Academic literature on the topic 'Mesoporous Materials - Drug Delivery -'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mesoporous Materials - Drug Delivery -.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mesoporous Materials - Drug Delivery -"
Vallet-Regí, María, Francisco Balas, and Daniel Arcos. "Mesoporous Materials for Drug Delivery." Angewandte Chemie International Edition 46, no. 40 (October 8, 2007): 7548–58. http://dx.doi.org/10.1002/anie.200604488.
Full textWang, Yanan, Fang Li, Junbo Xin, Jia Xu, Guanghua Yu, and Qin Shi. "Mesoporous Drug Delivery System: From Physical Properties of Drug in Solid State to Controlled Release." Molecules 28, no. 8 (April 12, 2023): 3406. http://dx.doi.org/10.3390/molecules28083406.
Full textWang, Shaobin. "Ordered mesoporous materials for drug delivery." Microporous and Mesoporous Materials 117, no. 1-2 (January 2009): 1–9. http://dx.doi.org/10.1016/j.micromeso.2008.07.002.
Full textCauda, Valentina, and Giancarlo Canavese. "Mesoporous Materials for Drug Delivery and Theranostics." Pharmaceutics 12, no. 11 (November 18, 2020): 1108. http://dx.doi.org/10.3390/pharmaceutics12111108.
Full textKatsiotis, Christos S., Michelle Åhlén, Maria Strømme, and Ken Welch. "3D-Printed Mesoporous Carrier System for Delivery of Poorly Soluble Drugs." Pharmaceutics 13, no. 7 (July 18, 2021): 1096. http://dx.doi.org/10.3390/pharmaceutics13071096.
Full textPasqua, Luigi, Ilaria Ester De Napoli, Marzia De Santo, Marianna Greco, Enrico Catizzone, Domenico Lombardo, Gabriella Montera, et al. "Mesoporous silica-based hybrid materials for bone-specific drug delivery." Nanoscale Advances 1, no. 8 (2019): 3269–78. http://dx.doi.org/10.1039/c9na00249a.
Full textSantos, H. A., J. Salonen, L. M. Bimbo, V. P. Lehto, L. Peltonen, and J. Hirvonen. "Mesoporous materials as controlled drug delivery formulations." Journal of Drug Delivery Science and Technology 21, no. 2 (2011): 139–55. http://dx.doi.org/10.1016/s1773-2247(11)50016-4.
Full textSpiridon, Irene Alexandra, Irina Draga Cӑruntu, Iuliana Spiridon, and Radu Brӑescu. "Insight into Potential Biomedical Application of Mesoporous Materials." Pharmaceutics 14, no. 11 (November 4, 2022): 2382. http://dx.doi.org/10.3390/pharmaceutics14112382.
Full textYang, Piaoping, Shili Gai, and Jun Lin. "Functionalized mesoporous silica materials for controlled drug delivery." Chemical Society Reviews 41, no. 9 (2012): 3679. http://dx.doi.org/10.1039/c2cs15308d.
Full textMoritz, Michał, and Małgorzata Geszke-Moritz. "Mesoporous Materials as Elements of Modern Drug Delivery Systems for Anti-Inflammatory Agents: A Review of Recent Achievements." Pharmaceutics 14, no. 8 (July 25, 2022): 1542. http://dx.doi.org/10.3390/pharmaceutics14081542.
Full textDissertations / Theses on the topic "Mesoporous Materials - Drug Delivery -"
Atakan, Aylin. "Mesoporous material systems for catalysis and drug delivery." Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2018. http://hdl.handle.net/10803/668659.
Full textLos sistemas de materiales híbridos poseen propiedades multifuncionales. En este trabajo se desarrolló un nanoensamblaje alrededor de un soporte de sílice mesoporoso. Como soporte se seleccionó SBA-15 debido a su estructura de poro bien definida y volumen de poro accesible. La matriz de sílice fue dopada con átomos de Zr y los poros se infiltraron parcialmente con nanopartículas de Cu dando como resultado un material híbrido con propiedades ajustables . La síntesis de SBA-15 se realizó mediante un método de sol-gel en el que se empleó una solución micelar como plantilla para el sílice. Para lograr la versión dopada, se añadió un precursor de Zr a la solución de síntesis. Se investigaron los efectos de diferentes condiciones de síntesis, como el catalizador así como la fuente de Si en las características del material final. Los cambios en estas condiciones de. síntesis dieron lugar a partículas con distinta morfología, tamaño de poro (11-15 nm) y área superficial específica (400-700 m2/g). Las nanopartículas de Cu (NP) se hicieron crecer en el sustrato (Zr-) SBA-15 usando los métodos de infiltración (lnf) o de impregnación húmeda inducida por evaporación (EIWI).Dependiendo del método de infiltración utilizado, se logran diferentes propieddes químicas del material final, es decir, el contenido de Zr y las propiedades de red porosa son diferentes. Los nanoensamblajes de Cu-Zr-SBA-15 producidos bajo diversas condiciones de síntesis se usaron para la conversión catalítica de C02 en combustibles valiosos tales como metanol y dimetil éter (DME). El precursor de Si (TEOS o SMS) tuvo un impacto considerable en el rendimiento global del catalizador mientras que el método de carga de Cu (lnf o EIWI) cambió la selectividad catalítica entre DME y metanol. Por otra parte, la actividad del catalizador se investigó evaluando la acumulación de cada producto en la fase gaseosa y los grupos moleculares unidos a la superficie del catalizador a lo largo del tiempo. Se llegó al equilibrio termodinámico en el día 14 de la reacción a 250 ºC y 33 bar. La conversión total resultante de C02 fue del 24%, que es la conversión termodinámicamente más alta posible, según los cálculos teóricos . El material híbrido sintetizado Cu-Zr-SBA-15 también se investigó para aplicaciones de administración de fármacos, debido a su potencial como material de relleno en compuestos dentales y las propiedades antibacterianas del Cu. Por otra parte, la bioactividad de SiO2 y ZrO2 podría ser ventajosa para esta aplicación. El rendimiento del material final como vehículo de administración de fármacos se probó mediante un estudio de liberación in vitro con digluconato de clorhexidina . Los materiales desarrollados muestran una elevada capacidad de carga de fármaco (25-40%). Los perfiles de liberación del fármaco muestran dos etapas: una primera etapa de liberación rápida de las moléculas del fármaco unidas con interacciones más débiles al sustrato mesoporoso, seguida por la difusión de las moléculas del fármaco que están unidas a la superficie del portador. La presencia de Zr y Cu limita la liberación inicial y reduce la velocidad de liberación del fármaco . En otro estudio se evaluó el efecto del tamaño de poro de SBA-15 en la liberación del antibiótico hiclato de doxiciclina. Se observó que el tamaño de poro es directamente proporcional a la capacidad de carga de fármaco, el porcentaje y la cantidad de fármaco liberado . En resumen, este trabajo demuestra el carácter multifuncional de una nanomatriz diseñada a medida que proporciona información valiosa para dos aplicaciones en catálisis y liberación de fármaco.
Hybridmaterial består av minst två komponenter, vilket ger dem mångfacetterade egenskaper. Detta har gjort att denna typ av material attraktiva sedan länge. Det är dock inte enkelt att tillverka dessa materialsystem. Ett enkelt och effektivt tillvägagångssätt behövs för att tillvara ta de önskade egenskaperna hos varje komponent och få dem att samverka. Denna avhandling bygger huvudsakligen på utvecklingen av ett hybridmaterial.Ett hybridmaterial med en sammansättning bestämd på nanonivå, tillverkades med mesoporös kiseldioxid, SBA-15, som stomme. SBA-15 valdes framför andra typer av mesoporös kiseldioxid på grund av dess väldefinierade porstruktur och stora, tillgängliga porvolym. Kiseldioxiden dopades med zirkoniumatomer och porerna fylldes delvis med kopparnanopartiklar, vilket resulterade i ett hybridmaterial med egenskaper som kunde varieras. SBA-15 tillverkades via en våtkemisk metod där en micellösning används som mall för kiseldioxidens struktur. Vid dopningen tillsätts en zirkoniumkälla till synteslösningen. Effekterna av olika tillverkningsparametrar, till exempel salter med katalytiska egenskaper (salter med F- eller Cl-), olika kiselkällor (tetraetyl ortosilikat eller natriummetasilikat), på materialens egenskaper studerades. Variationer av dessa parametrar ger material med olika form, porstorlekar (11 – 15 nm) och specifik yta (400 – 700 m2/g). Kopparnanopartiklar växtes i (Zr-)SBA-15-stommarna med två metoder: infiltration (Inf) eller indunstningsinducerad våtimpregnering (EIWI). Inf baseras på funktionalisering av (Zr-)SBA-15-stommen innan kopparjoner fick reagera med ytan. EIWI bygger på en blandning av (Zr-)SBA-15 och kopparsalt i en lösning där vätskan långsamt får avdunsta. Båda metoderna är designade för framställning av oxiderade kopparnanopartiklar, mindre än 10 nm i diameter, som ska växa i stommens porer. Dock påverkar infiltrationsmetoden den kemiska sammansättningen hos det slutliga materialet då Zr-koncentrationen och porositeten i stommen ändras. Cu-Zr-SBA-15-sammansättningar, tillverkade med varierande syntesparametrar, användes som katalysatorer för omvandling av CO2 till bränslen såsom metanol och dimetyleter (DME). Resultaten visar att valet av kiselkälla har en stor inverkan på katalysatorns prestanda, samt att metoden för att introducera koppar ändrar den katalytiska selektiviteten mellan DME och metanol. Katalysatorns aktivitet undersöktes även över tid. Ackumuleringen av varje produkt, både i gasfas och på katalysatorns yta, registrerades över tid. Termodynamisk jämvikt nåddes efter att reaktionen fortgått i fjorton dagar vid 250 °C och 33 bar. Den totala CO2-omvandlingen var 24 %, vilket, enligt teoretiska beräkningar, är den termodynamiskt högsta möjliga omvandlingen. Det observerades att DME bildas genom en kombination av två metoxygrupper på katalysatorns yta, samt att bildandet av DME ökar den totala omvandlingen av CO2 till bränsle, vilken annars är begränsad till 9.5 %. Cu-Zr-SBA-15-sammansättningen användes även i läkemedelstillämpningar. De kan användas som biomaterial, e.g., fyllnadsmaterial i tandkompositer, och koppar har antibakteriella egenskaper. Dessutom kan kiseldioxid och zirkoniumdioxid vara bioaktiva vilket ses som en fördel. För denna tillämpning tillverkades Cu-Zr-SBA-15 med TEOS som kiselkälla och Inf-metoden för att växa kopparnanopartiklar. Cu-Zr-SBA-15 lämplighet som bärare av läkemedelet klorhexidindiglukonat testades in vitro. I detta fall uppvisar bäraren en laddningskapacitet [massa laddat läkemedel/(massa laddat läkemedel +massa bärare)] på 25 – 40 %. Frisättningen av läkemedel skedde i två steg. Först frisattes en stor mängd läkemedelsmolekyler. Dessa var löst placerade i håligheter i de mesoporösa stommarna. Därefter frisattes läkemedel via diffusion av molekyler som bundit till stommens yta. De två stegen representerar växelverkan mellan läkemedel – läkemedel- och läkemedel – bärare. Närvaron av zirkonium och koppar begränsar den första frisättningen och förlänger den aktiva tiden, vilket är fördelaktigt ur tillämpningsperspektiv. Effekten av porstorlek hos SBA-15 vid läkemedelsfrisättning undersöktes också i en studie där SBA-15 fylldes med doxycyklinhyklat. Laddningskapaciteten och mängden frisatt läkemedel och andelen av laddat läkemedel som frisätts var båda direkt proportionella mot porstorleken där frisättningen av doxycyklinhyklat dominerades av läkemedel – läkemedelsväxelverkan. Doxycyklinhyklat är en mindre molekyl jämfört med klorhexidindiglukonat och växelverkar svagare med SBA-15 på grund av sin mer anjoniska natur. Sammanfattningsvis visar arbetet den multifunktionella karaktären hos en skräddarsydd nanosammansättning, vilket ger värdefulla insikter i två användningsområden: katalys och läkemedelstransport Materialet testas sedan i två olika tillämpningar: katalys och läkemedelstransport.
Feil, Florian, Anna Sauer, Jens Michaelis, Thomas Bein, and Christoph Bräuchle. "Single molecule diffusion studies of mesoporous materials: from material science to drug-delivery applications." Diffusion fundamentals 16 (2011) 28, S. 1-2, 2011. https://ul.qucosa.de/id/qucosa%3A13761.
Full textRitchie, Lyndsey Kay. "Large pore mesoporous silicas for application in protein adsorption, enzyme immobilisation and drug delivery /." St Andrews, 2009. http://hdl.handle.net/10023/747.
Full textGuillet-Nicolas, Rémy. "Designing ordered mesoporous materials for MRI cell tracking and oral drug delivery applications." Thesis, Université Laval, 2014. http://www.theses.ulaval.ca/2014/30515/30515.pdf.
Full textAmong recent discoveries in material science, ordered mesoporous silica (OMS) have been in the limelight and attracted considerable attention because of their prospects of application, especially in the biomedical field and separation technologies. Such growing interest is explained by their unique physico-chemical properties. Indeed, OMS usually exhibit high specific surface areas, high pore volumes, adjustable pore sizes, ease of surface functionalization and customizable particle size and shape. The main objective of this Ph.D. thesis is to use these properties in order to design and characterize novel systems with potential applications in magnetic resonance imaging (MRI) and/or oral drug delivery. The first and second parts of this project (chapters 4 and 5) deal with SBA-15 and KIT-6 materials and the effects of the different synthesis parameters on the porosity features of the structures, obtained after calcination. The results showed that it is of prime interest to thoroughly and accurately characterize the porosity of these silicas in order to correctly assess their porous topologies. Such knowledge could be of substantial importance for high-tech applications of OMS. The third and fourth part of this thesis (chapters 6 and 7) are aimed to design, characterize and evaluate the potential of novel positive contrast agents (CA) for MRI based on MCM-41 and MCM-48 nanoparticles (Nps) functionalized with paramagnetic ions such as gadolinium (Gd) or manganese (Mn). The results reported in these studies demonstrate the superiority of 3-D pore networks as a host for the insertion of paramagnetic atoms used to enhance the signal in MRI. Also Gd and Mn loaded MCM-48 Nps provide a significant increase in 1H proton longitudinal relaxivity while maintaining low r2/r1 ratio (1.5 – 2) in water. Furthermore, various modern techniques and in vitro tests were used to clearly delineate the true potential and limitations of these inorganic contrast agents for cellular and in vivo tracking studies. The last part of this work (chapter 8) is focused on the binding of a succinylated protein, the β-lactoglobulin, onto functionalized MCM-48 Nps for the development of a new oral drug delivery platform. This nutraceutical nano-conjugate system reveals promising features such as high biocompatibility, efficient pH-responsive properties for both hydrophilic and hydrophobic drugs/dyes and excellent colloidal stability. The use of this low-cost protein could represent an alternative over classical biopolymers.
Fan, Dongmei. "Mesoporous silicon/biopolymer composities for orthopedic tissue engineering and drug delivery applications." [Fort Worth, Tex.] : Texas Christian University, 2008. http://etd.tcu.edu/etdfiles/available/etd-12192008-090502/unrestricted/fan.pdf.
Full textRitchie, Lyndsey K. "Large pore mesoporous silicas for application in protein adsorption, enzyme immobilisation and drug delivery." Thesis, University of St Andrews, 2009. http://hdl.handle.net/10023/747.
Full textGIGNONE, ANDREA. "Ordered Mesoporous Silica for Drug Delivery in Topical Applications." Doctoral thesis, Politecnico di Torino, 2016. http://hdl.handle.net/11583/2652565.
Full textGeite, Patrik. "Medical Implant Applications of Mesoporous Silica Films." Thesis, Linköpings universitet, Nanostrukturerade material, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-154463.
Full textJiang, Ke. "Silicon nanowires and mesoporous silicon as potential therapeutic platforms for bone tissue engineering and drug delivery applications." [Fort Worth, Tex.] : Texas Christian University, 2009. http://etd.tcu.edu/etdfiles/available/etd-03162010-124735/unrestricted/Jiang.pdf.
Full textMa, Hui. "Nanomaterials for Biological Applications: Drug Delivery and Bio-sensing." ScholarWorks@UNO, 2013. http://scholarworks.uno.edu/td/1647.
Full textBooks on the topic "Mesoporous Materials - Drug Delivery -"
Drug delivery: Engineering principles for drug delivery. New York: Oxford University Press, 2001.
Find full textDrug delivery system. New York: Humana Press, 2014.
Find full textAlvarez-Lorenzo, Carmen, and Angel Concheiro, eds. Smart Materials for Drug Delivery. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849736800.
Full textAlvarez-Lorenzo, Carmen, and Angel Concheiro, eds. Smart Materials for Drug Delivery. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849734318.
Full textSmart materials for drug delivery. Cambridge, UK: RSC Publishing, 2013.
Find full textKhutoryanskiy, Vitaliy V., ed. Mucoadhesive Materials and Drug Delivery Systems. Chichester, United Kingdom: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118794203.
Full textKhutoryanskiy, Vitaliy V. Mucoadhesive materials and drug delivery systems. Chichester, West Sussex: John Wiley & Sons, Inc., 2014.
Find full textChen, Yu. Design, Synthesis, Multifunctionalization and Biomedical Applications of Multifunctional Mesoporous Silica-Based Drug Delivery Nanosystems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48622-1.
Full textEdgar, Kevin J., Charles M. Buchanan, and Thomas Heinze. Polysaccharide materials: Performance by design. Washington DC: American Chemical Society, 2009.
Find full text(Firm)), Leading Edge Reports, ed. Drug & pharmaceutical packaging materials. Cleveland Hts., OH: Leading Edge Reports, 1991.
Find full textBook chapters on the topic "Mesoporous Materials - Drug Delivery -"
Kannan, Kayambu. "Using Smart Mesoporous Silica in Designing Drug Delivery Systems." In Handbook of Smart Materials, Technologies, and Devices, 1581–612. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-84205-5_111.
Full textKannan, Kayambu. "Using Smart Mesoporous Silica in Designing Drug Delivery Systems." In Handbook of Smart Materials, Technologies, and Devices, 1–33. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58675-1_111-1.
Full textDu, Xuezhong. "Biomacromolecule-Gated Mesoporous Silica Drug Delivery Systems for Stimuli-Responsive Controlled Release." In Advanced Theranostic Materials, 67–92. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781118998922.ch3.
Full textColilla, Montserrat, and María Vallet-Regí. "Chapter 13. Chemoresponsive Mesoporous Silica Nanoparticles for Targeted Drug Delivery in Cancer Therapy." In Smart Materials Series, 451–98. 2nd ed. Cambridge: Royal Society of Chemistry, 2022. http://dx.doi.org/10.1039/9781839166136-00451.
Full textHolowka, Eric P., and Sujata K. Bhatia. "Targeted Materials." In Drug Delivery, 177–223. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1998-7_5.
Full textHolowka, Eric P., and Sujata K. Bhatia. "Hydrogel Materials." In Drug Delivery, 225–64. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1998-7_6.
Full textChoudhari, Yogesh, Hans Hoefer, Cristian Libanati, Fred Monsuur, and William McCarthy. "Mesoporous Silica Drug Delivery Systems." In Advances in Delivery Science and Technology, 665–93. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1598-9_23.
Full textHolowka, Eric P., and Sujata K. Bhatia. "Thin-Film Materials." In Drug Delivery, 63–116. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1998-7_3.
Full textHolowka, Eric P., and Sujata K. Bhatia. "Self-Microemulsifying Materials." In Drug Delivery, 117–76. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1998-7_4.
Full textTonbul, Hayrettin. "Evaluation of Targeted Mesoporous Silica Nanoparticles." In Drug Delivery with Targeted Nanoparticles, 643–56. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003164739-23.
Full textConference papers on the topic "Mesoporous Materials - Drug Delivery -"
Ulfa, Maria, Kris Sisca Aristia, and Didik Prasetyoko. "Synthesis of mesoporous silica materials via dual templating method from starch of waste rice and their application for drug delivery system." In THE 3RD INTERNATIONAL SEMINAR ON CHEMISTRY: Green Chemistry and its Role for Sustainability. Author(s), 2018. http://dx.doi.org/10.1063/1.5082407.
Full textKnezevic, Nikola Z., Nebojsa Ilic, and Goran N. Kaluderovic. "Functionalized Mesoporous Silica Nanoparticles for Drug Delivery to Glioblastoma Multiforme." In 2022 IEEE 22nd International Conference on Nanotechnology (NANO). IEEE, 2022. http://dx.doi.org/10.1109/nano54668.2022.9928669.
Full textPant, Bhasker, Sheetal Mujoo, Shaikh Rajesh Ali, Vasu Gajendiran, Larissa Souza Amaral, and Mohammad Mobarak Hossain. "Smart Mesoporous Silica Nanocomposite for Triggered and Targeted Ibuprofen Drug Delivery." In International Conference on Recent Advancements in Biomedical Engineering. Switzerland: Trans Tech Publications Ltd, 2022. http://dx.doi.org/10.4028/p-hx82v3.
Full textRamirez-Pedroza, Juan Pedro, Daniela Salado-Leza, Jose Luis Rodriguez-Lopez, and Rufino Nava-Mendoza. "Synthesis, characterization and perspectives of mesoporous silica-based nanoplatforms as drug delivery systems." In 2018 XIV International Engineering Congress (CONIIN). IEEE, 2018. http://dx.doi.org/10.1109/coniin.2018.8489816.
Full textRamasamy, Mouli, Prashanth S. Kumar, and Vijay K. Varadan. "Magnetic nanotubes for drug delivery." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Vijay K. Varadan. SPIE, 2017. http://dx.doi.org/10.1117/12.2264367.
Full textProctor, Christopher. "Materials and devices for electronic drug delivery." In nanoGe Spring Meeting 2022. València: Fundació Scito, 2022. http://dx.doi.org/10.29363/nanoge.nsm.2022.128.
Full textWang, Chong, Han Xu, ChunLei Wang, Jim Zoval, and Marc Madou. "Polypyrrole actuators as valves for controlled drug delivery." In Smart Structures and Materials, edited by Yoseph Bar-Cohen. SPIE, 2004. http://dx.doi.org/10.1117/12.540095.
Full textTsai, Han-Kuan A., Kuo-Sheng Ma, Jim Zoval, Lawrence Kulinsky, and Marc Madou. "Packaged Au-PPy valves for drug delivery systems." In Smart Structures and Materials, edited by Yoseph Bar-Cohen. SPIE, 2006. http://dx.doi.org/10.1117/12.658742.
Full textKulinsky, Lawrence, Han Xu, Han-Kuan A. Tsai, and Marc Madou. "System-based approach for an advanced drug delivery platform." In Smart Structures and Materials, edited by Yuji Matsuzaki. SPIE, 2006. http://dx.doi.org/10.1117/12.658890.
Full textCui, Xinyu, Yuanyi Wang, Yuanyuan Yin, and Miaojing Li. "Polydopamine-based Materials as Carriers for Drug Delivery." In International Conference on Biomedical and Biological Engineering. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/bbe-16.2016.15.
Full textReports on the topic "Mesoporous Materials - Drug Delivery -"
Radu, Daniela Rodica. Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/837277.
Full textPopova, Teodora, Borislav Tzankov, Christina Voycheva, Krassimira Yoncheva, and Nikolai Lambov. Development of Advanced Drug Delivery Systems with Bicalutamide Based on Mesoporous Silica Particles. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, December 2019. http://dx.doi.org/10.7546/crabs.2019.12.08.
Full textAnderson, Brian Curtis. Development of Novel Polymeric Materials for Gene Therapy and pH-Sensitive Drug Delivery: Modeling, Synthesis, Characterization, and Analysis. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/804533.
Full textGuidelines for materials introduction supporting drug substance delivery. BioPhorum, November 2021. http://dx.doi.org/10.46220/2021ds006.
Full textGuidelines for materials introduction supporting drug substance delivery. BioPhorum, November 2021. http://dx.doi.org/10.46220/2021ds007.
Full text