Contents
Academic literature on the topic 'Mesure invariante de processus de Markov'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mesure invariante de processus de Markov.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mesure invariante de processus de Markov"
Galves, Antonio, and Rinaldo Schinazi. "Approximations finies de la mesure invariante do processus de contact sur-critique vu par la première particule." Probability Theory and Related Fields 83, no. 4 (December 1989): 435–45. http://dx.doi.org/10.1007/bf01845698.
Full textBoczar, J., A. Dorobczynski, and J. Miakotoi. "Modèle de transfert et de diffusion de masse dans un écoulement, en présence de gradients de vitesse et de gradients du coefficient de diffusion turbulente." Revue des sciences de l'eau 5, no. 3 (April 12, 2005): 353–79. http://dx.doi.org/10.7202/705136ar.
Full textDissertations / Theses on the topic "Mesure invariante de processus de Markov"
Hahn, Léo. "Interacting run-and-tumble particles as piecewise deterministic Markov processes : invariant distribution and convergence." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2024. http://www.theses.fr/2024UCFA0084.
Full text1. Simulating active and metastable systems with piecewise deterministic Markov processes (PDMPs): - Which dynamics to choose to efficiently simulate metastable states? - How to directly exploit the non-equilibrium nature of PDMPs to study the modeled physical systems? 2. Modeling active systems with PDMPs: - What conditions must a system meet to be modeled by a PDMP? - In which cases does the system have a stationary distribution? - How to calculate dynamic quantities (e.g., transition rates) in this framework? 3. Improving simulation techniques for equilibrium systems: - Can results obtained in the context of non-equilibrium systems be used to accelerate the simulation of equilibrium systems? - How to use topological information to adapt the dynamics in real-time?
Dubarry, Blandine. "Comportement asymptotique des systèmes de fonctions itérées et applications aux chaines de Markov d'ordre variable." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S114/document.
Full textThe purpose of this thesis is the study of the asymptotic behaviour of iterated function systems (IFS). In a first part, we will introduce the notions related to the study of such systems and we will remind different applications of IFS such as random walks on graphs or aperiodic tilings, random dynamical systems, proteins classification or else $q$-repeated measures. We will focus on two other applications : the chains of infinite order and the variable length Markov chains. We will give the main results in the literature concerning the study of invariant measures for IFS and those for the calculus of the Hausdorff dimension. The second part will be dedicated to the study of a class of iterated function systems (IFSs) with non-overlapping or just-touching contractions on closed real intervals and adapted piecewise constant transition probabilities. We give criteria for the existence and the uniqueness of an invariant probability measure for the IFSs and for the asymptotic stability of the system in terms of bounds of transition probabilities. Additionally, in case there exists a unique invariant measure and under some technical assumptions, we obtain its exact Hausdorff dimension as the ratio of the entropy over the Lyapunov exponent. This result extends the formula, established in the literature for continuous transition probabilities, to the case considered here of piecewise constant probabilities. The last part is dedicated to a special case of IFS : Variable Length Markov Chains (VLMC). We will show that under a weak non-nullness condition and continuity for the ultrametric distance of the transition probabilities, they admit a unique invariant measure which is attractive for the weak convergence
Karray, Mohamed Kadhem. "Evaluation analytique des performanes des réseaux sans-fil par un processus de Markov spatial prenant en compte leur géométrie, leur dynamique et leurs algorithmes de contrôle." Phd thesis, Télécom ParisTech, 2007. http://pastel.archives-ouvertes.fr/pastel-00003009.
Full textLemaire, Vincent. "Estimation récursive de la mesure invariante d'un processus de diffusion." Phd thesis, Université de Marne la Vallée, 2005. http://tel.archives-ouvertes.fr/tel-00011281.
Full textLa principale hypothèse sur ces solutions (diffusions) est l'existence d'une fonction de Lyapounov garantissant une condition de stabilité. Par le théorème ergodique on sait que les mesures empiriques de la diffusion convergent vers une mesure invariante. Nous étudions une convergence similaire lorsque la diffusion est discrétisée par un schéma d'Euler de pas décroissant. Nous prouvons que les mesures empiriques pondérées de ce schéma convergent vers la mesure invariante de la diffusion, et qu'il est possible d'intégrer des fonctions exponentielles lorsque le coefficient de diffusion est suffisamment petit. De plus, pour une classe de diffusions plus restreinte, nous prouvons la convergence presque sûre et dans Lp du schéma d'Euler vers la diffusion.
Nous obtenons des vitesses de convergence pour les mesures empiriques pondérées et donnons les paramètres permettant une vitesse optimale. Nous finissons l'étude de ce schéma lorsqu'il y a présence de multiples mesures invariantes. Cette étude se fait en dimension 1, et nous permet de mettre en évidence un lien entre classification de Feller et fonctions de Lyapounov.
Dans la dernière partie, nous exposons un nouvel algorithme adaptatif permettant de considérer des problèmes plus généraux tels que les systèmes Hamiltoniens ou les systèmes monotones. Il s'agit de considérer les mesures empiriques d'un schéma d'Euler construit à partir d'une suite de pas aléatoires adaptés dominée par une suite décroissant vers 0.
Offret, Yoann. "Dynamique de diffusions inhomogènes sous des conditions d'invariance d'échelle." Phd thesis, Université Rennes 1, 2012. http://tel.archives-ouvertes.fr/tel-00730606.
Full textNABLI, HEDI. "Mesure de performabilite sur des processus de markov homogenes a espace d'etats fini." Rennes 1, 1995. http://www.theses.fr/1995REN10094.
Full textSAMSON, PAUL-MARIE. "Inegalites de concentration de la mesure pour des chaines de markov et des processus -melangeants." Toulouse 3, 1998. http://www.theses.fr/1998TOU30073.
Full textGanidis-Cochard, Hélène. "Convergence de semi-groupes de diffusion : amplitude et problème de Skorokhod." Nancy 1, 1999. http://www.theses.fr/1999NAN10279.
Full textThis thesis is divided in three independant parts. In first part is estimated the convergence rate of sorne semi-groups associated to diffusion processes to their invariant probability. Second part deals with the law of the range process for ultraspherical Markov chains and Bessel processes. Convergence of ultraspherical Markov chains to Bessel processes is first established. Then are evaluated Laplace transform and firts moment for the range inverse (firt passage time for the range process to a given level). Calculations are developped in the case of Bessel processes of dimension one and three. In third part are considered two classes of martingale: 1 - The class of right continuous left limited, uniformly integrable martingales, (Mt)t≥0, such that the law of (M0, M∞) is given. 2 - The class of right continuous left limited, uniformly intégrable martingales, (Mt)t≥0 such that the laws of M0 and M∞ are given. For each of these two kind of Skorokhod's problem, we construct an explicit brownian solution. These solutions are of great importance in maximal inequalies
Offret, Yoann. "Dynamique de diffusions inhomogènes sous des conditions d'invariance d'échelle." Phd thesis, Rennes 1, 2012. https://ecm.univ-rennes1.fr/nuxeo/site/esupversions/cb280592-828c-4635-9e2e-c2efb1f8bbe9.
Full textWe study the asymptotic behaviour of some stochastic processes whose dynamics depends not only on position, but also time, and such that the diffusion term and the potential satisfy some scaling properties. We point out a general phase transition phenomenon, entirely determined by the self-similar parameters. The main idea is to consider an appropriate scaling transformation, taking full advantage of the scaling properties. In the first part, we investigate a family of one-dimensional diffusion processes, driven by a Brownian motion, whose drift is polynomial in time and space. These diffusions are continuous counterparts of the random walks studied by Menshikov and Volkov (2008) and related to theFriedman's urn model. We give, in terms of all scaling parameters, the iterated logarithm type laws, the scaling limits and the explosion times of these processes. The second part dealt with a family of diffusion processes in random environment, directed by a one dimensional Brownian motion, whose potential is Brownian in space and polynomialin time. This situation is a generalization of the time-homogeneous Brox's diffusion (86) studied in an extensive body of the literature. We obtain in the critical case a quasi-invariant and quasi stationary random measure for the time-inhomogeneous semi-group, deduced from the study of a underlying random dynamical system
Malrieu, Florent. "Inégalités fonctionnelles et comportement en temps long de quelques processus de Markov." Habilitation à diriger des recherches, Université Rennes 1, 2010. http://tel.archives-ouvertes.fr/tel-00542278.
Full textBooks on the topic "Mesure invariante de processus de Markov"
Probabilités et potentiel, chapitres XII à XVI : Théorie du potentiel associée à une résolvante - Théorie des processus de Markov. Hermann, 1987.
Find full text