Academic literature on the topic 'Mesoscopic transport in graphene'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mesoscopic transport in graphene.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Mesoscopic transport in graphene"

1

Xu, N., J. W. Ding, B. L. Wang, D. N. Shi, and H. Q. Sun. "Transport properties of mesoscopic graphene rings." Physica B: Condensed Matter 407, no. 3 (February 2012): 335–39. http://dx.doi.org/10.1016/j.physb.2011.10.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Racolta, D., and C. Micu. "The Aharonov-Bohm Effect and Transport Properties in Graphene Nanostructures." Annals of West University of Timisoara - Physics 57, no. 1 (December 1, 2013): 52–60. http://dx.doi.org/10.1515/awutp-2015-0106.

Full text
Abstract:
Abstract In this paper we discuss interplays between the Aharonov-Bohm effect and the transport properties in mesoscopic ring structures based on graphene. The interlayer interaction leads to a change of the electronic structure of bilayer graphene ring such that the electronic energy dispersion law exhibits a gap, either by doping one of the layers or by the application of an external perpendicular electric field. Gap adjustments can be done by varying the external electric field, which provides the possibility of obtaining mesoscopic devices based on the electronic properties of bilayer graphene. This opens the way to controllable manipulations of phase-coherent mesoscopic phenomena, as well as to Aharonov-Bohm oscillations depending on the height of the potential step and on the radius of the ring. For this purpose one resorts to a tight-binding model such as used to the description of conductance.
APA, Harvard, Vancouver, ISO, and other styles
3

Sánchez, Fernando, Vicenta Sánchez, and Chumin Wang. "Independent Dual-Channel Approach to Mesoscopic Graphene Transistors." Nanomaterials 12, no. 18 (September 16, 2022): 3223. http://dx.doi.org/10.3390/nano12183223.

Full text
Abstract:
Graphene field-effect transistors (GFETs) exhibit unique switch and sensing features. In this article, GFETs are investigated within the tight-binding formalism, including quantum capacitance correction, where the graphene ribbons with reconstructed armchair edges are mapped into a set of independent dual channels through a unitary transformation. A new transfer matrix method is further developed to analyze the electron transport in each dual channel under a back gate voltage, while the electronic density of states of graphene ribbons with transversal dislocations are calculated using the retarded Green’s function and a novel real-space renormalization method. The Landauer electrical conductance obtained from these transfer matrices was confirmed by the Kubo–Greenwood formula, and the numerical results for the limiting cases were verified on the basis of analytical results. Finally, the size- and gate-voltage-dependent source-drain currents in GFETs are calculated, whose results are compared with the experimental data.
APA, Harvard, Vancouver, ISO, and other styles
4

Bhalla, Pankaj, and Surender Pratap. "Aspects of electron transport in zigzag graphene nanoribbons." International Journal of Modern Physics B 32, no. 12 (May 3, 2018): 1850148. http://dx.doi.org/10.1142/s0217979218501485.

Full text
Abstract:
In this paper, we investigate the aspects of electron transport in the zigzag graphene nanoribbons (ZGNRs) using the nonequilibrium Green’s function (NEGF) formalism. The latter is an esoteric tool in mesoscopic physics. It is used to perform an analysis of ZGNRs by considering potential well. Within this potential, the dependence of transmission coefficient, local density of states (LDOS) and electron transport properties on number of atoms per unit cell is discussed. It is observed that there is an increment in electron and thermal conductance with increasing number of atoms. In addition to these properties, the dependence of same is also studied in figure of merit. The results infer that the contribution of electrons to enhance the figure of merit is important above the crossover temperature.
APA, Harvard, Vancouver, ISO, and other styles
5

da Silva, Juliana M., Fernando A. F. Santana, Jorge G. G. S. Ramos, and Anderson L. R. Barbosa. "Spin Hall angle in single-layer graphene." Journal of Applied Physics 132, no. 18 (November 14, 2022): 183901. http://dx.doi.org/10.1063/5.0107212.

Full text
Abstract:
We investigate the spin Hall effect in a single-layer graphene device with disorder and interface-induced spin–orbit coupling. Our graphene device is connected to four semi-infinite leads that are embedded in a Landauer–Büttiker setup for quantum transport. We show that the spin Hall angle of graphene devices exhibits mesoscopic fluctuations that are similar to metal devices. Furthermore, the product between the maximum spin Hall angle deviation and dimensionless longitudinal conductivity follows a universal relationship [Formula: see text]. Finally, we compare the universal relation with recent experimental data and numerically exact real-space simulations from the tight-binding model.
APA, Harvard, Vancouver, ISO, and other styles
6

João, Simão M., and João M. Viana Parente Lopes. "Non-linear optical response in disordered 2D materials." EPJ Web of Conferences 233 (2020): 03002. http://dx.doi.org/10.1051/epjconf/202023303002.

Full text
Abstract:
Using KITE [1], a quantum transport software developed by ourselves, we explore the effect of disorder in the second-order con¬ductivity, aiming to reproduce mesoscopic samples under more realistic models of disorder. This work will be concerned about our most recent results with KITE. We will showcase and examine how different mod¬els of disorder affect the same system, experimenting with Anderson disorder and vacancies in gapped Graphene.
APA, Harvard, Vancouver, ISO, and other styles
7

Raineri, Vito, Emanuele Rimini, and Filippo Giannazzo. "Mesoscopic Transport Properties in Exfoliated Graphene on SiO2/Si." Nanoscience and Nanotechnology Letters 3, no. 1 (February 1, 2011): 55–58. http://dx.doi.org/10.1166/nnl.2011.1119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

., Amardeep, and Vijay Kr Lamba. "Study and Modeling of Graphene-Boron-Nitride Heterostructures." SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology 14, no. 03 (July 15, 2022): 337–40. http://dx.doi.org/10.18090/samriddhi.v14i03.14.

Full text
Abstract:
When we talk about nano devices, the molecule and its interface with electrodes play a key role. So, one of the major objectives is to select an organic nanomaterial with extensive applications, which requires smart synthesis of appropriate materials and an understanding of their properties. Here we modeled a device, which not only adds another “protuberance” to learn about the transport properties of the molecule but also helps in grasping its use as a considerable material for future flexible electronics. Modeling of materials at the nano-level not only provides fundamental insight into the properties of crystalline defects but also gives a reasonable understanding of phase stability and learning of processes like atomic diffusion interface migration. For the development of devices at a mesoscopic and macroscopic level and with atomistic input parameters, this recognition serves as a guide. We tried to model how the layers of one type of molecule and the interaction of two different types of molecular layers control the junction charge transport characteristics.
APA, Harvard, Vancouver, ISO, and other styles
9

Nam Do, V., V. Hung Nguyen, P. Dollfus, and A. Bournel. "Electronic transport and spin-polarization effects of relativisticlike particles in mesoscopic graphene structures." Journal of Applied Physics 104, no. 6 (September 15, 2008): 063708. http://dx.doi.org/10.1063/1.2980045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Skachko, I., X. Du, F. Duerr, A. Luican, D. A. Abanin, L. S. Levitov, and E. Y. Andrei. "Fractional quantum Hall effect in suspended graphene probed with two-terminal measurements." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, no. 1932 (December 13, 2010): 5403–16. http://dx.doi.org/10.1098/rsta.2010.0226.

Full text
Abstract:
Recently, fractional quantization of two-terminal conductance was reported in suspended graphene. The quantization, which was clearly visible in fields as low as 2 T and persistent up to 20 K in 12 T, was attributed to the formation of an incompressible fractional quantum Hall state. Here, we argue that the failure of earlier experiments to detect the integer and fractional quantum Hall effect with a Hall-bar lead geometry is a consequence of the invasive character of voltage probes in mesoscopic samples, which are easily shorted out owing to the formation of hot spots near the edges of the sample. This conclusion is supported by a detailed comparison with a solvable transport model. We also consider, and rule out, an alternative interpretation of the quantization in terms of the formation of a p–n–p junction, which could result from contact doping or density inhomogeneity. Finally, we discuss the estimate of the quasi-particle gap of the quantum Hall state. The gap value, obtained from the transport data using a conformal mapping technique, is considerably larger than in GaAs-based two-dimensional electron systems, reflecting the stronger Coulomb interactions in graphene.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Mesoscopic transport in graphene"

1

Allen, Monica Theresa. "Quantum Electronic Transport in Mesoscopic Graphene Devices." Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493258.

Full text
Abstract:
Graphene provides a rich platform for the study of interaction-induced broken symmetry states due to the presence of spin and sublattice symmetries that can be controllably broken with external electric and magnetic fields. At high magnetic fields and low temperatures, where quantum effects dominate, we map out the phase diagram of broken symmetry quantum Hall states in suspended bilayer graphene. Application of a perpendicular electric field breaks the sublattice (or layer) symmetry, allowing identification of distinct layer-polarized and canted antiferromagnetic v=0 states. At low fields, a new spontaneous broken-symmetry state emerges, which we explore using transport measurements. The large energy gaps associated with the v=0 state and electric field induced insulating states in bilayer graphene offer an opportunity for tunable bandgap engineering. We use local electrostatic gating to create quantum confined devices in graphene, including quantum point contacts and gate-defined quantum dots. The final part of this thesis focuses on proximity induced superconductivity in graphene Josephson junctions. We directly visualize current flow in a graphene Josephson junction using superconducting interferometry. The key to our approach involves reconstruction of the real-space current density from magnetic interference using Fourier methods. We observe that current is confined to the crystal boundaries near the Dirac point and that edge and bulk currents coexist at higher Fermi energies. These results are consistent with the existence of "fiber-optic" edge modes at the Dirac point, which we model theoretically. Our techniques also open the door to fast spatial imaging of current distributions along more complicated networks of domains in larger crystals.
Physics
APA, Harvard, Vancouver, ISO, and other styles
2

Sonde, Sushant. "Local transport properties in graphene for electronic applications." Thesis, Universita' degli Studi di Catania, 2011. http://hdl.handle.net/10761/91.

Full text
Abstract:
In view of possible applications in electrostatically tunable two-dimensional field-effect devices, this thesis is aimed at discussing electronic properties in substrate-supported graphene. Original methods based on various variants of Scanning Probe Microscopy techniques are utilized to analyze graphene exfoliated- and-deposited (DG) on SiO2 /Si, SiC(0001) and high-k dielectric substrate (Strontium Titanate) as well as graphene grown epitaxially (EG) on SiC(0001). Scanning Capacitance Spectroscopy is discussed as a probe to evaluate the electrostatic properties (quantum capacitance, local density of states) and transport properties (local electron mean free path) in graphene. Furthermore, based on this method two important issues adversely affecting room temperature charge transport in graphene are addressed to elucidate the role of: 1. Lattice defects in graphene introduced by ion irradiation and 2. Charged impurities and Surface Polar Phonon scattering at the graphene/substrate interface. Moreover, a comparative investigation of current transport across EG/SiC(0001) and DG/SiC(0001) interface by Scanning Current Spectroscopy and Torsion Resonance Conductive Atomic Force Microscopy is discussed to explain electrical properties of the so-called 'buffer layer' commonly observed at the interface of EG/SiC(0001). This study also clarifies the local workfunction variation in EG due to electrically active buffer layer.
APA, Harvard, Vancouver, ISO, and other styles
3

Baringhaus, Jens [Verfasser]. "Mesoscopic transport phenomena in epitaxial graphene nanostructures : a surface science approach / Jens Baringhaus." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2015. http://d-nb.info/1080249702/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Epping, Alexander [Verfasser], Christoph Akademischer Betreuer] Stampfer, and Joachim [Akademischer Betreuer] [Knoch. "Mesoscopic transport through graphene and molybdenum disulfide constrictions / Alexander Epping ; Christoph Stampfer, Joachim Knoch." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1218019662/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Epping, Alexander Verfasser], Christoph [Akademischer Betreuer] Stampfer, and Joachim [Akademischer Betreuer] [Knoch. "Mesoscopic transport through graphene and molybdenum disulfide constrictions / Alexander Epping ; Christoph Stampfer, Joachim Knoch." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1218019662/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Deretzis, Ioannis. "Quantum transport in confined graphene: role of defects, substrate and contacts." Thesis, Universita' degli Studi di Catania, 2011. http://hdl.handle.net/10761/89.

Full text
Abstract:
This PhD study investigates at an atomistic level the role of non-ideality on the electronic structure and quantum transport properties of systems based on graphene, with a specific focus on confined structures that could serve for a plausible device operation. An atomic reconstruction takes place for the encapsulation of localized or extended modifications of the structural and electronic symmetry that go beyond phenomenological approaches. Three different types of atomic/structural and electronic perturbations are considered: a) perturbations induced by defects in the atomic lattice, b) perturbations induced by the interaction with the substrate, and c) perturbations induced by the coupling with the metallic contacts. Numerical codes are implemented based on state-of-the-art Schroedinger/Poisson methodologies for the calculation of the quantum transport.
APA, Harvard, Vancouver, ISO, and other styles
7

Krückl, Viktor [Verfasser], and Klaus [Akademischer Betreuer] Richter. "Wave packets in mesoscopic systems: From time-dependent dynamics to transport phenomena in graphene and topological insulators / Viktor Krückl. Betreuer: Klaus Richter." Regensburg : Universitätsbibliothek Regensburg, 2013. http://d-nb.info/1034198378/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Albert, Guillaume. "Transport mésoscopique dans les nanostructures hybrides supraconducteur-graphène." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00680038.

Full text
Abstract:
Cette thèse présente une étude des propriétés de transport à basse température d'échantillons de graphène exfolié. Une première série de mesures menée à une température de 4 Kelvins sur des échantillons contactés par des électrodes constituées d'une bicouche titane/or révèle les phénomènes d'effet Hall quantique et de fluctuations universelles de conductance. L'effet Hall présente une quantification demi-entière propre au graphène. Le caractère universel des fluctuations de conductance est confirmé par les mesures, et une réduction de la longueur de cohérence de phase est observée au point de Dirac. Une autre série d'échantillons, connectés par des électrodes en titane/aluminium, permet l'étude de l'effet de proximité supraconducteur dans le graphène. Ces mesures sont réalisées à des températures comprises entre 100mK et 1K. Dans un premier échantillon, elles font apparaitre le phénomène de réflexions d'Andreev multiples et un précurseur de l'effet Josephson, ainsi qu'une amplification des fluctuations universelles de conductance lorsque les électrodes sont dans l'état supraconducteur. Dans un second échantillon, la présence de localisation forte tend à diminuer l'amplitude des fluctuations universelles de conductance, entrant ainsi en compétition avec l'effet de proximité.
APA, Harvard, Vancouver, ISO, and other styles
9

Sousa, Duarte José Pereira de. "Transporte eletrônico em anéis quânticos de grafeno." reponame:Repositório Institucional da UFC, 2015. http://www.repositorio.ufc.br/handle/riufc/14677.

Full text
Abstract:
SOUSA, Duarte José Pereira de. Transporte eletrônico em anéis quânticos de grafeno. 2015. 83 f. Dissertação (Mestrado em Física) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2015.
Submitted by Edvander Pires (edvanderpires@gmail.com) on 2016-01-05T19:55:02Z No. of bitstreams: 1 2015_dis_djpsousa.pdf: 9267324 bytes, checksum: 1dab83c7a9473498a415cb6cb9e5bf4b (MD5)
Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2016-01-05T19:55:40Z (GMT) No. of bitstreams: 1 2015_dis_djpsousa.pdf: 9267324 bytes, checksum: 1dab83c7a9473498a415cb6cb9e5bf4b (MD5)
Made available in DSpace on 2016-01-05T19:55:40Z (GMT). No. of bitstreams: 1 2015_dis_djpsousa.pdf: 9267324 bytes, checksum: 1dab83c7a9473498a415cb6cb9e5bf4b (MD5) Previous issue date: 2015
In this work, we propose a current switch device that exploits the phase acquired by a charge carrier as it tunnels through a potential barrier in graphene in the ballistic regime without the need of the presence of a gap in the spectrum. The system acts as an interferometer based on an armchair graphene quantum ring, where the phase difference between interfering electronic wave functions for each path can be controlled by tuning the height of a potential barrier in the ring arms. By varying the parameters of the potential barriers the interference can become completely destructive. We demonstrate how this interference effect can be used for developing a simple graphene-based logic gate.
Neste trabalho, é proposto um dispositivo de controle de corrente que explora a fase adquirida por um portador de carga quando este tunela através de uma barreira de potencial no grafeno no regime balístico sem a necessidade da presença de um gap no espectro de energias. O sistema atua como um interferômetro baseado em um anel quântico de grafeno com bordas armchair, onde a diferença de fase entre as funções de onda para elétrons que tomam diferentes caminhos pode ser controlada através da intensidade das barreiras de potencial nos braços do anel. Variando os parâmetros das barreiras a interferência pode tornar-se completamente destrutiva. É demonstrado como esse efeito de interferência pode ser utilizado para o desenvolvimento de portas lógicas simples baseadas em grafeno.
APA, Harvard, Vancouver, ISO, and other styles
10

Atteia, Jonathan. "Topologie et transport électronique dans des systèmes de Dirac sous irradiation." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0378/document.

Full text
Abstract:
Cette thèse présente un travail théorique effectué dans le domaine de la physique de la matière condensée, et plus particulièrement la physique des solides. Ce domaine de la physique décrit le comportement des électrons dans les cristaux à très basses températures dans le but d'observer des effets quantiques à l'échelle mésoscopique.Cette thèse se situe à l'interface entre deux types de matériaux : le graphène et les isolants topologiques. Le graphène est une couche d’épaisseur monoatomique d’atomes de carbone arrangés en réseau nid d’abeilles, qui présente de nombreuses propriétés impressionnantes en optique, en mécanique et en électronique. Les isolants topologiques sont des matériaux qui sont isolants en volume et conduisent l'électricité sur les bords. Cette caractéristique découle d'une propriété topologique des électrons dans le volume. La topologie est une branche des mathématiques qui décrit des objets dans leur globalité en ne retenant que les caractéristiques invariantes par certaines déformations continues. Les états de bords des isolants topologiques sont robustes à certaines perturbations comme le désordre créé par des impuretés dans le matériau. Le lien entre ces deux sujets est double. D’une part les premiers modèles d’isolants topologiques de bande ont été formulés pour le graphène, par Haldane en 1988 et Kane et Mele en 2005, ouvrant ainsi la voie à la découverte des isolants topologiques à 2D et 3D dans des matériaux à fort spin-orbite. D’autre part, il a été prédit que le graphène, même sans spin-orbite, devient un isolant topologique lorsqu'il est irradié par une onde électromagnétique. Dans cette thèse, nous suivons deux directions en parallèle : décrire les caractéristiques topologiques d’une part et les propriétés de transport électronique d’autre part.En premier lieu, nous passons en revue le modèle des liaisons fortes pour le graphène, puis le modèle effectif qui décrit les électrons de basse énergie comme des fermions de Dirac sans masse. Nous introduisons ensuite le modèle de Haldane, un modèle simple défini sur le réseau en nid d’abeille et qui présente des bandes non triviales caractérisées par un invariant topologique, le nombre de Chern, non nul. Du fait de cette propriété topologique, ce modèle possède un état de bord chiral se propageant au bord de l’échantillon et une conductance de Hall quantifiée. Lorsque le graphène est irradié par un laser ayant une fréquence plus large que la largeur de bande du graphène, il acquiert un gap dynamique similaire au gap topologique du modèle de Haldane. Lorsque la fréquence est réduite, nous montrons que des transitions topologiques se produisent et l'apparition d'états de bords.Le travail principal de cette thèse est l'étude du transport électronique dans le graphène irradié dans un régime de paramètres réalisables expérimentalement. Une feuille de graphène est connectée à deux électrodes avec une différence de potentiel qui génère un courant. Nous calculons la conductance différentielle de l'échantillon selon le formalisme de Landauer-Büttiker étendu aux systèmes soumis à une modulation périodique. Il nous est possible d'obtenir la conductance en fonction de la géométrie de l’échantillon et de différents paramètres tels que le potentiel chimique, la fréquence et l'intensité de l’onde.Un autre type d'isolant topologique est l’isolant d’effet Hall quantique de spin. Ce type de phase possède deux états de bords dans lesquels les spins opposés se propagent dans des directions opposées. Le second travail de cette thèse concerne le transport électronique à travers cet état de bord irradié. Nous observons l'apparition d'un courant pompé en l'absence de différence de potentiel. Nous distinguons deux régimes : un pompage adiabatique quantifié à basse fréquence, et un régime de réponse linéaire non quantifiée à hautes fréquences. Par rapport aux études précédentes existantes, nous montrons un effet important de la présence des électrodes de mesure
This thesis presents a theoretical work done in the field of condensed matter physics, and in particular solid state physics. This field of physics aims at describing the behaviour of electrons in crystalline materials at very low temperature to observe effects characteristic of quantum physics at the mesoscopic scale.This thesis lies at the interface between two types of materials : graphene and topological insulators. Graphene is a monoatomic layer of carbon atoms arranged in a honeycomb lattice that presents a wide range of striking properties in optics, mechanics and electronics. Topological insulators are materials that are insulators in the bulk and conduct electricity at the edges. This characteristic originates from a topological property of the electrons in the bulk. Topology is a branch of mathematics that aims to describe objects globally retaining only characteristics invariant under smooth deformations. The edge states of topological insulators are robust to certain king of perturbations such as disorder created by impurities in the bulk. The link between these two topics is two-fold. On one hand, the first models of band topological insulators were formulated for graphene, by Haldane in 1988 and Kane and Mele in 2005, opening the way to the discovery of 2D and 3D topological insulators in materials with strong spin-orbit coupling. On the other hand, it was predicted that graphene, even without spin-orbit coupling, turns to a topological insulator under irradiation by an electromagnetic wave. In this thesis, we follow two directions in parallel : describe the topological properties on one hand, and the electronic transport properties on the other hand.First, we review the tight-binding model of graphene, and the effective model that describes low-energy electrons as massless Dirac fermions. We then introduce the Haldane model, a simple model defined on the honeycomb lattice that presents non-trivial bands characterised by a topological invariant, the Chern number. Due to this topological property, this model possesses a chiral edge state that propagates around the sample and a quantized Hall conductance. When graphene is irradiated by a laser with a frequency larger than the graphene bandwidth, it acquires a dynamical gap similar to the topological gap of the Haldane model. When the frequency is lowered, we show that topological transitions happens and that different edge states appear.The main work of this thesis is the study of electronic transport in irradiated graphene in a regime of experimentally achievable parameters. A graphene sheet is connected to two electrodes with a potential difference that generates a current. We compute the differential conductance of the sample according to Landauer-Büttiker formalism extended to periodically driven systems. Using this simple formalism, we are able to obtain the conductance as a function of the geometry of the sample and of several parameters such as the chemical potential, the frequency and the intensity of the electromagnetic wave.Another kind of topological insulator is the quantum spin Hall insulator. This type of phase possesses two edge states in which opposite spins propagate in opposite directions. The second work of this thesis concerns electronic transport through this irradiated edge state. We observe the apparition of a pumped current in the absence of a potential difference. We observe two regimes : a quantized adiabatic at low frequency, and a non-quantized linear response regime at high frequency. Compared to previous studies, we show an important effect originating from the presence of electrodes
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Mesoscopic transport in graphene"

1

Sohn, Lydia L., Leo P. Kouwenhoven, and Gerd Schön, eds. Mesoscopic Electron Transport. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

L, Sohn Lydia, Kouwenhoven Leo P, Schön Gerd, North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Study Institute on Mesoscopic Electron Transport (1996 : Curaçao), eds. Mesoscopic electron transport. Dordrecht: Kluwer Academic Publishers, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sohn, Lydia L. Mesoscopic Electron Transport. Dordrecht: Springer Netherlands, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fukuyama, Hidetoshi, and Tsuneya Ando, eds. Transport Phenomena in Mesoscopic Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84818-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Datta, Supriyo. Electronic transport in mesoscopic systems. Cambridge: Cambridge University Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Electronic transport in mesoscopic systems. Cambridge: Cambridge University Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ferry, David K. Transport in nanostructures. Cambridge, U.K: Cambridge University Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1955-, Goodnick Stephen M., and Bird Jonathan P, eds. Transport in nanostructures. 2nd ed. Cambridge: Cambridge University Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ferry, David K. Transport in nanostructures. Cambridge: Cambridge University Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Young, Andrea Franchini. Quantum transport in graphene heterostructures. [New York, N.Y.?]: [publisher not identified], 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Mesoscopic transport in graphene"

1

Burganos, Vasilis. "Mesoscopic Transport Simulation." In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_1051-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kouwenhoven, Leo P., Gerd Schön, and Lydia L. Sohn. "Introduction to Mesoscopic Electron Transport." In Mesoscopic Electron Transport, 1–44. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Estève, D., H. Pothier, S. Guéron, Norman O. Birge, and M. H. Devoret. "The Proximity Effect in Mesoscopic Diffusive Conductors." In Mesoscopic Electron Transport, 375–406. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fazio, Rosario, and Gerd Schön. "Mesoscopic Effects in Superconductivity." In Mesoscopic Electron Transport, 407–46. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ralph, D. C., C. T. Black, J. M. Hergenrother, J. G. Lu, and M. Tinkham. "Ultrasmall Superconductors." In Mesoscopic Electron Transport, 447–67. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wees, Bart J., and Hideaki Takayanagi. "The Superconducting Proximity Effect in Semiconductor-Superconductor Systems: Ballistic Transport, Low Dimensionality and Sample Specific Properties." In Mesoscopic Electron Transport, 469–501. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sohn, L. L., C. T. Black, M. Eriksson, M. Crommie, and H. Hess. "Scanning Probe Microscopes and their Applications." In Mesoscopic Electron Transport, 503–47. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ruitenbeek, J. M. "Quantum Point Contacts Between Metals." In Mesoscopic Electron Transport, 549–79. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

García, N., J. L. Costa-Krämer, A. Gil, M. I. Marqués, and A. Correia. "Conductance Quantization in Metallic Nanowires." In Mesoscopic Electron Transport, 581–616. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yamamoto, Y. "Quantum Optics." In Mesoscopic Electron Transport, 617–56. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Mesoscopic transport in graphene"

1

Savrasovs, Mihails. "Urban Transport Corridor Mesoscopic Simulation." In 25th Conference on Modelling and Simulation. ECMS, 2011. http://dx.doi.org/10.7148/2011-0587-0593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cardamone, David M., George Kirczenow, Pawel Danielewicz, Piotr Piecuch, and Vladimir Zelevinsky. "Electron Transport through Protein Fragments." In NUCLEI AND MESOSCOPIC PHYSICS: Workshop on Nuclei and Mesoscopic Physic - WNMP 2007. AIP, 2008. http://dx.doi.org/10.1063/1.2915584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Naraghi, Roxana Rezvani, Sergey Sukhov, and Aristide Dogariu. "Near-field Corrections in Mesoscopic Transport." In Laser Science. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/ls.2015.lth2h.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ikoma, Toshiaki, Kazuhiko Hirakawa, Toshiro Hiramoto, and Takahide Odagiri. "Electron Transport in Mesoscopic Semiconductor Structures." In 1989 Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1989. http://dx.doi.org/10.7567/ssdm.1989.s-f-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

ANDO, Tsuneya. "QUANTUM TRANSPORT IN MESOSCOPIC SEMICONDUCTOR STRUCTURES." In Proceedings of the 11th Nishinomiya–Yukawa Memorial Symposium. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814350860_0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Flindt, Christian, Mathias Albert, Konrad H. Thomas, Geraldine Haack, and Markus Buttiker. "Electron waiting times in mesoscopic transport." In 2013 International Conference on Noise and Fluctuations (ICNF). IEEE, 2013. http://dx.doi.org/10.1109/icnf.2013.6578881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dietz, O., U. Kuhl, H. J. Stöckmann, F. M. Izrailev, and N. M. Makarov. "Transport in Quasi-One Dimensional Correlated Random Media." In Mesoscopic Physics in Complex Media. Les Ulis, France: EDP Sciences, 2010. http://dx.doi.org/10.1051/iesc/2010mpcm03010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

ALY, A. H. "THE PHOTON-ASSISTED TRANSPORT IN MESOSCOPIC DEVICES." In Physics, Chemistry and Application of Nanostructures - Reviews and Short Notes to Nanomeeting 2003. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812796738_0050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Belzig, Wolfgang. "Full Counting Statistics of Mesoscopic Electron Transport." In NOISE AND FLUCTUATIONS: 18th International Conference on Noise and Fluctuations - ICNF 2005. AIP, 2005. http://dx.doi.org/10.1063/1.2036797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

JAUHO, A. P. "TIME-DEPENDENT TRANSPORT IN INTERACTING MESOSCOPIC SYSTEMS." In Proceedings of the Conference “Kadanoff-Baym Equations: Progress and Perspectives for Many-Body Physics”. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812793812_0019.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Mesoscopic transport in graphene"

1

Feng, Shechao. Quantum transport in mesoscopic systems. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6800327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sohn, Lydia L. Spin-Polarized Transport in Mesoscopic Devices. Fort Belvoir, VA: Defense Technical Information Center, September 2000. http://dx.doi.org/10.21236/ada394055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Robert C. Quantum Noise in Mesoscopic Electron Transport. Fort Belvoir, VA: Defense Technical Information Center, October 1999. http://dx.doi.org/10.21236/ada370166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Goldman, Allen M. Tunneling and Transport in Mesoscopic Structures. Fort Belvoir, VA: Defense Technical Information Center, March 1994. http://dx.doi.org/10.21236/ada283426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Joo, J., S. M. Long, J. P. Pouget, E. J. Oh, and A. G. MacDiarmid. Charge Transport of the Mesoscopic Metallic State in Partially Crystalline Polyanilines. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada330217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lampert, Lester. High-Quality Chemical Vapor Deposition Graphene-Based Spin Transport Channels. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.3308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cai, Wei. Multi-scale and Multi-physics Numerical Methods for Modeling Transport in Mesoscopic Systems. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada572398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cai, Wei. Multi-scale and Multi-physics Numerical Methods for Modeling Transport in Mesoscopic Systems. Fort Belvoir, VA: Defense Technical Information Center, October 2014. http://dx.doi.org/10.21236/ada617374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography