." Bioinformatics 30, no. 13 (February 26, 2014): 1892–98. http://dx.doi.org/10.1093/bioinformatics/btu069.
Full textIwatani, Shintaro, Yohei Yamada, and Yoshihiro Usuda. "Metabolic flux analysis in biotechnology processes." Biotechnology Letters 30, no. 5 (January 26, 2008): 791–99. http://dx.doi.org/10.1007/s10529-008-9633-5.
Full textDissertations / Theses on the topic "Metabolic processes"
Finkel, Zoe Vanessa. "Diatoms, size and metabolic processes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ36438.pdf.
Full textFord, Yves-Yannick. "Metabolic studies of transformed roots." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260120.
Full textArnold, Anne. "Modeling photosynthesis and related metabolic processes : from detailed examination to consideration of the metabolic context." Phd thesis, Universität Potsdam, 2014. http://opus.kobv.de/ubp/volltexte/2014/7227/.
Full textMathematische Modellierung biologischer Systeme eröffnet die Möglichkeit systematisch die Funktionsweise biologischer Prozesse und ihrer Wechselwirkungen mit der Umgebung zu untersuchen. Um präzise und biologisch relevante Vorhersagen treffen zu können, muss eine Modellierungsstrategie konzipiert werden, deren Annahmen das untersuchte Szenario bestmöglichst widerspiegelt und die dem Trade-off der Komplexität der zugrunde liegenden mathematischen Beschreibung gerecht wird: Detailtreue gegenüber Größe. Dementsprechend kann das System detailliert, in kleinerem Umfang oder in vereinfachter Darstellung im größeren Maßstab untersucht werden. In dieser Arbeit wird mittels verschiedener Modellierungsansätze, wie kinetischen und stöchiometrischen Modellen, die Rolle der Photosynthese und damit zusammenhängender biochemischer Prozesse im Rahmen des Pflanzenstoffwechsels analysiert. Der Calvin-Benson-Zyklus, als primärer Stoffwechselweg der Kohlenstofffixierung in C3-Pflanzen, ist der erste Schritt der Stärke- und Saccharoseproduktion, welche maßgeblich für das Wachstum von Pflanzen sind. Basierend auf einer integrativen Analyse zur Modellklassifizierung wurden aus der größten bekannten Sammlung von (kinetischen) Modellen des Calvin-Benson-Zyklus diejenigen ermittelt, die für die Entwicklung von Metabolic-Engineering-Strategien geeignet sind. Angeregt von der Fragestellung warum Kohlenstoff transitorisch vorwiegend in Form von Stärke anstatt Saccharose gespeichert wird, wurden die metabolischen Kosten beider Syntheseprozesse genauer betrachtet. Die Einbeziehung der Bereitstellungskosten der beteiligten Enzyme stützt die Tatsache, dass bevorzugt Stärke als temporärer Kohlenstoffspeicher dient. Die entprechende Untersuchung erfolgte einzig auf Grundlage der Stöchiometrie der Synthesewege. In vielen photosynthetisch-aktiven Organismen findet zudem Photorespiration statt, die der Kohlenstofffixierung entgegenwirkt. Die genaue Bedeutung der Photorespiration für den Pflanzenmetabolismus ist noch umstritten. Eine detaillierte Einschätzung der Rolle dieses Stoffwechselweges bezüglich der Inhibierung der Kohlenstofffixierungsrate, der Verknüpfung von Kohlenstoff- und Stickstoffmetabolismus, der Ausprägung des C1-Stoffwechsels sowie die Einflussnahme auf die Signaltransduktion wurde in einer modell-basierten, kritischen Analyse vorgenommen. Um die Photosynthese in ihrem metabolischen Kontext verstehen zu können, ist die Betrachtung der angrenzenden Prozesse des primären Kohlenstoffmetabolismus unverzichtbar. Hierzu wurde in einem Bottom-up Ansatz das Arabidopsis core Modell entworfen, mittels dessen die Biomasseproduktion, als Indikator für Pflanzenwachtum, unter photoautotrophen Bedingungen simuliert werden kann. Neben sogenannten optimalen Wachstumsbedingungen kann dieses großangelegte Modell auch kohlenstoff- und stickstofflimitierende Umweltbedingungen simulieren. Abschließend wurde das vorgestellte Modell zur Untersuchung von Umwelteinflüssen auf das Stoffwechselverhalten herangezogen, im speziellen verschiedene Stickstoff-, Kohlenstoff- und Energiequellen. Diese auschließlich auf der Stöchiometrie basierende Analyse bietet eine Erklärung für die bevorzugte, gleichzeitige Aufnahme von Nitrat und Ammonium, wie sie in verschiedenen Spezies für optimales Wachstum experimentell beobachtet wurde. Die Resultate dieser Arbeit liefern neue Einsichten in das Verhalten von pflanzlichen Systemen, stützen existierende Ansichten, für die zunehmend experimentelle Hinweise vorhanden sind, und postulieren neue Hypothesen für weiterführende großangelegte Experimente.
Acerenza, Luis. "Studies on the control of time-dependent metabolic processes." Thesis, University of Edinburgh, 1991. http://hdl.handle.net/1842/14242.
Full textLi, Yanjun. "COMPUTATIONAL MODELING OF IN VIVO METABOLIC PROCESSES IN SKELETAL MUSCLE." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1283473428.
Full textCairns, Andrew G. "Design and synthesis of small molecule probes for metabolic processes." Thesis, University of Glasgow, 2013. http://theses.gla.ac.uk/4897/.
Full textSoeprijanto. "Study of phosphorous released and removal under anaerobic and aerobic conditions." Thesis, University of Strathclyde, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249057.
Full textBarr, Sarah Marie. "Origins and consequences of altered metabolic processes in obese pregnant women." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8827.
Full textMcWhorter, Todd Jason. "The integration of digestive, metabolic and osmoregulatory processes in nectar-eating birds." Diss., The University of Arizona, 2002. http://hdl.handle.net/10150/280198.
Full textSong, Yang. "Electrostatically controlled enzymatic reaction, metabolic processes and microbial generation of electric power." Cleveland State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=csu1398685271.
Full textBooks on the topic "Metabolic processes"
NATO Advanced Research Workshop on Control of Metabolic Processes (1989 Lucca, Italy). Control of metabolic processes. New York: Plenum Press, 1990.
Find full textCornish-Bowden, Athel, and María Luz Cárdenas, eds. Control of Metabolic Processes. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-9856-2.
Full textNutrient timing: Metabolic optimization for health, performance, and recovery. Boca Raton, FL: CRC Press, 2012.
Find full textColombo, Michael J. Nutrient enrichment, phytoplankton algal growth, and estimated rates of instream metabolic processes in the Quinebaug River basin, Connecticut, 2000-2001. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 2004.
Find full textL, Kon O., International Union of Biochemistry. Committee on Symposia., and Satellite Symposium on Molecular and Protein Engineering (1986 : Singapore), eds. Integration and control of metabolic processes: Pure and applied aspects : the proceedings of the Fourth Federation of Asian and Oceanian Biochemists Congress and Satellite Symposium on Molecular and Protein Engineering, held in Singapore during November 30-December 5, 1986. Cambridge [Cambridgeshire]: Cambridge University Press, 1987.
Find full textEngin, Atilla, and Ayse Basak Engin, eds. Tryptophan Metabolism: Implications for Biological Processes, Health and Disease. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15630-9.
Full textM, Altura Burton, Durlach Jean, and Seelig Mildred S. 1920-, eds. Magnesium in cellular processes and medicine. Basel: Karger, 1987.
Find full text1935-, Mellinger Jean, Truchot J. P. 1937-, Lahlou B. 1936-, and Association des physiologistes (France), eds. Animal nutrition and transport processes. Basel: Karger, 1990.
Find full textBli͡umenfelʹd, L. A. Biophysical thermodynamics of intracellular processes: Molecular machines of the living cell. New York: Springer-Verlag, 1994.
Find full textMAP kinase signaling protocols. 2nd ed. New York, N.Y: Humana Press, 2010.
Find full textBook chapters on the topic "Metabolic processes"
Ehrenfreund, Josef, David Kuhn, Nigel Armes, Thomas C. Sparks, Carl V. DeAmicis, Thomas Bretschneider, Reiner Fischer, and Ralf Nauen. "Metabolic Processes." In Modern Crop Protection Compounds, 1059–126. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527644179.ch31.
Full textKhanfer, Riyad, John Ryan, Howard Aizenstein, Seema Mutti, David Busse, Ilona S. Yim, J. Rick Turner, et al. "Metabolic Processes." In Encyclopedia of Behavioral Medicine, 1229. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1005-9_101079.
Full textAtkinson, Daniel E. "What Should a Theory of Metabolic Control Offer to the Experimenter?" In Control of Metabolic Processes, 3–27. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-9856-2_1.
Full textFell, David A., Herbert M. Sauro, and J. Rankin Small. "Control Coefficients and the Matrix Method." In Control of Metabolic Processes, 139–48. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-9856-2_10.
Full textCascante, Marta, Rafael Franco, and Enric I. Canela. "Performance Indices in Metabolic Systems: a Criterion for Evaluating Effectiveness in Metabolic Regulation." In Control of Metabolic Processes, 149–56. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-9856-2_11.
Full textCanela, Enric I., Marta Cascante, and Rafael Franco. "Practical Determination of Control Coefficients in Metabolic Pathways." In Control of Metabolic Processes, 157–69. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-9856-2_12.
Full textGoldbeter, Albert, and Daniel E. Koshland. "Zero-order Ultrasensitivity in Interconvertible Enzyme Systems." In Control of Metabolic Processes, 173–82. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-9856-2_13.
Full textChock, P. Boon, Sue Goo Rhee, and Earl R. Stadtman. "Metabolic Control by the Cyclic Cascade Mechanism: a Study of E. coli Glutamine Synthetase." In Control of Metabolic Processes, 183–94. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-9856-2_14.
Full textCárdenas, María Luz, and Athel Cornish-Bowden. "Properties Needed for the Enzymes of an Interconvertible Cascade to Generate a Highly Sensitive Response." In Control of Metabolic Processes, 195–207. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-9856-2_15.
Full textEdstrom, Ronald D., Marilyn H. Meinke, Mary E. Gurnack, David M. Steinhorn, Xiuru Yang, Rui Yang, and D. Fennell Evans. "Regulation of Muscle Glycogenolysis." In Control of Metabolic Processes, 209–17. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-9856-2_16.
Full textConference papers on the topic "Metabolic processes"
Alfonso-Garcia, Alba, Tim Smith, Rupsa Datta, Enrico Gratton, Eric O. Potma, and Wendy Liu. "Visualizing Cellular Metabolic Processes With Combined Nonlinear Optical Microscopy." In Optical Tomography and Spectroscopy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/ots.2016.oth4c.7.
Full textTremberger, Jr., George, T. Holden, E. Cheung, S. Dehipawala, N. Gadura, U. Golebiewska, K. Valentin, et al. "Cyanobacteria gene and protein sequences in diurnal oscillation metabolic processes." In SPIE Optical Engineering + Applications, edited by Richard B. Hoover, Gilbert V. Levin, Alexei Y. Rozanov, and Paul C. W. Davies. SPIE, 2010. http://dx.doi.org/10.1117/12.860093.
Full textPronchenkova, G. F., and N. P. Chesnokova. "Metabolic effects of infrared laser radiation in experimental wound processes." In Volga Laser Tour '93, edited by Valery V. Tuchin. SPIE, 1994. http://dx.doi.org/10.1117/12.179018.
Full textWang, Yajie, Yonghong Hao, and Xuemeng Wang. "Simulation of karst hydrological processes using GM(1,1) metabolic model." In 2009 IEEE International Conference on Grey Systems and Intelligent Services (GSIS 2009). IEEE, 2009. http://dx.doi.org/10.1109/gsis.2009.5408244.
Full textMarcus, A. J., L. B. Safier, H. L. Ullman, N. Islam, M. J. Broekman, and C. V. Schacky. "NEW EICOSANOIDS FORMED DURING PLATELET-NEUTROPHIL INTERACTIONS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644626.
Full textPolito, Rita, Vincenzo Monda, Alberto Ametta, Marcellino Monda, Antonietta Messina, Francesco Sessa, Chiara Porro, et al. "Physical activity has numerous beneficial effects on metabolic and inflammatory processes." In Journal of Human Sport and Exercise - 2020 - Spring Conferences of Sports Science. Universidad de Alicante, 2020. http://dx.doi.org/10.14198/jhse.2020.15.proc3.32.
Full textShirshin, E. A., B. P. Yakimov, Y. I. Gurfinkel, A. V. Priezzhev, N. P. Omelyanenko, J. Lademann, and M. E. Darvin. "In vivo laser imaging of metabolic processes connected with the microcirculatory system." In 2018 International Conference Laser Optics (ICLO). IEEE, 2018. http://dx.doi.org/10.1109/lo.2018.8435763.
Full textSchlicht, K., C. Knappe, C. Geisler, K. Türk, D. Schulte, K. Hartmann, S. Waschina, S. Brodesser, S. Schreiber, and M. Laudes. "Effects of Bile acid levels on gut microbial community metabolic processes, microbiome diversity and human metabolism and nutrition status." In Diabetes Kongress 2021 – 55. Jahrestagung der DDG. Georg Thieme Verlag KG, 2021. http://dx.doi.org/10.1055/s-0041-1727449.
Full textClarke, S. J., J. L. Nadeau, D. M. Bahcheli, Z. Zhang, and C. A. Hollmann. "Quantum dots as phototoxic drugs and sensors of specific metabolic processes in living cells." In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE, 2005. http://dx.doi.org/10.1109/iembs.2005.1616458.
Full textLELIŪNIENĖ, Jolanta, Ligita BALEŽENTIENĖ, and Evaldas KLIMAS. "FESTULOLIUM METABOLITES ACCUMULATION RESPONSE TO PHOTOPERIOD OF FLOWERING TERMOINDUCTION." In RURAL DEVELOPMENT. Aleksandras Stulginskis University, 2018. http://dx.doi.org/10.15544/rd.2017.003.
Full textReports on the topic "Metabolic processes"
Wong, S., C. Jeans, and M. Thelen. A Study of the Structure and Metabolic Processes of a Novel Membrane Cytochrome in an Extreme Microbial Community. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/894351.
Full textAleksandrov, V. A., L. N. Shilova, A. V. Aleksandrov, N. I. Emelianov, N. V. Aleksandrova, N. V. Nikitina, E. E. Mozgovaya, and I. A. Zborovskaya. THE STUDY OF THE INFLUENCE OF ANGIOOPETIN-LIKE PROTEIN TYPE 4 ON THE INFLAMMATORY AND METABOLIC PROCESSES IN RHEUMATOID ARTHRITIS. Media Sphere, 2019. http://dx.doi.org/10.18411/2305-2198-2019-1-9-10.
Full textHildebrand, Mark, Juergen Polle, and Michael Huesemann. A Systems Biology and Pond Culture-based Understanding and Improvement of Metabolic Processes Related to Productivity in Diverse Microalgal Classes for Viable Biofuel Production. Office of Scientific and Technical Information (OSTI), July 2018. http://dx.doi.org/10.2172/1458513.
Full textStarr, Robert C., Brennon R. Orr, M. Hope Lee, and Mark Delwiche. Final Project Report - Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloriethylene Co-Metabolism: Co-Metabolic Enzyme Activity Probes and Modeling Co-Metabolism and Attenuation. Office of Scientific and Technical Information (OSTI), February 2010. http://dx.doi.org/10.2172/972652.
Full textRick Colwell, Corey Radtke, Mark Delwiche, Deborah Newby, Lynn Petzke, Mark Conrad, Eoin Brodie, et al. Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Co-Metabolism. Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/896426.
Full text