To see the other types of publications on this topic, follow the link: Mesoscopic transport in graphene.

Journal articles on the topic 'Mesoscopic transport in graphene'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Mesoscopic transport in graphene.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Xu, N., J. W. Ding, B. L. Wang, D. N. Shi, and H. Q. Sun. "Transport properties of mesoscopic graphene rings." Physica B: Condensed Matter 407, no. 3 (February 2012): 335–39. http://dx.doi.org/10.1016/j.physb.2011.10.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Racolta, D., and C. Micu. "The Aharonov-Bohm Effect and Transport Properties in Graphene Nanostructures." Annals of West University of Timisoara - Physics 57, no. 1 (December 1, 2013): 52–60. http://dx.doi.org/10.1515/awutp-2015-0106.

Full text
Abstract:
Abstract In this paper we discuss interplays between the Aharonov-Bohm effect and the transport properties in mesoscopic ring structures based on graphene. The interlayer interaction leads to a change of the electronic structure of bilayer graphene ring such that the electronic energy dispersion law exhibits a gap, either by doping one of the layers or by the application of an external perpendicular electric field. Gap adjustments can be done by varying the external electric field, which provides the possibility of obtaining mesoscopic devices based on the electronic properties of bilayer graphene. This opens the way to controllable manipulations of phase-coherent mesoscopic phenomena, as well as to Aharonov-Bohm oscillations depending on the height of the potential step and on the radius of the ring. For this purpose one resorts to a tight-binding model such as used to the description of conductance.
APA, Harvard, Vancouver, ISO, and other styles
3

Sánchez, Fernando, Vicenta Sánchez, and Chumin Wang. "Independent Dual-Channel Approach to Mesoscopic Graphene Transistors." Nanomaterials 12, no. 18 (September 16, 2022): 3223. http://dx.doi.org/10.3390/nano12183223.

Full text
Abstract:
Graphene field-effect transistors (GFETs) exhibit unique switch and sensing features. In this article, GFETs are investigated within the tight-binding formalism, including quantum capacitance correction, where the graphene ribbons with reconstructed armchair edges are mapped into a set of independent dual channels through a unitary transformation. A new transfer matrix method is further developed to analyze the electron transport in each dual channel under a back gate voltage, while the electronic density of states of graphene ribbons with transversal dislocations are calculated using the retarded Green’s function and a novel real-space renormalization method. The Landauer electrical conductance obtained from these transfer matrices was confirmed by the Kubo–Greenwood formula, and the numerical results for the limiting cases were verified on the basis of analytical results. Finally, the size- and gate-voltage-dependent source-drain currents in GFETs are calculated, whose results are compared with the experimental data.
APA, Harvard, Vancouver, ISO, and other styles
4

Bhalla, Pankaj, and Surender Pratap. "Aspects of electron transport in zigzag graphene nanoribbons." International Journal of Modern Physics B 32, no. 12 (May 3, 2018): 1850148. http://dx.doi.org/10.1142/s0217979218501485.

Full text
Abstract:
In this paper, we investigate the aspects of electron transport in the zigzag graphene nanoribbons (ZGNRs) using the nonequilibrium Green’s function (NEGF) formalism. The latter is an esoteric tool in mesoscopic physics. It is used to perform an analysis of ZGNRs by considering potential well. Within this potential, the dependence of transmission coefficient, local density of states (LDOS) and electron transport properties on number of atoms per unit cell is discussed. It is observed that there is an increment in electron and thermal conductance with increasing number of atoms. In addition to these properties, the dependence of same is also studied in figure of merit. The results infer that the contribution of electrons to enhance the figure of merit is important above the crossover temperature.
APA, Harvard, Vancouver, ISO, and other styles
5

da Silva, Juliana M., Fernando A. F. Santana, Jorge G. G. S. Ramos, and Anderson L. R. Barbosa. "Spin Hall angle in single-layer graphene." Journal of Applied Physics 132, no. 18 (November 14, 2022): 183901. http://dx.doi.org/10.1063/5.0107212.

Full text
Abstract:
We investigate the spin Hall effect in a single-layer graphene device with disorder and interface-induced spin–orbit coupling. Our graphene device is connected to four semi-infinite leads that are embedded in a Landauer–Büttiker setup for quantum transport. We show that the spin Hall angle of graphene devices exhibits mesoscopic fluctuations that are similar to metal devices. Furthermore, the product between the maximum spin Hall angle deviation and dimensionless longitudinal conductivity follows a universal relationship [Formula: see text]. Finally, we compare the universal relation with recent experimental data and numerically exact real-space simulations from the tight-binding model.
APA, Harvard, Vancouver, ISO, and other styles
6

João, Simão M., and João M. Viana Parente Lopes. "Non-linear optical response in disordered 2D materials." EPJ Web of Conferences 233 (2020): 03002. http://dx.doi.org/10.1051/epjconf/202023303002.

Full text
Abstract:
Using KITE [1], a quantum transport software developed by ourselves, we explore the effect of disorder in the second-order con¬ductivity, aiming to reproduce mesoscopic samples under more realistic models of disorder. This work will be concerned about our most recent results with KITE. We will showcase and examine how different mod¬els of disorder affect the same system, experimenting with Anderson disorder and vacancies in gapped Graphene.
APA, Harvard, Vancouver, ISO, and other styles
7

Raineri, Vito, Emanuele Rimini, and Filippo Giannazzo. "Mesoscopic Transport Properties in Exfoliated Graphene on SiO2/Si." Nanoscience and Nanotechnology Letters 3, no. 1 (February 1, 2011): 55–58. http://dx.doi.org/10.1166/nnl.2011.1119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

., Amardeep, and Vijay Kr Lamba. "Study and Modeling of Graphene-Boron-Nitride Heterostructures." SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology 14, no. 03 (July 15, 2022): 337–40. http://dx.doi.org/10.18090/samriddhi.v14i03.14.

Full text
Abstract:
When we talk about nano devices, the molecule and its interface with electrodes play a key role. So, one of the major objectives is to select an organic nanomaterial with extensive applications, which requires smart synthesis of appropriate materials and an understanding of their properties. Here we modeled a device, which not only adds another “protuberance” to learn about the transport properties of the molecule but also helps in grasping its use as a considerable material for future flexible electronics. Modeling of materials at the nano-level not only provides fundamental insight into the properties of crystalline defects but also gives a reasonable understanding of phase stability and learning of processes like atomic diffusion interface migration. For the development of devices at a mesoscopic and macroscopic level and with atomistic input parameters, this recognition serves as a guide. We tried to model how the layers of one type of molecule and the interaction of two different types of molecular layers control the junction charge transport characteristics.
APA, Harvard, Vancouver, ISO, and other styles
9

Nam Do, V., V. Hung Nguyen, P. Dollfus, and A. Bournel. "Electronic transport and spin-polarization effects of relativisticlike particles in mesoscopic graphene structures." Journal of Applied Physics 104, no. 6 (September 15, 2008): 063708. http://dx.doi.org/10.1063/1.2980045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Skachko, I., X. Du, F. Duerr, A. Luican, D. A. Abanin, L. S. Levitov, and E. Y. Andrei. "Fractional quantum Hall effect in suspended graphene probed with two-terminal measurements." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, no. 1932 (December 13, 2010): 5403–16. http://dx.doi.org/10.1098/rsta.2010.0226.

Full text
Abstract:
Recently, fractional quantization of two-terminal conductance was reported in suspended graphene. The quantization, which was clearly visible in fields as low as 2 T and persistent up to 20 K in 12 T, was attributed to the formation of an incompressible fractional quantum Hall state. Here, we argue that the failure of earlier experiments to detect the integer and fractional quantum Hall effect with a Hall-bar lead geometry is a consequence of the invasive character of voltage probes in mesoscopic samples, which are easily shorted out owing to the formation of hot spots near the edges of the sample. This conclusion is supported by a detailed comparison with a solvable transport model. We also consider, and rule out, an alternative interpretation of the quantization in terms of the formation of a p–n–p junction, which could result from contact doping or density inhomogeneity. Finally, we discuss the estimate of the quasi-particle gap of the quantum Hall state. The gap value, obtained from the transport data using a conformal mapping technique, is considerably larger than in GaAs-based two-dimensional electron systems, reflecting the stronger Coulomb interactions in graphene.
APA, Harvard, Vancouver, ISO, and other styles
11

Rozhkov, A. V., G. Giavaras, Yury P. Bliokh, Valentin Freilikher, and Franco Nori. "Electronic properties of mesoscopic graphene structures: Charge confinement and control of spin and charge transport." Physics Reports 503, no. 2-3 (June 2011): 77–114. http://dx.doi.org/10.1016/j.physrep.2011.02.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Widianto, Eri, Shobih, Erlyta Septa Rosa, Kuwat Triyana, Natalita Maulani Nursam, and Iman Santoso. "Graphene oxide as an effective hole transport material for low-cost carbon-based mesoscopic perovskite solar cells." Advances in Natural Sciences: Nanoscience and Nanotechnology 12, no. 3 (September 1, 2021): 035001. http://dx.doi.org/10.1088/2043-6262/ac204a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Biel, Blanca, Alessandro Cresti, Rémi Avriller, Simon Dubois, Alejandro López-Bezanilla, François Triozon, X. Blase, Jean-Christophe Charlier, and Stephan Roche. "Mobility gaps in disordered graphene-based materials: an ab initio -based tight-binding approach to mesoscopic transport." physica status solidi (c) 7, no. 11-12 (August 16, 2010): 2628–31. http://dx.doi.org/10.1002/pssc.200983826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kadhim, Adam K., Mohammad R. Mohammad, Atheer I. Abd Ali, and Mustafa K. A. Mohammed. "Reduced Graphene Oxide/Bi2O3 Composite as a Desirable Candidate to Modify the Electron Transport Layer of Mesoscopic Perovskite Solar Cells." Energy & Fuels 35, no. 10 (May 12, 2021): 8944–52. http://dx.doi.org/10.1021/acs.energyfuels.1c00848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zhou, Huawei, Jie Yin, Zhonghao Nie, Zhaojin Yang, Dongjie Li, Junhu Wang, Xin Liu, Changzi Jin, Xianxi Zhang, and Tingli Ma. "Earth-abundant and nano-micro composite catalysts of Fe3O4@reduced graphene oxide for green and economical mesoscopic photovoltaic devices with high efficiencies up to 9%." Journal of Materials Chemistry A 4, no. 1 (2016): 67–73. http://dx.doi.org/10.1039/c5ta06525a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Das, Mukunda P., and Frederick Green. "Mesoscopic transport revisited." Journal of Physics: Condensed Matter 21, no. 10 (February 13, 2009): 101001. http://dx.doi.org/10.1088/0953-8984/21/10/101001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Weiss, C. "Coherently controlled mesoscopic transport." Laser Physics Letters 3, no. 4 (April 1, 2006): 212–15. http://dx.doi.org/10.1002/lapl.200510084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Horsell, D. W., A. K. Savchenko, F. V. Tikhonenko, K. Kechedzhi, I. V. Lerner, and V. I. Fal’ko. "Mesoscopic conductance fluctuations in graphene." Solid State Communications 149, no. 27-28 (July 2009): 1041–45. http://dx.doi.org/10.1016/j.ssc.2009.02.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Sánchez, David, and Michael Moskalets. "Quantum Transport in Mesoscopic Systems." Entropy 22, no. 9 (September 1, 2020): 977. http://dx.doi.org/10.3390/e22090977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Altshuler, B. L. "Transport Phenomena in Mesoscopic Systems." Japanese Journal of Applied Physics 26, S3-3 (January 1, 1987): 1938. http://dx.doi.org/10.7567/jjaps.26s3.1938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ng, T. K. "Nonlinear transport in mesoscopic systems." Physical Review Letters 68, no. 7 (February 17, 1992): 1018–21. http://dx.doi.org/10.1103/physrevlett.68.1018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Datta, Supriyo, and Henk van Houten. "Electronic Transport in Mesoscopic Systems." Physics Today 49, no. 5 (May 1996): 70. http://dx.doi.org/10.1063/1.2807624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Okiji, Ayao, Hideaki Kasai, and Atsunobu Nakamura. "Ballistic Transport in Mesoscopic Systems." Progress of Theoretical Physics Supplement 106 (1991): 209–24. http://dx.doi.org/10.1143/ptps.106.209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Sarkozy, Stephen J., Kantimay Das Gupta, Francois Sfigakis, Ian Farrer, David Ritchie, Geb Jones, Po-Hsin Liu, Helen Quach, and Michael Pepper. "Mesoscopic Transport in Undoped Heterostructures." ECS Transactions 16, no. 7 (December 18, 2019): 59–64. http://dx.doi.org/10.1149/1.2983159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Heinonen, O., and M. D. Johnson. "Mesoscopic transport beyond linear response." Physical Review Letters 71, no. 9 (August 30, 1993): 1447–50. http://dx.doi.org/10.1103/physrevlett.71.1447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Maiti, Santanu K. "Electron transport through mesoscopic ring." Physica E: Low-dimensional Systems and Nanostructures 36, no. 2 (February 2007): 199–204. http://dx.doi.org/10.1016/j.physe.2006.10.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Singh, Navinder. "Quantum transport in mesoscopic systems." Resonance 15, no. 11 (November 2010): 988–1002. http://dx.doi.org/10.1007/s12045-010-0115-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Jalabert, Rodolfo. "Mesoscopic transport and quantum chaos." Scholarpedia 11, no. 1 (2016): 30946. http://dx.doi.org/10.4249/scholarpedia.30946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Das, Mukunda P., and Frederick Green. "Nonequilibrium mesoscopic transport: a genealogy." Journal of Physics: Condensed Matter 24, no. 18 (April 17, 2012): 183201. http://dx.doi.org/10.1088/0953-8984/24/18/183201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Okiji, A., H. Kasai, and A. Nakamura. "Ballistic Transport in Mesoscopic Systems." Progress of Theoretical Physics Supplement 106 (May 16, 2013): 209–24. http://dx.doi.org/10.1143/ptp.106.209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Levinson, Y. B., and B. Shapiro. "Mesoscopic transport at finite frequencies." Physical Review B 46, no. 23 (December 15, 1992): 15520–22. http://dx.doi.org/10.1103/physrevb.46.15520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Bruynseraede, Y., L. Gielen, C. Strunk, G. Neuttiens, L. Stockman, C. Van Haesendonck, and V. V. Moshchalkov. "Electron transport in mesoscopic structures." Nanostructured Materials 6, no. 1-4 (January 1995): 169–78. http://dx.doi.org/10.1016/0965-9773(95)00040-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Angelescu, D. E., M. C. Cross, and M. L. Roukes. "Heat transport in mesoscopic systems." Superlattices and Microstructures 23, no. 3-4 (March 1998): 673–89. http://dx.doi.org/10.1006/spmi.1997.0561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Bohra, G., R. Somphonsane, D. K. Ferry, and J. P. Bird. "Robust mesoscopic fluctuations in disordered graphene." Applied Physics Letters 101, no. 9 (August 27, 2012): 093110. http://dx.doi.org/10.1063/1.4748167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Mahelona, Keoni K., Alan B. Kaiser, and Viera Skákalová. "Resistance and mesoscopic fluctuations in graphene." physica status solidi (b) 247, no. 11-12 (September 27, 2010): 2983–87. http://dx.doi.org/10.1002/pssb.201000307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Seidel, Yvonne E., Zenonas Jusys, Björn Wickman, Bengt Kasemo, and R. Jürgen Behm. "Mesoscopic Transport Effects in Electrocatalytic Reactions." ECS Transactions 25, no. 23 (December 17, 2019): 91–102. http://dx.doi.org/10.1149/1.3328514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Chen, Z., and R. S. Sorbello. "Inelasticity and nonlinearity in mesoscopic transport." Physical Review B 44, no. 23 (December 15, 1991): 12857–67. http://dx.doi.org/10.1103/physrevb.44.12857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Zhou, F., B. Spivak, and B. Altshuler. "Mesoscopic Mechanism of Adiabatic Charge Transport." Physical Review Letters 82, no. 3 (January 18, 1999): 608–11. http://dx.doi.org/10.1103/physrevlett.82.608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Johnson, M. D., and O. Heinonen. "Nonlinear steady-state mesoscopic transport: Formalism." Physical Review B 51, no. 20 (May 15, 1995): 14421–36. http://dx.doi.org/10.1103/physrevb.51.14421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Bird, J. P., K. Ishibashi, Y. Aoyagi, T. Sugano, R. Akis, D. K. Ferry, D. P. Pivin, et al. "Quantum transport in open mesoscopic cavities." Chaos, Solitons & Fractals 8, no. 7-8 (July 1997): 1299–324. http://dx.doi.org/10.1016/s0960-0779(97)00021-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Goel, N., J. Graham, J. C. Keay, K. Suzuki, S. Miyashita, M. B. Santos, and Y. Hirayama. "Ballistic transport in InSb mesoscopic structures." Physica E: Low-dimensional Systems and Nanostructures 26, no. 1-4 (February 2005): 455–59. http://dx.doi.org/10.1016/j.physe.2004.08.080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

de Vegvar, P. G. N., T. A. Fulton, W. H. Mallison, and R. E. Miller. "Mesoscopic Transport in Tunable Andreev Interferometers." Physical Review Letters 73, no. 10 (September 5, 1994): 1416–19. http://dx.doi.org/10.1103/physrevlett.73.1416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Olivares-Robles, M. A., and L. S. García-Colín. "Mesoscopic derivation of hyperbolic transport equations." Physical Review E 50, no. 4 (October 1, 1994): 2451–57. http://dx.doi.org/10.1103/physreve.50.2451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zirnbauer, Martin R. "Fourier inversion theorem in mesoscopic transport." Physica A: Statistical Mechanics and its Applications 167, no. 1 (August 1990): 132–39. http://dx.doi.org/10.1016/0378-4371(90)90047-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Martin, T. "Wavepackets for mesoscopic transport with interactions." Superlattices and Microstructures 23, no. 3-4 (March 1998): 859–69. http://dx.doi.org/10.1006/spmi.1997.0547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wendin, Göran, and Vitaly S. Shumeiko. "Josephson transport in complex mesoscopic structures." Superlattices and Microstructures 20, no. 4 (December 1996): 569–73. http://dx.doi.org/10.1006/spmi.1996.0116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Sachrajda, A. S., Y. Feng, H. A. Carmona, A. K. Geim, P. C. Main, L. Eaves, and C. T. Foxon. "Mesoscopic transport properties of composite fermions." Surface Science 361-362 (July 1996): 59–62. http://dx.doi.org/10.1016/0039-6028(96)00352-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kouwenhoven, L. P., N. C. van der Vaart, Yu V. Nazarov, S. Jauhar, D. Dixon, K. McCormick, J. Orenstein, et al. "High-frequency transport through mesoscopic structures." Surface Science 361-362 (July 1996): 591–94. http://dx.doi.org/10.1016/0039-6028(96)00477-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kolesnikova, Anna L., Mikhail A. Rozhkov, Nikita D. Abramenko, and Alexey E. Romanov. "On mesoscopic description of interfaces in graphene." Physics of Complex Systems 1, no. 4 (2020): 129–34. http://dx.doi.org/10.33910/2687-153x-2020-1-4-129-134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Chuang, Chiashain, Li-Hung Lin, Nobuyuki Aoki, Takahiro Ouchi, Akram M. Mahjoub, Tak-Pong Woo, Reuben K. Puddy, Yuichi Ochiai, C. G. Smith, and Chi-Te Liang. "Mesoscopic conductance fluctuations in multi-layer graphene." Applied Physics Letters 103, no. 4 (July 22, 2013): 043117. http://dx.doi.org/10.1063/1.4816721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography