Academic literature on the topic 'Mesoscopic transport in graphene'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mesoscopic transport in graphene.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mesoscopic transport in graphene"
Xu, N., J. W. Ding, B. L. Wang, D. N. Shi, and H. Q. Sun. "Transport properties of mesoscopic graphene rings." Physica B: Condensed Matter 407, no. 3 (February 2012): 335–39. http://dx.doi.org/10.1016/j.physb.2011.10.049.
Full textRacolta, D., and C. Micu. "The Aharonov-Bohm Effect and Transport Properties in Graphene Nanostructures." Annals of West University of Timisoara - Physics 57, no. 1 (December 1, 2013): 52–60. http://dx.doi.org/10.1515/awutp-2015-0106.
Full textSánchez, Fernando, Vicenta Sánchez, and Chumin Wang. "Independent Dual-Channel Approach to Mesoscopic Graphene Transistors." Nanomaterials 12, no. 18 (September 16, 2022): 3223. http://dx.doi.org/10.3390/nano12183223.
Full textBhalla, Pankaj, and Surender Pratap. "Aspects of electron transport in zigzag graphene nanoribbons." International Journal of Modern Physics B 32, no. 12 (May 3, 2018): 1850148. http://dx.doi.org/10.1142/s0217979218501485.
Full textda Silva, Juliana M., Fernando A. F. Santana, Jorge G. G. S. Ramos, and Anderson L. R. Barbosa. "Spin Hall angle in single-layer graphene." Journal of Applied Physics 132, no. 18 (November 14, 2022): 183901. http://dx.doi.org/10.1063/5.0107212.
Full textJoão, Simão M., and João M. Viana Parente Lopes. "Non-linear optical response in disordered 2D materials." EPJ Web of Conferences 233 (2020): 03002. http://dx.doi.org/10.1051/epjconf/202023303002.
Full textRaineri, Vito, Emanuele Rimini, and Filippo Giannazzo. "Mesoscopic Transport Properties in Exfoliated Graphene on SiO2/Si." Nanoscience and Nanotechnology Letters 3, no. 1 (February 1, 2011): 55–58. http://dx.doi.org/10.1166/nnl.2011.1119.
Full text., Amardeep, and Vijay Kr Lamba. "Study and Modeling of Graphene-Boron-Nitride Heterostructures." SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology 14, no. 03 (July 15, 2022): 337–40. http://dx.doi.org/10.18090/samriddhi.v14i03.14.
Full textNam Do, V., V. Hung Nguyen, P. Dollfus, and A. Bournel. "Electronic transport and spin-polarization effects of relativisticlike particles in mesoscopic graphene structures." Journal of Applied Physics 104, no. 6 (September 15, 2008): 063708. http://dx.doi.org/10.1063/1.2980045.
Full textSkachko, I., X. Du, F. Duerr, A. Luican, D. A. Abanin, L. S. Levitov, and E. Y. Andrei. "Fractional quantum Hall effect in suspended graphene probed with two-terminal measurements." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, no. 1932 (December 13, 2010): 5403–16. http://dx.doi.org/10.1098/rsta.2010.0226.
Full textDissertations / Theses on the topic "Mesoscopic transport in graphene"
Allen, Monica Theresa. "Quantum Electronic Transport in Mesoscopic Graphene Devices." Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493258.
Full textPhysics
Sonde, Sushant. "Local transport properties in graphene for electronic applications." Thesis, Universita' degli Studi di Catania, 2011. http://hdl.handle.net/10761/91.
Full textBaringhaus, Jens [Verfasser]. "Mesoscopic transport phenomena in epitaxial graphene nanostructures : a surface science approach / Jens Baringhaus." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2015. http://d-nb.info/1080249702/34.
Full textEpping, Alexander [Verfasser], Christoph Akademischer Betreuer] Stampfer, and Joachim [Akademischer Betreuer] [Knoch. "Mesoscopic transport through graphene and molybdenum disulfide constrictions / Alexander Epping ; Christoph Stampfer, Joachim Knoch." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1218019662/34.
Full textEpping, Alexander Verfasser], Christoph [Akademischer Betreuer] Stampfer, and Joachim [Akademischer Betreuer] [Knoch. "Mesoscopic transport through graphene and molybdenum disulfide constrictions / Alexander Epping ; Christoph Stampfer, Joachim Knoch." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1218019662/34.
Full textDeretzis, Ioannis. "Quantum transport in confined graphene: role of defects, substrate and contacts." Thesis, Universita' degli Studi di Catania, 2011. http://hdl.handle.net/10761/89.
Full textKrückl, Viktor [Verfasser], and Klaus [Akademischer Betreuer] Richter. "Wave packets in mesoscopic systems: From time-dependent dynamics to transport phenomena in graphene and topological insulators / Viktor Krückl. Betreuer: Klaus Richter." Regensburg : Universitätsbibliothek Regensburg, 2013. http://d-nb.info/1034198378/34.
Full textAlbert, Guillaume. "Transport mésoscopique dans les nanostructures hybrides supraconducteur-graphène." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00680038.
Full textSousa, Duarte José Pereira de. "Transporte eletrônico em anéis quânticos de grafeno." reponame:Repositório Institucional da UFC, 2015. http://www.repositorio.ufc.br/handle/riufc/14677.
Full textSubmitted by Edvander Pires (edvanderpires@gmail.com) on 2016-01-05T19:55:02Z No. of bitstreams: 1 2015_dis_djpsousa.pdf: 9267324 bytes, checksum: 1dab83c7a9473498a415cb6cb9e5bf4b (MD5)
Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2016-01-05T19:55:40Z (GMT) No. of bitstreams: 1 2015_dis_djpsousa.pdf: 9267324 bytes, checksum: 1dab83c7a9473498a415cb6cb9e5bf4b (MD5)
Made available in DSpace on 2016-01-05T19:55:40Z (GMT). No. of bitstreams: 1 2015_dis_djpsousa.pdf: 9267324 bytes, checksum: 1dab83c7a9473498a415cb6cb9e5bf4b (MD5) Previous issue date: 2015
In this work, we propose a current switch device that exploits the phase acquired by a charge carrier as it tunnels through a potential barrier in graphene in the ballistic regime without the need of the presence of a gap in the spectrum. The system acts as an interferometer based on an armchair graphene quantum ring, where the phase difference between interfering electronic wave functions for each path can be controlled by tuning the height of a potential barrier in the ring arms. By varying the parameters of the potential barriers the interference can become completely destructive. We demonstrate how this interference effect can be used for developing a simple graphene-based logic gate.
Neste trabalho, é proposto um dispositivo de controle de corrente que explora a fase adquirida por um portador de carga quando este tunela através de uma barreira de potencial no grafeno no regime balístico sem a necessidade da presença de um gap no espectro de energias. O sistema atua como um interferômetro baseado em um anel quântico de grafeno com bordas armchair, onde a diferença de fase entre as funções de onda para elétrons que tomam diferentes caminhos pode ser controlada através da intensidade das barreiras de potencial nos braços do anel. Variando os parâmetros das barreiras a interferência pode tornar-se completamente destrutiva. É demonstrado como esse efeito de interferência pode ser utilizado para o desenvolvimento de portas lógicas simples baseadas em grafeno.
Atteia, Jonathan. "Topologie et transport électronique dans des systèmes de Dirac sous irradiation." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0378/document.
Full textThis thesis presents a theoretical work done in the field of condensed matter physics, and in particular solid state physics. This field of physics aims at describing the behaviour of electrons in crystalline materials at very low temperature to observe effects characteristic of quantum physics at the mesoscopic scale.This thesis lies at the interface between two types of materials : graphene and topological insulators. Graphene is a monoatomic layer of carbon atoms arranged in a honeycomb lattice that presents a wide range of striking properties in optics, mechanics and electronics. Topological insulators are materials that are insulators in the bulk and conduct electricity at the edges. This characteristic originates from a topological property of the electrons in the bulk. Topology is a branch of mathematics that aims to describe objects globally retaining only characteristics invariant under smooth deformations. The edge states of topological insulators are robust to certain king of perturbations such as disorder created by impurities in the bulk. The link between these two topics is two-fold. On one hand, the first models of band topological insulators were formulated for graphene, by Haldane in 1988 and Kane and Mele in 2005, opening the way to the discovery of 2D and 3D topological insulators in materials with strong spin-orbit coupling. On the other hand, it was predicted that graphene, even without spin-orbit coupling, turns to a topological insulator under irradiation by an electromagnetic wave. In this thesis, we follow two directions in parallel : describe the topological properties on one hand, and the electronic transport properties on the other hand.First, we review the tight-binding model of graphene, and the effective model that describes low-energy electrons as massless Dirac fermions. We then introduce the Haldane model, a simple model defined on the honeycomb lattice that presents non-trivial bands characterised by a topological invariant, the Chern number. Due to this topological property, this model possesses a chiral edge state that propagates around the sample and a quantized Hall conductance. When graphene is irradiated by a laser with a frequency larger than the graphene bandwidth, it acquires a dynamical gap similar to the topological gap of the Haldane model. When the frequency is lowered, we show that topological transitions happens and that different edge states appear.The main work of this thesis is the study of electronic transport in irradiated graphene in a regime of experimentally achievable parameters. A graphene sheet is connected to two electrodes with a potential difference that generates a current. We compute the differential conductance of the sample according to Landauer-Büttiker formalism extended to periodically driven systems. Using this simple formalism, we are able to obtain the conductance as a function of the geometry of the sample and of several parameters such as the chemical potential, the frequency and the intensity of the electromagnetic wave.Another kind of topological insulator is the quantum spin Hall insulator. This type of phase possesses two edge states in which opposite spins propagate in opposite directions. The second work of this thesis concerns electronic transport through this irradiated edge state. We observe the apparition of a pumped current in the absence of a potential difference. We observe two regimes : a quantized adiabatic at low frequency, and a non-quantized linear response regime at high frequency. Compared to previous studies, we show an important effect originating from the presence of electrodes
Books on the topic "Mesoscopic transport in graphene"
Sohn, Lydia L., Leo P. Kouwenhoven, and Gerd Schön, eds. Mesoscopic Electron Transport. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3.
Full textL, Sohn Lydia, Kouwenhoven Leo P, Schön Gerd, North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Study Institute on Mesoscopic Electron Transport (1996 : Curaçao), eds. Mesoscopic electron transport. Dordrecht: Kluwer Academic Publishers, 1997.
Find full textSohn, Lydia L. Mesoscopic Electron Transport. Dordrecht: Springer Netherlands, 1997.
Find full textFukuyama, Hidetoshi, and Tsuneya Ando, eds. Transport Phenomena in Mesoscopic Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84818-6.
Full textDatta, Supriyo. Electronic transport in mesoscopic systems. Cambridge: Cambridge University Press, 1995.
Find full textElectronic transport in mesoscopic systems. Cambridge: Cambridge University Press, 1997.
Find full textFerry, David K. Transport in nanostructures. Cambridge, U.K: Cambridge University Press, 1997.
Find full text1955-, Goodnick Stephen M., and Bird Jonathan P, eds. Transport in nanostructures. 2nd ed. Cambridge: Cambridge University Press, 2009.
Find full textFerry, David K. Transport in nanostructures. Cambridge: Cambridge University Press, 1999.
Find full textYoung, Andrea Franchini. Quantum transport in graphene heterostructures. [New York, N.Y.?]: [publisher not identified], 2012.
Find full textBook chapters on the topic "Mesoscopic transport in graphene"
Burganos, Vasilis. "Mesoscopic Transport Simulation." In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_1051-2.
Full textKouwenhoven, Leo P., Gerd Schön, and Lydia L. Sohn. "Introduction to Mesoscopic Electron Transport." In Mesoscopic Electron Transport, 1–44. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3_1.
Full textEstève, D., H. Pothier, S. Guéron, Norman O. Birge, and M. H. Devoret. "The Proximity Effect in Mesoscopic Diffusive Conductors." In Mesoscopic Electron Transport, 375–406. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3_10.
Full textFazio, Rosario, and Gerd Schön. "Mesoscopic Effects in Superconductivity." In Mesoscopic Electron Transport, 407–46. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3_11.
Full textRalph, D. C., C. T. Black, J. M. Hergenrother, J. G. Lu, and M. Tinkham. "Ultrasmall Superconductors." In Mesoscopic Electron Transport, 447–67. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3_12.
Full textWees, Bart J., and Hideaki Takayanagi. "The Superconducting Proximity Effect in Semiconductor-Superconductor Systems: Ballistic Transport, Low Dimensionality and Sample Specific Properties." In Mesoscopic Electron Transport, 469–501. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3_13.
Full textSohn, L. L., C. T. Black, M. Eriksson, M. Crommie, and H. Hess. "Scanning Probe Microscopes and their Applications." In Mesoscopic Electron Transport, 503–47. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3_14.
Full textRuitenbeek, J. M. "Quantum Point Contacts Between Metals." In Mesoscopic Electron Transport, 549–79. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3_15.
Full textGarcía, N., J. L. Costa-Krämer, A. Gil, M. I. Marqués, and A. Correia. "Conductance Quantization in Metallic Nanowires." In Mesoscopic Electron Transport, 581–616. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3_16.
Full textYamamoto, Y. "Quantum Optics." In Mesoscopic Electron Transport, 617–56. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3_17.
Full textConference papers on the topic "Mesoscopic transport in graphene"
Savrasovs, Mihails. "Urban Transport Corridor Mesoscopic Simulation." In 25th Conference on Modelling and Simulation. ECMS, 2011. http://dx.doi.org/10.7148/2011-0587-0593.
Full textCardamone, David M., George Kirczenow, Pawel Danielewicz, Piotr Piecuch, and Vladimir Zelevinsky. "Electron Transport through Protein Fragments." In NUCLEI AND MESOSCOPIC PHYSICS: Workshop on Nuclei and Mesoscopic Physic - WNMP 2007. AIP, 2008. http://dx.doi.org/10.1063/1.2915584.
Full textNaraghi, Roxana Rezvani, Sergey Sukhov, and Aristide Dogariu. "Near-field Corrections in Mesoscopic Transport." In Laser Science. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/ls.2015.lth2h.3.
Full textIkoma, Toshiaki, Kazuhiko Hirakawa, Toshiro Hiramoto, and Takahide Odagiri. "Electron Transport in Mesoscopic Semiconductor Structures." In 1989 Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1989. http://dx.doi.org/10.7567/ssdm.1989.s-f-3.
Full textANDO, Tsuneya. "QUANTUM TRANSPORT IN MESOSCOPIC SEMICONDUCTOR STRUCTURES." In Proceedings of the 11th Nishinomiya–Yukawa Memorial Symposium. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814350860_0002.
Full textFlindt, Christian, Mathias Albert, Konrad H. Thomas, Geraldine Haack, and Markus Buttiker. "Electron waiting times in mesoscopic transport." In 2013 International Conference on Noise and Fluctuations (ICNF). IEEE, 2013. http://dx.doi.org/10.1109/icnf.2013.6578881.
Full textDietz, O., U. Kuhl, H. J. Stöckmann, F. M. Izrailev, and N. M. Makarov. "Transport in Quasi-One Dimensional Correlated Random Media." In Mesoscopic Physics in Complex Media. Les Ulis, France: EDP Sciences, 2010. http://dx.doi.org/10.1051/iesc/2010mpcm03010.
Full textALY, A. H. "THE PHOTON-ASSISTED TRANSPORT IN MESOSCOPIC DEVICES." In Physics, Chemistry and Application of Nanostructures - Reviews and Short Notes to Nanomeeting 2003. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812796738_0050.
Full textBelzig, Wolfgang. "Full Counting Statistics of Mesoscopic Electron Transport." In NOISE AND FLUCTUATIONS: 18th International Conference on Noise and Fluctuations - ICNF 2005. AIP, 2005. http://dx.doi.org/10.1063/1.2036797.
Full textJAUHO, A. P. "TIME-DEPENDENT TRANSPORT IN INTERACTING MESOSCOPIC SYSTEMS." In Proceedings of the Conference “Kadanoff-Baym Equations: Progress and Perspectives for Many-Body Physics”. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812793812_0019.
Full textReports on the topic "Mesoscopic transport in graphene"
Feng, Shechao. Quantum transport in mesoscopic systems. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6800327.
Full textSohn, Lydia L. Spin-Polarized Transport in Mesoscopic Devices. Fort Belvoir, VA: Defense Technical Information Center, September 2000. http://dx.doi.org/10.21236/ada394055.
Full textLiu, Robert C. Quantum Noise in Mesoscopic Electron Transport. Fort Belvoir, VA: Defense Technical Information Center, October 1999. http://dx.doi.org/10.21236/ada370166.
Full textGoldman, Allen M. Tunneling and Transport in Mesoscopic Structures. Fort Belvoir, VA: Defense Technical Information Center, March 1994. http://dx.doi.org/10.21236/ada283426.
Full textJoo, J., S. M. Long, J. P. Pouget, E. J. Oh, and A. G. MacDiarmid. Charge Transport of the Mesoscopic Metallic State in Partially Crystalline Polyanilines. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada330217.
Full textLampert, Lester. High-Quality Chemical Vapor Deposition Graphene-Based Spin Transport Channels. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.3308.
Full textCai, Wei. Multi-scale and Multi-physics Numerical Methods for Modeling Transport in Mesoscopic Systems. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada572398.
Full textCai, Wei. Multi-scale and Multi-physics Numerical Methods for Modeling Transport in Mesoscopic Systems. Fort Belvoir, VA: Defense Technical Information Center, October 2014. http://dx.doi.org/10.21236/ada617374.
Full text