Academic literature on the topic 'Mesophyll cells'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mesophyll cells.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Mesophyll cells"

1

Lersten, Nels R., and Curt L. Brubaker. "Paraveinal mesophyll, and its relationship to vein endings, in Solidago canadensis (Asteraceae)." Canadian Journal of Botany 67, no. 5 (May 1, 1989): 1429–33. http://dx.doi.org/10.1139/b89-190.

Full text
Abstract:
Paraveinal mesophyll is described from leaves of a common goldenrod species, Solidago canadensis L. (tribe Astereae). This is the first report of paraveinal mesophyll from the Asteraceae. It is a uniseriate middle layer consisting of horizontally lobed cells that form a lacy meshwork between veins. It abuts the tightly cylindrical bundle sheath at the level of the xylem in all vascular bundles. Vein endings, however, differ from other vascular bundles in two ways: sieve tube members may extend to the vein tip, end at an intermediate point, or be absent, and lateral bundle sheath cells distal to the terminal sieve tube member swell greatly or protrude horizontally and interdigitate with adjacent paraveinal mesophyll cells. Cells of both paraveinal mesophyll and bundle sheath have fewer and smaller chloroplasts than other mesophyll cells; the chloroplasts mostly lie adjacent to intercellular spaces. During leaf development, the paraveinal mesophyll layer differentiates before other mesophyll layers. Solidago canadensis paraveinal mesophyll resembles the well-studied paraveinal mesophyll of Glycine max, except for differences in its anatomical relationship to minor veins and vein endings.
APA, Harvard, Vancouver, ISO, and other styles
2

IIDA, Asako, Hiromichi MORIKAWA, and Yasuyuki YAMADA. "Culture of isolated tobacco mesophyll cells." Plant tissue culture letters 6, no. 3 (1989): 169–71. http://dx.doi.org/10.5511/plantbiotechnology1984.6.169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zvereva, G. K. "The structure of the mesophyll and assimilative apparatus of the chloridoid grasses leaves." Проблемы ботаники южной сибири и монголии 19, no. 2 (October 8, 2020): 202–6. http://dx.doi.org/10.14258/pbssm.2020103.

Full text
Abstract:
The structure of the mesophyll and assimilative apparatus of leaf blades and leaf sheaths was studied atchloridoid grasses Aeluropus intermedius, Cleistogenes squarrosa, Crypsis aculeata and Tripogon chinensis, growing indifferent habitats of Siberia. All plant species are characterized by the manifestation of C4-coronary syndrome. Spatialforms of mesophyll cells radially arranged around Kranz cells and intercostal zone cells were considered. It is shown, thatleaf mesophyll at xerophytes Cleistogenes squarrosa and Tripogon chinensis is composed of cellular cells. At the grasses of saline habitats Aeluropus intermedius and Crypsis aculeata, a simplification of the shape of mesophyll cells is observed, primarily in the intercostal zone and to a greater extent, in leaf sheaths. According to the density of chloroplasts inthe leaf mesophyll, chloridoid С4-grasses approach to mesophytic and xeromesophytic С3-grasses.
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, InSun, and David G. Fisher. "Structural aspects of the leaves of seven species of Portulaca growing in Hawaii." Canadian Journal of Botany 68, no. 8 (August 1, 1990): 1803–11. http://dx.doi.org/10.1139/b90-233.

Full text
Abstract:
Seven species of Portulaca growing in Hawaii can be divided into two groups based on the morphology, anatomy, and ultrastructure of their leaves. Portulaca oleracea, P. molokiniensis, P. lutea, forming group A, have spatulate to obovate leaves, paradermal minor veins, and mesophyll cells that completely encircle the minor veins. The chloroplasts in their bundle sheath cells are larger than those in the mesophyll cells and have well-developed grana and reduced peripheral reticulum. Bundle sheath mitochondria are larger and more numerous than those in the mesophyll, and chloroplasts in the mesophyll cells have well-developed grana and peripheral reticulum. Portulaca pilosa, P. villosa, P. sclerocarpa, and P. "ulupalakua," forming group B, have lanceolate to oblong–oblanceolate leaves, peripheral minor veins, and incomplete wreaths of mesophyll cells. The choroplasts in their bundle sheath cells are about the same size as those in the mesophyll and have reduced grana and well-developed peripheral reticulum. The bundle sheath mitochondria are about the same in size and number as those in the mesophyll, and the mesophyll chloroplasts have well-developed grana and reduced peripheral reticulum. Groups A and B may be equivalent, respectively, to types ii and i of R. C. Carolin, S. W. L. Jacobs, and M. Vesk (Aust. J. Bot. 26: 683–698, 1978) and to coronary subtypes B and A of E. V. Voznesenskaya and Y. V. Gamalei (Bot. Zh. Leningrad, 71: 1291–1306, 1986), which constitute groupings of Portulaca species studied by those authors.
APA, Harvard, Vancouver, ISO, and other styles
5

Kevekordes, K. G., M. E. McCully, and M. J. Canny. "The occurrence of an extended bundle sheath system (paraveinal mesophyll) in the legumes." Canadian Journal of Botany 66, no. 1 (January 1, 1988): 94–100. http://dx.doi.org/10.1139/b88-014.

Full text
Abstract:
The tissue previously described as paraveinal mesophyll in soybean leaves is shown to have the characters of bundle sheath rather than mesophyll cells and is renamed "extended bundle sheath" (EBS) tissue. Its presence was surveyed by leaf clearing in 66 species of legumes of all three subfamilies. A complete extended bundle sheath system similar to that previously described in soybean was identified in 21 of the species. This system is a paradermally oriented tissue, one cell deep, between the spongy and palisade mesophylls, consisting of extended bundle sheath cells, which join each other across the interveinal space either directly or via bridging cells of somewhat similar shape and size. A newly recognized, attenuated extended bundle sheath system, in which bundle sheath cells extend but do not form a continuum except in very narrow interveinal spaces, is described; it was found in 32 species. Extended bundle sheath tissue was absent from 13 of the species. The presence or form of extended bundle sheath tissue does not follow traditional taxonomic divisions. Extended bundle sheath systems were also found in 3 of 5 nonlegume species.
APA, Harvard, Vancouver, ISO, and other styles
6

Hotto, Amber M., Coralie Salesse-Smith, Myat Lin, Florian A. Busch, Isabelle Simpson, and David B. Stern. "Rubisco production in maize mesophyll cells through ectopic expression of subunits and chaperones." Journal of Experimental Botany 72, no. 13 (April 30, 2021): 4930–37. http://dx.doi.org/10.1093/jxb/erab189.

Full text
Abstract:
Abstract C4 plants, such as maize, strictly compartmentalize Rubisco to bundle sheath chloroplasts. The molecular basis for the restriction of Rubisco from the more abundant mesophyll chloroplasts is not fully understood. Mesophyll chloroplasts transcribe the Rubisco large subunit gene and, when normally quiescent transcription of the nuclear Rubisco small subunit gene family is overcome by ectopic expression, mesophyll chloroplasts still do not accumulate measurable Rubisco. Here we show that a combination of five ubiquitin promoter-driven nuclear transgenes expressed in maize leads to mesophyll accumulation of assembled Rubisco. These encode the Rubisco large and small subunits, Rubisco assembly factors 1 and 2, and the assembly factor Bundle sheath defective 2. In these plants, Rubisco large subunit accumulates in mesophyll cells, and appears to be assembled into a holoenzyme capable of binding the substrate analog CABP (carboxyarabinitol bisphosphate). Isotope discrimination assays suggest, however, that mesophyll Rubisco is not participating in carbon assimilation in these plants, most probably due to a lack of the substrate ribulose 1,5-bisphosphate and/or Rubisco activase. Overall, this work defines a minimal set of Rubisco assembly factors in planta and may help lead to methods of regulating the C4 pathway.
APA, Harvard, Vancouver, ISO, and other styles
7

Théroux-Rancourt, Guillaume, Adam B. Roddy, J. Mason Earles, Matthew E. Gilbert, Maciej A. Zwieniecki, C. Kevin Boyce, Danny Tholen, Andrew J. McElrone, Kevin A. Simonin, and Craig R. Brodersen. "Maximum CO 2 diffusion inside leaves is limited by the scaling of cell size and genome size." Proceedings of the Royal Society B: Biological Sciences 288, no. 1945 (February 24, 2021): 20203145. http://dx.doi.org/10.1098/rspb.2020.3145.

Full text
Abstract:
Maintaining high rates of photosynthesis in leaves requires efficient movement of CO 2 from the atmosphere to the mesophyll cells inside the leaf where CO 2 is converted into sugar. CO 2 diffusion inside the leaf depends directly on the structure of the mesophyll cells and their surrounding airspace, which have been difficult to characterize because of their inherently three-dimensional organization. Yet faster CO 2 diffusion inside the leaf was probably critical in elevating rates of photosynthesis that occurred among angiosperm lineages. Here we characterize the three-dimensional surface area of the leaf mesophyll across vascular plants. We show that genome size determines the sizes and packing densities of cells in all leaf tissues and that smaller cells enable more mesophyll surface area to be packed into the leaf volume, facilitating higher CO 2 diffusion. Measurements and modelling revealed that the spongy mesophyll layer better facilitates gaseous phase diffusion while the palisade mesophyll layer better facilitates liquid-phase diffusion. Our results demonstrate that genome downsizing among the angiosperms was critical to restructuring the entire pathway of CO 2 diffusion into and through the leaf, maintaining high rates of CO 2 supply to the leaf mesophyll despite declining atmospheric CO 2 levels during the Cretaceous.
APA, Harvard, Vancouver, ISO, and other styles
8

Kinsman, E. A., and K. A. Pyke. "Bundle sheath cells and cell-specific plastid development in Arabidopsis leaves." Development 125, no. 10 (May 15, 1998): 1815–22. http://dx.doi.org/10.1242/dev.125.10.1815.

Full text
Abstract:
Bundle sheath cells form a sheath around the entire vascular tissue in Arabidopsis leaves and constitute a distinct leaf cell type, as defined by their elongate morphology, their position adjacent to the vein and by differences in their chloroplast development compared to mesophyll cells. They constitute about 15% of chloroplast-containing cells in the leaf. In order to identify genes which play a role in the differential development of bundle sheath and mesophyll cell chloroplasts, a screen of reticulate leaf mutants of Arabidopsis was used to identify a new class of mutants termed dov (differential development of vascular-associated cells). The dov1 mutant clearly demonstrates a cell-specific difference in chloroplast development. Mutant leaves are highly reticulate with a green vascular pattern. The underlying bundle sheath cells always contain normal chloroplasts, whereas chloroplasts in mesophyll cells are abnormal, reduced in number per cell and seriously perturbed in morphology at the ultrastructural level. This demonstrates that differential chloroplast development occurs between the bundle sheath and mesophyll cells in the Arabidopsis leaf.
APA, Harvard, Vancouver, ISO, and other styles
9

Strack, D., V. Sharma, and H. Felle. "Vacuolar pH in radish cotyledonal mesophyll cells." Planta 172, no. 4 (December 1987): 563–65. http://dx.doi.org/10.1007/bf00393875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Misra, Biswapriya B., Evaldo de Armas, Zhaohui Tong, and Sixue Chen. "Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate." PLOS ONE 10, no. 12 (December 7, 2015): e0144206. http://dx.doi.org/10.1371/journal.pone.0144206.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Mesophyll cells"

1

Sheard, J. P. "Glucose uptake by pea mesophyll protoplasts." Thesis, University of East Anglia, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vosloh, Daniel. "Subcellular compartmentation of primary carbon metabolism in mesophyll cells of Arabidopsis thaliana." Phd thesis, Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2011/5553/.

Full text
Abstract:
Metabolismus in Pflanzenzellen ist stark kompartimentiert. Viele Stoffwechselwege haben Reaktionen in mehr als einem Kompartiment. Zum Beispiel wird während der Photosynthese in pflanzlichen Mesophyllzellen Kohlenstoff in Form von Stärke in den Chloroplasten synthetisiert, während es im Zytosol in Form von Sacharose gebildet und in der Vakuole gespeichert wird. Diese Reaktionen sind strikt reguliert um ein Gleichgewicht der Kohlenstoffpools der verschiedenen Kompartimente aufrecht zu erhalten und die Energieversorgung aller Teile der Zelle für anabolische Reaktionen sicher zu stellen. Ich wende eine Methode an, bei der die Zellen unter nicht-wässrigen Bedingungen fraktioniert werden und daher der metabolische Status der während der Ernte herrschte über den ganzen Zeitraum der Auftrennung beibehalten wird. Durch die Kombination von nichtwässriger Fraktionierung und verschiedener Massenspektrometrietechniken (Flüssigchromotagraphie- und Gaschromotagraphie basierende Massenspekrometrie) ist es möglich die intrazelluläre Verteilung der meisten Intermediate des photosynthetischen Kohlenstoffstoffwechsels und der Produkte der nachgelagerten metabolischen Reaktionen zu bestimmen. Das Wissen über die in vivo Konzentrationen dieser Metabolite wurde genutzt um die Änderung der freien Gibbs Energie in vivo zu bestimmen. Mit Hilfe dessen kann bestimmt werden, welche Reaktion sich in einem Gleichgewichtszustand befinden und welche davon entfernt sind. Die Konzentration der Enzyme und der Km Werte wurden mit den Konzentrationen der Metabolite in vivo verglichen, um festzustellen, welche Enzyme substratlimitiert sind und somit sensitiv gegenüber Änderungen der Substratkonzentration sind. Verschiedene Intermediate des Calvin-Benson Zyklus sind gleichzeitig Substrate für andere Stoffwechselwege, als da wären Dihyroxyaceton-phosphat (DHAP, Saccharosesynthese), Fructose 6-phosphat (Fru6P, Stärkesynthese), Erythrose 4-phosphat (E4P, Shikimat Stoffwechselweg) und Ribose 5-phosphat (R5P, Nukleotidbiosynthese). Die Enzyme, die diese Intermediate verstoffwechseln, liegen an den Abzweigungspunkten zu diesen Stoffwechselwegen. Diese sind Trisose phosphat isomerase (DHAP), Transketolase (E4P), Sedoheptulose-1,7 biphosphat aldolase (E4P) und Ribose-5-phosphat isomerase (R5P), welche nicht mit ihren Substraten gesättigt sind, da die jeweilige Substratkonzentration geringer als der zugehörige Km Wert ist. Für metabolische Kontrolle bedeutet dies, dass diese Schritte am sensitivsten gegenüber Änderungen der Substratkonzentrationen sind. Im Gegensatz dazu sind die regulierten irreversiblen Schritte von Fructose-1,6.biphosphatase und Sedoheptulose-1,7-biphosphatase relativ insensitiv gegenüber Änderungen der Substratkonzentration. Für den Stoffwechselweg der Saccharosesynthese konnte gezeigt werden, dass die zytosolische Aldolase eine geringer Bindeseitenkonzentration als Substratkonzentration (DHAP) aufweist, und dass die Konzentration von Saccharose-6-phosphat geringer als der Km Wert des synthetisierenden Enzyms Saccharose-phosphatase ist. Sowohl die Saccharose-phosphat-synthase, also auch die Saccharose-phosphatase sind in vivo weit von einem Gleichgewichtszustand entfernt. In Wildtyp Arabidopsis thaliana Columbia-0 Blättern wurde der gesamte Pool von ADPGlc im Chloroplasten gefunden. Das Enzyme ADPGlc pyrophosphorylase ist im Chloroplasten lokalisiert und synthetisiert ADPGlc aus ATP und Glc1P. Dieses Verteilungsmuster spricht eindeutig gegen die Hypothese von Pozueta-Romero und Kollegen, dass ADPGlc im Zytosol durch ADP vermittelte Spaltung von Saccharose durch die Saccharose Synthase erzeugt wird. Basierend auf dieser Beobachtung und anderen veröffentlichten Ergebnissen wurde geschlußfolgert, dass der generell akzeptierte Stoffwechselweg der Stärkesynthese durch ADPGlc Produktion via ADPGlc pyrophosphorylase in den Chloroplasten korrekt ist, und die Hypothese des alternativen Stoffwechselweges unhaltbar ist. Innerhalb des Stoffwechselweges der Saccharosesynthsese wurde festgestellt, dass die Konzentration von ADPGlc geringer als der Km Wert des Stärkesynthase ist, was darauf hindeutet, dass das Enzym substratlimitiert ist. Eine generelle Beobachtung ist, dass viele Enzmye des Calvin-Benson Zyklus ähnliche Bindeseitenkonzentrationen wie Metabolitkonzentrationen aufweisen, wohingegen in den Synthesewegen von Saccharose und Stärke die Bindeseitenkonzentrationen der Enzyme viel geringer als die Metabolitkonzentrationen sind.
Metabolism in plant cells is highly compartmented, with many pathways involving reactions in more than one compartment. For example, during photosynthesis in leaf mesophyll cells, primary carbon fixation and starch synthesis take place in the chloroplast, whereas sucrose is synthesized in the cytosol and stored in the vacuole. These reactions are tightly regulated to keep a fine balance between the carbon pools of the different compartments and to fulfil the energy needs of the organelles. I applied a technique which fractionates the cells under non-aqueous conditions, whereby the metabolic state is frozen at the time of harvest and held in stasis throughout the fractionation procedure. With the combination of non-aqueous fractionation and mass spectrometry based metabolite measurements (LC-MS/MS, GC-MS) it was possible to investigate the intracellular distributions of the intermediates of photosynthetic carbon metabolism and its products in subsequent metabolic reactions. With the knowledge about the in vivo concentrations of these metabolites under steady state photosynthesis conditions it was possible to calculate the mass action ratio and change in Gibbs free energy in vivo for each reaction in the pathway, to determine which reactions are near equilibrium and which are far removed from equilibrium. The Km value and concentration of each enzyme were compared with the concentrations of its substrates in vivo to assess which reactions are substrate limited and so sensitive to changes in substrate concentration. Several intermediates of the Calvin-Benson cycle are substrates for other pathways, including dihydroxyacetone-phosphate (DHAP,sucrose synthesis), fructose 6-phosphate (Fru6P, starch synthesis), erythrose 4-phosphate (E4P,shikimate pathway) and ribose 5-phosphate (R5P, nucleotide synthesis). Several of the enzymes that metabolise these intermediates, and so lie at branch points in the pathway, are triose-phosphate isomerase (DHAP), transketolase (E4P, Fru6P), sedoheptulose-1,7-bisphosphate aldolase (E4P) and ribose-5-phosphate isomerase (R5P) are not saturated with their respective substrate as the metabolite concentration is lower than the respective Km value. In terms of metabolic control these are the steps that are most sensitive to changes in substrate availability, while the regulated irreversible reactions of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase are relatively insensitive to changes in the concentrations of their substrates. In the pathway of sucrose synthesis it was shown that the concentration of the catalytic binding site of the cytosolic aldolase is lower than the substrate concentration of DHAP, and that the concentration of Suc6P is lower than the Km of sucrose-phosphatase for this substrate. Both the sucrose-phosphate synthase and sucrose-phosphatase reactions are far removed from equilibrium in vivo. In wild type A. thaliana Columbia-0 leaves, all of the ADPGlc was found to be localised in the chloroplasts. ADPglucose pyrophosphorylase is localised to the chloroplast and synthesises ADPGlc from ATP and Glc1P. This distribution argues strongly against the hypothesis proposed by Pozueta-Romero and colleagues that ADPGlc for starch synthesis is produced in the cytosol via ADP-mediated cleavage of sucrose by sucrose synthase. Based on this observation and other published data it was concluded that the generally accepted pathway of starch synthesis from ADPGlc produced by ADPglucose pyrophosphorylase in the chloroplasts is correct, and that the alternative pathway is untenable. Within the pathway of starch synthesis the concentration of ADPGlc was found to be well below the Km value of starch synthase for ADPGlc, indicating that the enzyme is substrate limited. A general finding in the comparison of the Calvin-Benson cycle with the synthesis pathways of sucrose and starch is that many enzymes in the Calvin Benson cycle have active binding site concentrations that are close to the metabolite concentrations, while for nearly all enzymes in the synthesis pathways the active binding site concentrations are much lower than the metabolite concentrations.
APA, Harvard, Vancouver, ISO, and other styles
3

Lin, Quan. "Differentiation of tracheary elements from mesophyll cells of Zinnia elegens L." Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sawers, Ruairidh J. H. "Functional analysis of bundle sheath defective2." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rautenkranz, Andreas A. F. "Transport of ascorbic and dehydroascorbic acids across membranes of barley (Hordeum vulgare L., cv Gerbel) mesophyll cells /." [S.l.] : [s.n.], 1994. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vosloh, Daniel Verfasser], and Mark [Akademischer Betreuer] [Stitt. "Subcellular compartmentation of primary carbon metabolism in mesophyll cells of Arabidopsis thaliana / Daniel Vosloh. Betreuer: Mark Stitt." Potsdam : Universitätsbibliothek der Universität Potsdam, 2011. http://d-nb.info/101740769X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vosloh, Daniel [Verfasser], and Mark [Akademischer Betreuer] Stitt. "Subcellular compartmentation of primary carbon metabolism in mesophyll cells of Arabidopsis thaliana / Daniel Vosloh. Betreuer: Mark Stitt." Potsdam : Universitätsbibliothek der Universität Potsdam, 2011. http://d-nb.info/101740769X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Woffenden, Bonnie Jean. "The Role of the Ubiquitin-Proteasome Pathway During Xylem Differentiation in Zinnia elegans Mesophyll Cells and Arabidopsis thaliana." Diss., Virginia Tech, 1999. http://hdl.handle.net/10919/29220.

Full text
Abstract:
A biochemical characterization of ubiquitin (Ub)-proteasome pathway activity was conducted in Zinnia mesophyll cell cultures to examine potential differences between differentiating cells of tracheary element (TE) cultures and non-differentiating cells of control cultures. The pathway is highly active throughout development of differentiating TEs, a programmed cell death (PCD) process during which the majority of cellular proteins and biochemical processes are expected to be down-regulated in activity and/or expression. Addition of the proteasome inhibitors clasto-lactacystin Beta-lactone (LAC) and carbobenzoxy-leucinyl-leucinyl-leucinal (LLL) at culture initiation prevented TE differentiation in this system. Proteasome inhibition at 48h did not alter the final percentage of TEs compared to controls. However, proteasome inhibition at 48 h delayed the differentiation program by approximately 24 h, as indicated by examination of morphological markers and the expression of putative autolytic cysteine proteases.These results suggest that proteasome activity is required both for induction of TE differentiation and for progression of the TE program in committed cells. Treatment at 48 h with LLL resulted in partial uncoupling of autolysis from differentiation. Results of protease activity gel analysis suggest that incomplete autolysis was due to the ability of LLL to inhibit TE cysteine proteases. A characterization of phytohormone-stimulated growth of non-differentiating cultured Zinnia cells is also presented. Differential effects on radial cell expansion versus cell elongation were observed for the four plant growth regulators examined. Auxin (naphthaleneacetic acid, NAA) and a brassinosteroid (2,4-epibrassinolide, BI) stimulate only cell elongation. Cytokinin (N-6-benzyladenine, BA) has a greater effect on growth in cell girth rather than length. Gibberellic acid (GA₃) has equivalent effects on expansion in both dimensions. These results demonstrate that radial cell expansion and cell elongation can be uncoupled, and therefore, may be controlled by different mechanisms. Additionally, this study establishes the utility of Zinnia suspension cultures as a valuable model for studies of cell expansion. Finally, we modified Arabidopsis plant growth conditions to promote proliferation of secondary tissues, permitting the separation of secondary xylem from bark (phloem plus nonvascular) tissues using hypocotyl-root segments. Dissected tissues were used for semi-quantitative and quantitative RT-PCR and for the construction of bark and xylem cDNA libraries for PCR-based screening of several Ub pathway components, including Ub-conjugating enzymes (UBCs), deubiquitinating enzymes (DUBs), and an Alpha (PAF1) and Beta (PAF1) subunit of the proteasome. All targeted UBC families, candidate UBCs and DUBs, and proteasome subunits are expressed in secondary xylem and bark in this system.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
9

Batta, Kucheli. "The role of guard cell chloroplasts in stomatal function and coordinating stomatal and mesophyll responses." Thesis, University of Essex, 2018. http://repository.essex.ac.uk/23447/.

Full text
Abstract:
Guard cells controls the stomata through which exchange of gas takes place by balancing between CO2 uptake for photosynthesis and water loss through transpiration leading to ultimate plant water use efficiency (WUE). Climate change is predicted to lead to greater temperatures and reduced water availability resulting in adverse effect on plant productivity. Sustainable agriculture will therefore require a major reduction in plant water use hence stomata have become potential target for manipulation. Understanding the signal mechanisms of stomata in response to these changing environmental conditions is therefore critically important. In order to facilitate an understanding of stomatal regulation and how it is influenced by the surrounding mesophyll cells, we have used two approaches to find a possible coordination that links mesophyll and guard cell metabolism through the use of stomatal physiology and genetic engineering. The first approach used a novel epidermal mesophyll transfer experiment to monitor stomatal responses to dynamic environmental changes with and without the mesophyll present. The second approach used new molecular tools and techniques to manipulate chloroplast metabolism specifically in the guard cells to elucidate mesophyll-derived signals that coordinate mesophyll CO2 demands with stomatal behaviour towards crop improvement. The results presented have shown guard cells plays a role in stomatal function even though the degree of responsiveness is slower than when the mesophyll is present. Furthermore, the molecular approach demonstrated using Arabidopsis plants overexpressing Rieske and SBPase resulted in substantial and significant impacts on plant development coupled with increases in photosynthetic efficiency of photosystem II in the early stages of seedling development. The result obtained proves more opportunities await the exploitation of guard cells metabolism towards the improvement of plants.
APA, Harvard, Vancouver, ISO, and other styles
10

Hsu, Jen-Chieh, and 許仁傑. "Comparison of grana stacking of mesophyll cell and bundle sheath cell of maize." Thesis, 1997. http://ndltd.ncl.edu.tw/handle/09055266851157377838.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Mesophyll cells"

1

McCutcheon, Steve L. Amino acid transport: The special case of a H/L-glutamate cotransport system in Asparagus sprengeri mesophyll cells. St. Catharines [Ont.]: Dept. of Biological Sciences, Brock University, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mawson, Bruce Thomas. Thermal acclimation of photosynthesis in mesophyll and guard cell chloroplasts of the Arctic plant, "Saxifraga cernua". 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Mesophyll cells"

1

Uemoto, Kyohei, Takashi Araki, and Motomu Endo. "Isolation of Arabidopsis Palisade and Spongy Mesophyll Cells." In Methods in Molecular Biology, 141–48. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8657-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kohlenbach, Hans Willy. "The developmental potentials of isolated mesophyll cells and protoplasts." In Plant Tissue Culture, 93–103. Vienna: Springer Vienna, 2003. http://dx.doi.org/10.1007/978-3-7091-6040-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Berry, James O., Minesh Patel, and Amy Zielinski. "Chapter 12 C4 Gene Expression in Mesophyll and Bundle Sheath Cells." In C4 Photosynthesis and Related CO2 Concentrating Mechanisms, 221–56. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9407-0_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lapointe, Line, and Norman Huner. "Photoinhibition and Recovery in Isolated Mesophyll Cells of Hardened and Non-Hardened Rye." In Current Research in Photosynthesis, 3425–28. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0511-5_770.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Plaut, Z., C. M. Grieve, and E. Federman. "Effect of Environmental Stress on Photosynthesis of Isolated Mesophyll Cells from Cowpea Leaves." In Current Research in Photosynthesis, 3543–46. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0511-5_799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Terashima, I., M. Ishibashi, K. Ono, and K. Hikosaka. "Three Resistances to CO2 Diffusion: Leaf-Surface Water, Intercellular Spaces and Mesophyll Cells." In Photosynthesis: from Light to Biosphere, 4429–34. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-009-0173-5_1040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dharmawardhane, Suranganee, Bernard Rubinstein, and Arthur I. Stern. "Regulation of Transplasmalemma Electron Transport by Calcium and Light in Oat Mesophyll Cells." In Plasma Membrane Oxidoreductases in Control of Animal and Plant Growth, 287–93. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-8029-0_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fatalieva, S. M. "Ultrastructure of mesophyll cells grown on different levels of selenium of two pea genotypes." In Genetic Aspects of Plant Mineral Nutrition, 471–76. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3581-5_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Perronnet, C., C. Denécheau, M. Rideau, and J. C. Chénieux. "Electrofusion of Chemically-Aggregated Protoplasts Derived from Mesophyll Tissue and Habituated Cells of Catharanthus Roseus." In Progress in Plant Protoplast Research, 271–72. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2788-9_98.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Martinoia, Enrico, Michael J. Schramm, Ulf-Ingo Flügge, and Georg Kaiser. "Intracellular Distribution of Organic and Inorganic Anions in Mesophyll Cells: Transport Mechanisms in the Tonoplast." In Plant Vacuoles, 407–16. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5341-6_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Mesophyll cells"

1

Zvereva, G. K. "The structure of the needles mesophyll in species of the Pinaceae family with flat leaves." In Problems of studying the vegetation cover of Siberia. TSU Press, 2020. http://dx.doi.org/10.17223/978-5-94621-927-3-2020-13.

Full text
Abstract:
The spatial organization of mesophyll and three-dimensional forms of assimilative cells are considered on the example of 7 species of the Pinaceae family with flattened leaves: Abies cephalonica, A. concolor, A. sibirica, Larix sibirica, Picea omorica, Pseudotsuga menziesii and Tsida canadensis. It was shown that three types of mesophyll cells are distinguished in the flattened needles: palisade, spongy and median. Median cells are appreciable both with well-defined and weak differentiation of assimilative tissue; they can have simple and complex cellular forms.
APA, Harvard, Vancouver, ISO, and other styles
2

Su, Poyu, Ting-Ying Lee, and Szu-Yu Chen. "4D Two-photon Fluorescence Hyperspectral Image of Mesophyll Cells inside Intact Leaves." In Frontiers in Optics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/fio.2015.jtu4a.85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maleva, M. G., O. S. Sinenko, I. S. Kiseleva, D. Latowski, and K. Strzałka. "REACTION OF PHOTOSYNTHETIC APPARATUS TO TEMPERATURE STRESS IN BARLEY MESOPHYLL CELLS OF DIFFERENT AGE." In The All-Russian Scientific Conference with International Participation and Schools of Young Scientists "Mechanisms of resistance of plants and microorganisms to unfavorable environmental". SIPPB SB RAS, 2018. http://dx.doi.org/10.31255/978-5-94797-319-8-496-500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cheryatova, Yu S. "Features of the anatomy of the leaves of Laurocerasus officinalis M. Roem." In Растениеводство и луговодство. Тимирязевская сельскохозяйственная академия, 2020. http://dx.doi.org/10.26897/978-5-9675-1762-4-2020-80.

Full text
Abstract:
The article presents the results of microscopic analysis of the leaves of L. officinalis. The main anatomical and diagnostic features that can be used in identifying and evaluating the authenticity of medicinal plant raw materials are established. Analysis of the anatomical structure showed that the leaves of L. officinalis are dorsoventral; the leaf plastic is hypostomatic, and the stomatal apparatus is anomocytic. The main vein of the leaf blade and petiole is represented by a bicollateral conducting bundle. Idioblasts represented by round- shaped essential oil cells were first identified in the columnar and spongy mesophyll of the leaf and petiole. Single diamond-shaped crystals and calcium oxalate druses were also found in the leaves. The information obtained can serve as a basis for the development of the section "Microscopy" in the draft regulatory documentation.
APA, Harvard, Vancouver, ISO, and other styles
5

Valeriu Iancu, Valeriu, Laura Adriana Bucur, Verginica Schröder, and Manuela Rossemary Apetroaei. "PRELIMINARY STUDIES RELATED TO MICROSCOPY AND THE SEDEM EXPERT SYSTEM PROFILE ON FREEZED-DRIED EXTRACT OF LYTHRI HERBA." In GEOLINKS Conference Proceedings. Saima Consult Ltd, 2021. http://dx.doi.org/10.32008/geolinks2021/b1/v3/16.

Full text
Abstract:
"The floral tips of the plant species Lythrum salicaria L. represent a rich source of total polyphenols, among which with the largest share we mention tannins, and this is why this plant material has a standardized monograph in the European Pharmacopoeia 10.0th edition. According to the literature accessed so far, the plant material has antioxidant, anti-inflammatory, hemostatic, antibacterial and antifungal properties, along with modulatory action on carbohydrate metabolism. Powder microscopic examination is an important step in establishing the identity of the plant species used, highlighting elements specific to the aerial part such as spiral vessels of the stem, fragments of the spongy mesophyll with calcium oxalate clusters cells and anomocytic stomata. The application of the SeDeM method on dried plant extracts represents an innovative trend in pharmaceutical technology and contributes to the collection of data in a structured and standardized form. In this paper, the functions and applications of the SeDeM expert system are illustrated upon the freeze-dried extract of Lythri herba for the purpose of easier identification and standardization. Future applications may include obtaining chewable gums or tablets by direct compression."
APA, Harvard, Vancouver, ISO, and other styles
6

Korpiun, P., and B. Büchner. "Frequency dependence of the photothermal signal on mesophyll cell sizes of leaves." In PHOTOACOUSTIC AND PHOTOTHERMAL PHENOMENA. ASCE, 1999. http://dx.doi.org/10.1063/1.58146.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Mesophyll cells"

1

Lu, P., W. H. Jr Outlaw, B. G. Smith, and G. A. Freed. Plant, cell, and molecular mechanisms of abscisic-acid regulation of stomatal apertures. A new mechanism for the regulation of stomatal-aperture size in intact leaves: Accumulation of mesophyll-derived sucrose in the guard-cell wall of Vicia faba L. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/629405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography