Academic literature on the topic 'Mesoscopic phenomena (Physics)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mesoscopic phenomena (Physics).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mesoscopic phenomena (Physics)"
Büttiker, Markus, and Michael Moskalets. "FROM ANDERSON LOCALIZATION TO MESOSCOPIC PHYSICS." International Journal of Modern Physics B 24, no. 12n13 (May 20, 2010): 1555–76. http://dx.doi.org/10.1142/s0217979210064514.
Full textAltshuler, B. L. "Transport Phenomena in Mesoscopic Systems." Japanese Journal of Applied Physics 26, S3-3 (January 1, 1987): 1938. http://dx.doi.org/10.7567/jjaps.26s3.1938.
Full textGuinea, F., and J. L. Vicent. "Collective phenomena in mesoscopic systems." European Physical Journal B 40, no. 4 (August 2004): 355. http://dx.doi.org/10.1140/epjb/e2004-00282-x.
Full textZipper, E., and M. Lisowski. "Coherent phenomena in mesoscopic systems." Superconductor Science and Technology 13, no. 8 (July 27, 2000): 1191–96. http://dx.doi.org/10.1088/0953-2048/13/8/315.
Full textPagonabarraga, Ignacio, Fabrizio Capuani, and Daan Frenkel. "Mesoscopic lattice modeling of electrokinetic phenomena." Computer Physics Communications 169, no. 1-3 (July 2005): 192–96. http://dx.doi.org/10.1016/j.cpc.2005.03.043.
Full textBismayer, Ulrich, and Klaus Bandel. "Interface Phenomena." Solid State Phenomena 200 (April 2013): 69–72. http://dx.doi.org/10.4028/www.scientific.net/ssp.200.69.
Full textChetverikov, Aleksandr, and Werner Ebeling. "Nonlinear problems of molecular physics." Izvestiya VUZ. Applied Nonlinear Dynamics 10, no. 3 (September 30, 2002): 3–21. http://dx.doi.org/10.18500/0869-6632-2002-10-3-3-21.
Full textJaroszyński, J., and T. Dietl. "Mesoscopic phenomena in diluted magnetic semiconductors." Materials Science and Engineering: B 84, no. 1-2 (July 2001): 81–87. http://dx.doi.org/10.1016/s0921-5107(01)00574-8.
Full textSalje, E. K. H., and S. Ríos. "Mineral physics: the atomic, mesoscopic and macroscopic perspective." Mineralogical Magazine 66, no. 5 (October 2002): 733–44. http://dx.doi.org/10.1180/0026461026650058.
Full textFrassanito, R., P. Visani, M. Nideröst, A. C. Mota, P. Smeibidl, K. Swieca, W. Wendler, and F. Pobell. "Quantum-coherent phenomena in mesoscopic proximity structures." Czechoslovak Journal of Physics 46, S4 (April 1996): 2317–18. http://dx.doi.org/10.1007/bf02571150.
Full textDissertations / Theses on the topic "Mesoscopic phenomena (Physics)"
蔡福陽 and Fuk-yeung Tsoi. "Persistent currents in Anderson-Hubbard mesoscopic rings." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1999. http://hub.hku.hk/bib/B31223539.
Full textTsoi, Fuk-yeung. "Persistent currents in Anderson-Hubbard mesoscopic rings /." Hong Kong : University of Hong Kong, 1999. http://sunzi.lib.hku.hk/hkuto/record.jsp?B21490120.
Full textGolod, Taras. "Mesoscopic phenomena in hybrid superconductor/ferromagnet structures." Doctoral thesis, Stockholms universitet, Fysikum, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-56629.
Full textZelyak, Oleksandr. "Persistent Currents and Quantum Critical Phenomena in Mesoscopic Physics." UKnowledge, 2009. http://uknowledge.uky.edu/gradschool_diss/723.
Full textMatthews, Jason E. "Thermoelectric and Heat Flow Phenomena in Mesoscopic Systems." Thesis, University of Oregon, 2011. http://hdl.handle.net/1794/12108.
Full textLow-dimensional electronic systems, systems that are restricted to single energy levels in at least one of the three spatial dimensions, have attracted considerable interest in the field of thermoelectric materials. At these scales, the ability to manipulate electronic energy levels offers a great deal of control over a device's thermopower, that is, its ability to generate a voltage due to a thermal gradient. In addition, low-dimensional devices offer increased control over phononic heat flow. Mesoscale geometry can also have a large impact on both electron and phonon dynamics. Effects such as ballistic transport in a two-dimensional electron gas structure can lead to the enhancement or attenuation of electron transmission probabilities in multi-terminal junctions. The first half of this dissertation investigates the transverse thermoelectric properties of a four-terminal ballistic junction containing a central symmetry-breaking scatterer. It is believed that the combined symmetry of the scatterer and junction is the key component to understanding non-linear and thermoelectric transport in these junctions. To this end, experimental investigations on this type of junction were carried out to demonstrate its ability to generate a transverse thermovoltage. To aid in interpreting the results, a multi-terminal scattering-matrix theory was developed that relates the junction's non-linear electronic properties to its thermoelectric properties. The possibility of a transverse thermoelectric device also motivated the first derivation of the transverse thermoelectric efficiency. This second half of this dissertation focuses on heat flow phenomena in InAs/InP heterostructure nanowires. In thermoelectric research, a phononic heat flow between thermal reservoirs is considered parasitic due to its minimal contribution to the electrical output. Recent experiments involving heterostructure nanowires have shown an unexpectedly large heat flow, which is attributed in this dissertation to an interplay between electron-phonon interaction and phononic heat flow. Using finite element modeling, the recent experimental findings have provided a means to probe the electron-phonon interaction in InAs nanowires. In the end, it is found that electron-phonon interaction is an important component in understanding heat flow at the nanoscale. This dissertation includes previously unpublished co-authored material.
Committee in charge: Dr. Richard Taylor, Chair; Dr. Heiner Linke, Advisor; Dr. David Cohen, Member; Dr. John Toner, Member; Dr. David Johnson, Outside Member
Lui, Chi-keung Arthur. "Transport properties of hybrid mesoscopic systems." Click to view the E-thesis via HKUTO, 2004. http://sunzi.lib.hku.hk/hkuto/record/B30727339.
Full textLui, Chi-keung Arthur, and 呂智強. "Transport properties of hybrid mesoscopic systems." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B30727339.
Full textZhabinskaya, Dina. "Non-equilibrium phenomena implemented at a mesoscopic time scale." Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=80902.
Full textThe algorithm was tested on two physical systems: a lattice confined ferromagnetic Ising model and an off-lattice Argon-like molecular system. The method simulated accurately the non-equilibrium phenomena studied. It was found that the algorithm is most efficient when it is applied to a process occurring on at least two time scales. This allows one to integrate out the fast, microscopic time scale in order to study long-time, macroscopic behaviour. Through the study of diffusion in a molecular system, it was concluded that the proposed method is computationally faster than solving the microscopic equations of motion and more accurate than solving the macroscopic equations.
Zarbo, Liviu. "Mesoscopic spin Hall effect in semiconductor nanostructures." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 199 p, 2007. http://proquest.umi.com/pqdweb?did=1397915111&sid=21&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textShangguan, Minhui. "Charge and spin transport in mesoscopic systems." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/HKUTO/record/B39557583.
Full textBooks on the topic "Mesoscopic phenomena (Physics)"
L, Alʹtshuler B., Lee P. A. 1946-, and Webb R. A, eds. Mesoscopic phenomena in solids. Amsterdam: North Holland, 1991.
Find full textL, Sohn Lydia, Kouwenhoven Leo P, Schön Gerd, North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Study Institute on Mesoscopic Electron Transport (1996 : Curaçao), eds. Mesoscopic electron transport. Dordrecht: Kluwer Academic Publishers, 1997.
Find full textChow, T. S. Mesoscopic Physics of Complex Materials. New York, NY: Springer New York, 2000.
Find full text1945-, Andō Tsuneya, ed. Mesoscopic physics and electronics. Berlin: Springer, 1998.
Find full textSohn, Lydia L. Mesoscopic Electron Transport. Dordrecht: Springer Netherlands, 1997.
Find full textHofmann, Helmut. The physics of warm nuclei: With analogies to mesoscopic systems. Oxford: Oxford University Press, 2008.
Find full textHofmann, Helmut. The physics of warm nuclei: With analogies to mesoscopic systems. Oxford: Oxford University Press, 2008.
Find full textHeinzel, Thomas. Mesoscopic electronics in solid state nanostructures. Weinheim: Wiley-VCH, 2003.
Find full textNATO Advanced Study Institute on New Directions in Mesoscopic Physics (Towards Nanoscience) (2002 Erice, Italy). New directions in mesoscopic physics (towards nanoscience). Dordrecht: Kluwer Academic Publishers, 2003.
Find full textNATO Advanced Study Institute on New Directions in Mesoscopic Physics (Towards Nanoscience) (2002 Erice, Italy). New directions in mesoscopic physics (towards nanoscience). Dordrecht: Kluwer Academic Publishers, 2003.
Find full textBook chapters on the topic "Mesoscopic phenomena (Physics)"
Arndt, Markus. "Mesoscopic Quantum Phenomena." In Compendium of Quantum Physics, 379–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70626-7_118.
Full textBandyopadhyay, Supriyo. "Quantum Devices and Mesoscopic Phenomena." In Physics of Nanostructured Solid State Devices, 491–546. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-1141-3_9.
Full textTemelkuran, B., M. Bayindir, and E. Ozbay. "Physics and Applications of Photonic Crystals." In Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics, 467–78. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4327-1_32.
Full textCatalan, Gustau. "Physics of Ferroic and Multiferroic Domain Walls." In Mesoscopic Phenomena in Multifunctional Materials, 225–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55375-2_9.
Full textWimmer, Michael, Matthias Scheid, and Klaus Richter. "Spin-Polarized Quantum Transport in Mesoscopic Conductors: Computational Concepts and Physical Phenomena." In Encyclopedia of Complexity and Systems Science, 1–30. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-3-642-27737-5_514-3.
Full textWimmer, Michael, Matthias Scheid, and Klaus Richter. "Spin-Polarized Quantum Transport in Mesoscopic Conductors: Computational Concepts and Physical Phenomena." In Encyclopedia of Complexity and Systems Science, 8597–616. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-30440-3_514.
Full textImry, Yoseph. "Noise in Mesoscopic Systems." In Introduction to mesoscopic physics, 164–83. Oxford University PressOxford, 2001. http://dx.doi.org/10.1093/oso/9780198507383.003.0008.
Full textImry, Yoseph. "Noise in Mesoscopic Systems." In Introduction to Mesoscopic Physics, 176–90. Oxford University PressNew York, NY, 1997. http://dx.doi.org/10.1093/oso/9780195101676.003.0008.
Full textTrabelsi, Soraya, and Ezeddine Sediki. "A Mesoscopic Analysis for Diffusion Transport Phenomena." In Emerging Applications of Plasma Science in Allied Technologies, 152–74. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-0904-9.ch007.
Full textKelly, M. J. "Mesoscopic phenomena and Coulomb blockade." In Low-Dimensional Semiconductors, 292–310. Oxford University PressOxford, 1995. http://dx.doi.org/10.1093/oso/9780198517818.003.0012.
Full textConference papers on the topic "Mesoscopic phenomena (Physics)"
Dietl, Tomasz. "Mesoscopic phenomena in semimagnetic semiconductors." In Metal/Nonmetal Microsystems: Physics, Technology, and Applications, edited by Benedykt W. Licznerski and Andrzej Dziedzic. SPIE, 1996. http://dx.doi.org/10.1117/12.238150.
Full textMukherjee, Partha P. "Capillarity, Wettability and Interfacial Dynamics in Polymer Electrolyte Fuel Cells." In ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2009. http://dx.doi.org/10.1115/icnmm2009-82144.
Full textAsinari, Pietro, Marco Coppo, Michael R. von Spakovsky, and Bhavani V. Kasula. "Numerical Simulations of Gaseous Mixture Flow in Porous Electrodes for PEM Fuel Cells by the Lattice Boltzmann Method." In ASME 2005 3rd International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2005. http://dx.doi.org/10.1115/fuelcell2005-74046.
Full textDhote, Rakesh P., Roderick V. N. Melnik, Jean W. Zu, and Linxiang Wang. "Microstructures of Constrained Shape Memory Alloy Nanowires Under Thermal Effects." In ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3814.
Full textTursynkhan, Margulan, Bagdagul Dauyeshova, Desmond Adair, Ernesto Monaco, and Luis Rojas-Solórzano. "Simulation of Viscous Fingering in Microchannels With Hybrid-Patterned Surface Using Lattice Boltzmann Method." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10876.
Full textShirakawa, Noriyuki, Yasushi Uehara, Masanori Naitoh, Hidetoshi Okada, Yuichi Yamamoto, and Seiichi Koshizuka. "Next Generation Safety Analysis Methods for SFRs—(5) Structural Mechanics Models of COMPASS Code and Verification Analyses." In 17th International Conference on Nuclear Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/icone17-75532.
Full text