Academic literature on the topic 'Mesoscopic mechanics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mesoscopic mechanics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mesoscopic mechanics"
Sowa, Artur. "Mesoscopic mechanics." Journal of Physics and Chemistry of Solids 65, no. 8-9 (August 2004): 1507–15. http://dx.doi.org/10.1016/j.jpcs.2003.12.012.
Full textSheng, Yanping, Haichuan Jia, Hongli Lv, Huaxin Chen, Xiaorui Zhao, Runzhi Wang, and Jiandang Meng. "Study on Mesoscopic Mechanics of Recycled Asphalt Mixture in the Indirect Tensile Test." Mathematical Problems in Engineering 2020 (December 17, 2020): 1–12. http://dx.doi.org/10.1155/2020/6621275.
Full textLian, Ye Da, Ren Qiang Wu, Bing Zhang, and Tao Feng. "Application of GTN Model in Tensile Fracture of Pipeline Steel." Key Engineering Materials 777 (August 2018): 451–56. http://dx.doi.org/10.4028/www.scientific.net/kem.777.451.
Full textXie, Guang Qi, and Huan You Wang. "Coarse-graining Mean and Displacement of Granular Matter." Materials Science Forum 1054 (February 24, 2022): 63–67. http://dx.doi.org/10.4028/p-a652a3.
Full textSun, Ze Ming, Qi Fang Zhu, Zhi Gang Fan, Wen Xia, Shu Feng Liu, and Yurii Sharkeev. "A Mesoscopic Mechanics Research on Deformation of 7B04 High Strength Aluminum Alloy." Key Engineering Materials 723 (December 2016): 15–20. http://dx.doi.org/10.4028/www.scientific.net/kem.723.15.
Full textDomínguez, D., A. R. Bishop, and N. Grønbech-Jensen. "Coherence and Complexity in Condensed Matter: Josephson Junction Arrays." International Journal of Bifurcation and Chaos 07, no. 05 (May 1997): 979–88. http://dx.doi.org/10.1142/s0218127497000790.
Full textCroquette, M., S. Deléglise, T. Kawasaki, K. Komori, M. Kuribayashi, A. Lartaux-Vollard, N. Matsumoto, et al. "Recent advances toward mesoscopic quantum optomechanics." AVS Quantum Science 5, no. 1 (March 2023): 014403. http://dx.doi.org/10.1116/5.0128487.
Full textLi, Guodong, and Zonglin Wang. "A Mesoscopic Simulation for the Early-Age Shrinkage Cracking Process of High Performance Concrete in Bridge Engineering." Advances in Materials Science and Engineering 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/9504945.
Full textFalasco, G., F. Baldovin, K. Kroy, and M. Baiesi. "Mesoscopic virial equation for nonequilibrium statistical mechanics." New Journal of Physics 18, no. 9 (September 22, 2016): 093043. http://dx.doi.org/10.1088/1367-2630/18/9/093043.
Full textLykov, Kirill, Yasaman Nematbakhsh, Menglin Shang, Chwee Teck Lim, and Igor V. Pivkin. "Probing eukaryotic cell mechanics via mesoscopic simulations." PLOS Computational Biology 13, no. 9 (September 18, 2017): e1005726. http://dx.doi.org/10.1371/journal.pcbi.1005726.
Full textDissertations / Theses on the topic "Mesoscopic mechanics"
Yamamoto, Akihisa. "Mesoscopic structural dynamics and mechanics of cell membrane models." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/198928.
Full textZhang, Xiaohan. "Field Dislocation Mechanics with Applications in Atomic, Mesoscopic and Tectonic Scale Problems." Research Showcase @ CMU, 2015. http://repository.cmu.edu/dissertations/649.
Full textPicallo, González Clara Beatriz. "A Mesoscopic Study of Plasticity and Fracture in Disordered Materials." Doctoral thesis, Universidad de Cantabria, 2010. http://hdl.handle.net/10803/10648.
Full textCodony, David. "Mathematical and computational modeling of flexoelectricity at mesoscopic and atomistic scales." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/671925.
Full textAquesta tesi doctoral es centra en el desenvolupament de models matemàtics i computacionals per a la flexoelectricitat, un acoblament electromecànic relativament nou que es present en qualsevol material dielèctric a les escales microscòpica i nanoscòpica. El treball s'emmarca tant en el context de la mecànica del medi continu com de la mecànica quàntica, i explora l'espai entre aquestes dues disciplines. Per una banda, s'estudien els models matemàtics de l¿'efecte flexoelèctric mitjançant la mecànica del medi continu, i es desenvolupen tècniques computacionals necessàries per la resolució numèrica dels problemes de valor de contorn associats. La nova infraestructura computacional desenvolupada en aquest treball és capaç de predir el rendiment de dispositius funcionals per a la transducció electromecànica a la nanoescala, on la flexoelectricitat és sempre present, sense cap tipus de limitació en quant a geometria, propietats materials, condicions de contorn o no-linearitat. Els exemples numèrics en aquest document demostren que la flexoelectritat es pot aprofitar de diverses maneres per tal de desenvolupar aplicacions nanotecnològiques innovadores. Per altra banda, el efecte flexoelèctric es estudiat també a nivell atomístic mitjançant la mecànica quàntica. Aquest treball proposa una metodologia nova per quantificar les propietats flexoelèctriques de materials dielèctrics, connectant les simulacions atomístiques amb els models continus proposats. El mètode desenvolupat clarifica un tema controvertit en la comunitat de la teoria del funcional de la densitat (DFT), on els càlculs teòrics estan típicament en desacord entre ells. Les simulacions atomístiques no només serveixen per calcular els paràmetres flexoelèctrics dels materials considerats en models continus, sinó també per validar les hipòtesis en les quals es basen en relació amb les físiques rellevants a la nanoescala.
Conlon, Kelly Timothy. "The effect of mesoscopic spatial heterogeneity on the plastic deformation of Al-Cu alloys." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0004/NQ42838.pdf.
Full textDonehoo, Brandon. "A superconducting investigation of nanoscale mechanics in niobium quantum point contacts." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24784.
Full textCommittee Chair: Alexei Marchenkov; Committee Member: Bruno Frazier; Committee Member: Dragomir Davidovic; Committee Member: Markus Kindermann; Committee Member: Phillip First
Janvier, Camille. "Coherent manipulation of Andreev Bound States in an atomic contact." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS217/document.
Full textLocalized electronic states, called Andreev bound states, appear in weak-links placed between superconducting electrodes. The experiments presented in this thesis explore the coherence properties of these states. Single atom contacts between aluminum electrodes are used as weak links. In order to isolate and probe these states, the atomic contacts are integrated in amicrowave cavity.In a first series of experiments, it is shown that Andreev states can be used to define a quantumbit, “the Andreev qubit”, which is controlled using microwave pulses.Measurements of the lifetime and coherence time of this qubit are thoroughly analyzed.In a second series of experiments, the interaction between the Andreev qubit and the microwave cavity are used to determine the number of photons present in the cavity as a function of the power of microwave pulses at its eigenfrequency.Finally, quantum and parity jumps are observed in continuous measurements of the state of the Andreev dot
Tranchida, Julien. "Multiscale description of dynamical processes in magnetic media : from atomistic models to mesoscopic stochastic processes." Thesis, Tours, 2016. http://www.theses.fr/2016TOUR4027/document.
Full textDetailed magnetic properties of solids can be regarded as the result of the interaction between three subsystems: the effective spins, that will be our focus in this thesis, the electrons and the crystalline lattice. These three subsystems exchange energy, in many ways, in particular, through relaxation processes. The nature of these processes remains extremely hard to understand, and even harder to simulate. A practical approach, for performing such simulations, involves adapting the description of random processes by Langevin to the collective dynamics of the spins, usually called the magnetization dynamics. It consists in describing the, complicated, interactions between the subsystems, by the effective interactions of the subsystem of interest, the spins, and a thermal bath, whose probability density is only of relevance. This approach allows us to interpret the results of atomistic spin dynamics simulations in appropriate macroscopic terms. After presenting the numerical implementation of this methodology, a typical study of a magnetic device based on superparamagnetic iron monolayers is presented, as an example. The results are compared to experimental data and allow us to validate the atomistic spin dynamics simulations
Zhou, Rongxin. "Mesoscopic analysis of damage mechanisms in concrete material." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/23650.
Full textIdjimarene, Sonia. "Power laws behavior and nonlinearity mechanisms in mesoscopic elastic materials." Phd thesis, Université du Maine, 2013. http://tel.archives-ouvertes.fr/tel-01037944.
Full textBooks on the topic "Mesoscopic mechanics"
1940-, Kitagawa Hiroshi, Aihara T. 1964-, and Kawazoe Y. 1947-, eds. Mesoscopic dynamics of fracture: Computational materials design. Berlin: New York, 1998.
Find full textIUTAM Symposium on Mesoscopic Dynamics of Fracture Process and Materials Strength (2003 Osaka, Japan). IUTAM Symposium on Mesoscopic Dynamics of Fracture Process and Materials Strength: Proceedings of the IUTAM symposium held in Osaka, Japan, 6-11 July, 2003. New York: Kluwer Academic Publishers, 2004.
Find full textIUTAM Symposium on Mesoscopic Dynamics of Fracture Process and Materials Strength (2003 Osaka, Japan). IUTAM Symposium on Mesoscopic Dynamics of Fracture Process and Materials Strength: Proceedings of the IUTAM symposium held in Osaka, Japan, 6-11 July, 2003 : volume in celebration of Professor Kitagawa's retirement. Dordrecht: Kluwer Academic Publishers, 2004.
Find full textInternational Symposium Foundations of Quantum Mechanics in the Light of New Technology (5th 1995 Hatoyama-machi, Japan). Quantum coherence and decoherence: Foundations of quantum mechanics in the light of new technology : proceedings of the 5th International Symposium on Foundations of Quantum Mechanics in the Light of New Technology (ISQM-Tokyo '95) Advanced Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama, Japan, August 21-24, 1995. Amsterdam: Elsevier/North Holland, 1996.
Find full textDrexel Symposium on Quantum Nonintegrability (4th 1994 Philadelphia, Pa.). Quantum classical correspondence: Proceedings of the 4th Drexel Symposium on Quantum Nonintegrability, Drexel University, Philadelphia, USA, September 8-11, 1994. Cambridge, MA: International Press, 1997.
Find full textInternational, Symposium on Foundations of Quantum Mechanicsin the Light of New Technology (5th 1995 Hatoyama Japan). Quantum coherence and decoherence: Foundations of quantum mechanics in the light of new technology : proceedings of the 5th International Symposium on Foundations of QuantumMechanics in the Light of New Technology (ISQM-Tokyo '95), Advanced Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama, Japan, August 21-24, 1995. New York: Elsevier, 1996.
Find full textKitagawa, Hiroshi, Yoshiyuki Kawazoe, and Tomoyasu Aihara Jr. Mesoscopic Dynamics of Fracture: Computational Materials Design. Springer, 2010.
Find full textAihara, Tomoyasu Jr, Hiroshi Kitagawa, and Yoshiyuki Kawazoe. Mesoscopic Dynamics of Fracture: Computational Materials Design. Springer London, Limited, 2013.
Find full textGuyer, Robert A., and Paul A. Johnson. Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Rocks, Soil, Concrete. Wiley & Sons, Incorporated, John, 2009.
Find full textReguera, D., L. L. Bonilla, G. Platero, and J. M. Rubi. Statistical and Dynamical Aspects of Mesoscopic Systems: Proceedings of the XVI Sitges Conference on Statistical Mechanics Held at Sitges, Barcelona, Spain, 7-11 June 1999. Springer London, Limited, 2008.
Find full textBook chapters on the topic "Mesoscopic mechanics"
Hu, G. W., and X. S. Hu. "Outline of Mesoscopic Fluid Mechanics." In New Trends in Fluid Mechanics Research, 688. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75995-9_229.
Full textSucci, Sauro. "Mesoscopic particle models of fluid flows." In Stochastic Methods in Fluid Mechanics, 137–65. Vienna: Springer Vienna, 2014. http://dx.doi.org/10.1007/978-3-7091-1622-7_4.
Full textMuschik, Wolfgang, and Christina Papenfuss. "Cosserat Continua Described by Mesoscopic Theory." In Advances in Mechanics and Mathematics, 307–14. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5695-8_32.
Full textToi, Yutaka, and Takanori Kiyosue. "Three-Dimensional Mesoscopic Simulation of Brittle Microcracking Solids." In Computational Mechanics ’95, 1953–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79654-8_325.
Full textKawamura, Kiyoshi, Hiroyuki Sawano, and Tsuyoshi Ueta. "Analysis of Hall Resistance Anomalies with Wave Mechanics." In Science and Technology of Mesoscopic Structures, 87–92. Tokyo: Springer Japan, 1992. http://dx.doi.org/10.1007/978-4-431-66922-7_9.
Full textHorst, Thomas, Gert Heinrich, Martin Schneider, Annegret Schulze, and Mirko Rennert. "Linking Mesoscopic and Macroscopic Aspects of Crack Propagation in Elastomers." In Fracture Mechanics and Statistical Mechanics of Reinforced Elastomeric Blends, 129–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37910-9_4.
Full textYing, Zong Quan, Cheng Bin Du, and Li Guo Sun. "Mesoscopic Numerical Simulation Method for Fracture of Concrete." In Advances in Fracture and Damage Mechanics VI, 213–16. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-448-0.213.
Full textMukherjee, Partha P., and Qinjun Kang. "Electrodics in Electrochemical Energy Conversion Systems: A Mesoscopic Formalism." In Mechanics Over Micro and Nano Scales, 217–58. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9601-5_7.
Full textMoorthy, Suresh, and Somnath Ghosh. "Mesoscopic Analysis of Small Deformation in Heterogeneous Materials Using Voronoi Cell Finite Element Method." In Computational Mechanics ’95, 1916–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79654-8_319.
Full textPeerlings, Robert H. J., Y. Kasyanyuk, A. Roy, and M. G. D. Geers. "Higher-Order Mesoscopic Theories of Plasticity Based on Discrete Dislocation Interactions." In Advances in Mechanics and Mathematics, 245–50. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5695-8_25.
Full textConference papers on the topic "Mesoscopic mechanics"
Lyu, Haoqi, Wuhao Yang, Yuxi Wang, Mingye Du, Zheng Wang, Xingyin Xiong, Tao Wu, and Xudong Zou. "Enhanced Magneto-Mechanical Coupling with FeGaB/AlN Thin Films in Mesoscopic Silicon-Free Coupled-Structure Magnetoelectric Resonators." In 2024 IEEE SENSORS, 1–4. IEEE, 2024. https://doi.org/10.1109/sensors60989.2024.10784514.
Full textBrune, M., J. M. Raimond, and S. Haroche. "Mesoscopic entanglement in cavity QED experiments." In MYSTERIES, PUZZLES AND PARADOXES IN QUANTUM MECHANICS. ASCE, 1999. http://dx.doi.org/10.1063/1.57870.
Full textCaminati, Marco. "Einstein Podolsky Rosen correlations involving mesoscopic quantum systems." In QUANTUM MECHANICS: Are There Quantum Jumps? - and On the Present Status of Quantum Mechanics. AIP, 2006. http://dx.doi.org/10.1063/1.2219351.
Full textMigliore, R., A. Messina, and A. Napoli. "Quantum interference effects on the supercurrent in mesoscopic Josephson junctions." In MYSTERIES, PUZZLES AND PARADOXES IN QUANTUM MECHANICS. ASCE, 1999. http://dx.doi.org/10.1063/1.57887.
Full textGrymin, Witold, Marcin Koniorczyk, Francesco Pesavento, and Dariusz Gawin. "Macroscopic and mesoscopic approach to the alkali-silica reaction in concrete." In COMPUTER METHODS IN MECHANICS (CMM2017): Proceedings of the 22nd International Conference on Computer Methods in Mechanics. Author(s), 2018. http://dx.doi.org/10.1063/1.5019083.
Full textXu, Y., and Z. Lin. "A mesoscopic domain decomposition approach composed with preconditioned conjugate gradient for modeling concrete." In 16th World Congress on Computational Mechanics and 4th Pan American Congress on Computational Mechanics. CIMNE, 2024. http://dx.doi.org/10.23967/c.wccm.2024.069.
Full textXu, Y., and Z. Lin. "A mesoscopic domain decomposition approach composed with preconditioned conjugate gradient for modeling concrete." In 16th World Congress on Computational Mechanics and 4th Pan American Congress on Computational Mechanics. CIMNE, 2024. https://doi.org/10.23967/wccm.2024.069.
Full textMikushina, V. A., and I. Yu Smolin. "Simulation of mesoscopic fracture of ceramics with hierarchical porosity." In MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES (MRDMS-2018): Proceedings of the 12th International Conference on Mechanics, Resource and Diagnostics of Materials and Structures. Author(s), 2018. http://dx.doi.org/10.1063/1.5084402.
Full textVandoren, B., and K. De Proft. "MESOSCOPIC MODELLING OF MASONRY USING GFEM: A COMPARISON OF STRONG AND WEAK DISCONTINUITY MODELS." In 10th World Congress on Computational Mechanics. São Paulo: Editora Edgard Blücher, 2014. http://dx.doi.org/10.5151/meceng-wccm2012-18040.
Full textBary, B., C. Bourcier, and T. Helfer. "Numerical Analysis of Concrete Creep on Mesoscopic 3D Specimens." In 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784479346.131.
Full text