Journal articles on the topic 'Meshes'

To see the other types of publications on this topic, follow the link: Meshes.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Meshes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kuo, Hung-Ju, and Neil S. Trudinger. "meshes." Duke Mathematical Journal 91, no. 3 (February 1998): 587–607. http://dx.doi.org/10.1215/s0012-7094-98-09122-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ren, Yingying, Uday Kusupati, Julian Panetta, Florin Isvoranu, Davide Pellis, Tian Chen, and Mark Pauly. "Umbrella meshes." ACM Transactions on Graphics 41, no. 4 (July 2022): 1–15. http://dx.doi.org/10.1145/3528223.3530089.

Full text
Abstract:
We present a computational inverse design framework for a new class of volumetric deployable structures that have compact rest states and deploy into bending-active 3D target surfaces. Umbrella meshes consist of elastic beams, rigid plates, and hinge joints that can be directly printed or assembled in a zero-energy fabrication state. During deployment, as the elastic beams of varying heights rotate from vertical to horizontal configurations, the entire structure transforms from a compact block into a target curved surface. Umbrella Meshes encode both intrinsic and extrinsic curvature of the target surface and in principle are free from the area expansion ratio bounds of past auxetic material systems. We build a reduced physics-based simulation framework to accurately and efficiently model the complex interaction between the elastically deforming components. To determine the mesh topology and optimal shape parameters for approximating a given target surface, we propose an inverse design optimization algorithm initialized with conformal flattening. Our algorithm minimizes the structure's strain energy in its deployed state and optimizes actuation forces so that the final deployed structure is in stable equilibrium close to the desired surface with few or no external constraints. We validate our approach by fabricating a series of physical models at various scales using different manufacturing techniques.
APA, Harvard, Vancouver, ISO, and other styles
3

Yuksel, Cem, Scott Schaefer, and John Keyser. "Hair meshes." ACM Transactions on Graphics 28, no. 5 (December 2009): 1–7. http://dx.doi.org/10.1145/1618452.1618512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Molloy, D., and P. F. Whelan. "Active-meshes." Pattern Recognition Letters 21, no. 12 (November 2000): 1071–80. http://dx.doi.org/10.1016/s0167-8655(00)00069-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Richter, Ronald, and Marc Alexa. "Beam meshes." Computers & Graphics 53 (December 2015): 28–36. http://dx.doi.org/10.1016/j.cag.2015.08.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Thiery, Jean-Marc, Émilie Guy, and Tamy Boubekeur. "Sphere-Meshes." ACM Transactions on Graphics 32, no. 6 (November 2013): 1–12. http://dx.doi.org/10.1145/2508363.2508384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Averseng, Martin, Xavier Claeys, and Ralf Hiptmair. "Fractured meshes." Finite Elements in Analysis and Design 220 (August 2023): 103907. http://dx.doi.org/10.1016/j.finel.2022.103907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hettinga, Gerben J., Rowan van Beckhoven, and Jiří Kosinka. "Noisy gradient meshes: Augmenting gradient meshes with procedural noise." Graphical Models 103 (May 2019): 101024. http://dx.doi.org/10.1016/j.gmod.2019.101024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bos, Len, and Marco Vianello. "Tchakaloff polynomial meshes." Annales Polonici Mathematici 122, no. 3 (2019): 221–31. http://dx.doi.org/10.4064/ap181031-26-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Friedel, Ilja, Peter Schröder, and Andrei Khodakovsky. "Variational normal meshes." ACM Transactions on Graphics 23, no. 4 (October 2004): 1061–73. http://dx.doi.org/10.1145/1027411.1027418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Turza, Kristin C., and Charles E. Butler. "Adhesions and Meshes." Plastic and Reconstructive Surgery 130 (November 2012): 206S—213S. http://dx.doi.org/10.1097/prs.0b013e3182638d48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Wu, Kui, Hannah Swan, and Cem Yuksel. "Knittable Stitch Meshes." ACM Transactions on Graphics 38, no. 1 (February 20, 2019): 1–13. http://dx.doi.org/10.1145/3292481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Sheffer, Alla. "Skinning 3D meshes." Graphical Models 65, no. 5 (September 2003): 274–85. http://dx.doi.org/10.1016/s1524-0703(03)00049-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bern, M., D. Eppstein, and J. Erickson. "Flipping Cubical Meshes." Engineering with Computers 18, no. 3 (October 25, 2002): 173–87. http://dx.doi.org/10.1007/s003660200016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Müller, Christian. "Conformal hexagonal meshes." Geometriae Dedicata 154, no. 1 (January 8, 2011): 27–46. http://dx.doi.org/10.1007/s10711-010-9566-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Piazzon, Federico, and Marco Vianello. "Jacobi norming meshes." Mathematical Inequalities & Applications, no. 3 (2016): 1089–95. http://dx.doi.org/10.7153/mia-19-80.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Pajarola, R., and J. Rossignac. "Compressed progressive meshes." IEEE Transactions on Visualization and Computer Graphics 6, no. 1 (2000): 79–93. http://dx.doi.org/10.1109/2945.841122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Esperança, Claudio, Antonio Alberto Fernandes de Oliveira, and Paulo Roma Cavalcanti. "Improved atomic meshes." Communications in Numerical Methods in Engineering 24, no. 12 (December 12, 2007): 1873–86. http://dx.doi.org/10.1002/cnm.1074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

LEE, Kyu-yeul, Seong-chan KANG, and Tae-wan KIM. "Normal Meshes for Multiresolution Analysis of Irregular Meshes with Boundaries." JSME International Journal Series C 45, no. 2 (2002): 628–36. http://dx.doi.org/10.1299/jsmec.45.628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Fahnline, John. "Condensing structural finite‐element meshes into coarser acoustic element meshes." Journal of the Acoustical Society of America 104, no. 3 (September 1998): 1802. http://dx.doi.org/10.1121/1.423575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Watanabe, Tadashi. "Numerical meshes and covering meshes of approximate inverse systems of compacta." Proceedings of the American Mathematical Society 123, no. 3 (March 1, 1995): 959. http://dx.doi.org/10.1090/s0002-9939-1995-1254858-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Vaidyanathan, Ramachandran, and Jerry L. Trahan. "Optimal simulation of multidimensional reconfigurable meshes by two-dimensional reconfigurable meshes." Information Processing Letters 47, no. 5 (October 1993): 267–73. http://dx.doi.org/10.1016/0020-0190(93)90138-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Bellón, Juan M., Marta Rodríguez, Natalio García-Honduvilla, Gemma Pascual, and Julia Buján. "Partially absorbable meshes for hernia repair offer advantages over nonabsorbable meshes." American Journal of Surgery 194, no. 1 (July 2007): 68–74. http://dx.doi.org/10.1016/j.amjsurg.2006.11.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Huang, Shou-Hsuan S., Hongfei Liu, and Rakesh M. Verma. "On embedding rectangular meshes into rectangular meshes of smaller aspect ratio." Information Processing Letters 63, no. 3 (August 1997): 123–29. http://dx.doi.org/10.1016/s0020-0190(97)00114-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Pearlmutter, B. A. "Doing the twist: diagonal meshes are isomorphic to twisted toroidal meshes." IEEE Transactions on Computers 45, no. 6 (June 1996): 766–67. http://dx.doi.org/10.1109/12.506434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kilian, Martin, Anthony S. Ramos Cisneros, Christian Müller, and Helmut Pottmann. "Meshes with Spherical Faces." ACM Transactions on Graphics 42, no. 6 (December 5, 2023): 1–19. http://dx.doi.org/10.1145/3618345.

Full text
Abstract:
Discrete surfaces with spherical faces are interesting from a simplified manufacturing viewpoint when compared to other double curved face shapes. Furthermore, by the nature of their definition they are also appealing from the theoretical side leading to a Möbius invariant discrete surface theory. We therefore systematically describe so called sphere meshes with spherical faces and circular arcs as edges where the Möbius transformation group acts on all of its elements. Driven by aspects important for manufacturing, we provide the means to cluster spherical panels by their radii. We investigate the generation of sphere meshes which allow for a geometric support structure and characterize all such meshes with triangular combinatorics in terms of non-Euclidean geometries. We generate sphere meshes with hexagonal combinatorics by intersecting tangential spheres of a reference surface and let them evolve - guided by the surface curvature - to visually convex hexagons, even in negatively curved areas. Furthermore, we extend meshes with circular faces of all combinatorics to sphere meshes by filling its circles with suitable spherical caps and provide a remeshing scheme to obtain quadrilateral sphere meshes with support structure from given sphere congruences. By broadening polyhedral meshes to sphere meshes we exploit the additional degrees of freedom to minimize intersection angles of neighboring spheres enabling the use of spherical panels that provide a softer perception of the overall surface.
APA, Harvard, Vancouver, ISO, and other styles
27

Stein, Oded, Eitan Grinspun, and Keenan Crane. "Developability of triangle meshes." ACM Transactions on Graphics 37, no. 4 (August 10, 2018): 1–14. http://dx.doi.org/10.1145/3197517.3201303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Landreneau, Eric, and Scott Schaefer. "Simplification of Articulated Meshes." Computer Graphics Forum 28, no. 2 (April 2009): 347–53. http://dx.doi.org/10.1111/j.1467-8659.2009.01374.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Chang, Taihyun, Hongdoo Kim, and Hyuk Yu. "Diffusion through coarse meshes." Macromolecules 20, no. 10 (October 1987): 2629–31. http://dx.doi.org/10.1021/ma00176a051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Schroeder, William J., Jonathan A. Zarge, and William E. Lorensen. "Decimation of triangle meshes." ACM SIGGRAPH Computer Graphics 26, no. 2 (July 1992): 65–70. http://dx.doi.org/10.1145/142920.134010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Henshaw, W. D., and G. Chesshire. "Multigrid on Composite Meshes." SIAM Journal on Scientific and Statistical Computing 8, no. 6 (November 1987): 914–23. http://dx.doi.org/10.1137/0908074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Jakob, Wenzel, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. "Instant field-aligned meshes." ACM Transactions on Graphics 34, no. 6 (November 4, 2015): 1–15. http://dx.doi.org/10.1145/2816795.2818078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Myles, Ashish, Nico Pietroni, Denis Kovacs, and Denis Zorin. "Feature-aligned T-meshes." ACM Transactions on Graphics 29, no. 4 (July 26, 2010): 1–11. http://dx.doi.org/10.1145/1778765.1778854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Barneva, Reneta P., Valentin E. Brimkov, and Philippe Nehlig. "Thin discrete triangular meshes." Theoretical Computer Science 246, no. 1-2 (September 2000): 73–105. http://dx.doi.org/10.1016/s0304-3975(98)00346-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Isenburg, Martin, and Pierre Alliez. "Compressing hexahedral volume meshes." Graphical Models 65, no. 4 (July 2003): 239–57. http://dx.doi.org/10.1016/s1524-0703(03)00044-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Soetebier, Ingo, Horst Birthelmer, Jörg Sahm, and Volker Luckas. "Managing large progressive meshes." Computers & Graphics 28, no. 5 (October 2004): 691–701. http://dx.doi.org/10.1016/j.cag.2004.06.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Alexa, Marc, and Jan Eric Kyprianidis. "Error diffusion on meshes." Computers & Graphics 46 (February 2015): 336–44. http://dx.doi.org/10.1016/j.cag.2014.09.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Schumpelick, V., U. Klinge, G. Welty, and B. Klosterhalfen. "Meshes in der Bauchwand." Der Chirurg 70, no. 8 (January 9, 1999): 876–87. http://dx.doi.org/10.1007/s001040050737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kroó, András. "On optimal polynomial meshes." Journal of Approximation Theory 163, no. 9 (September 2011): 1107–24. http://dx.doi.org/10.1016/j.jat.2011.03.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Sibeyn, Jop F. "List ranking on meshes." Acta Informatica 35, no. 7 (July 1, 1998): 543–66. http://dx.doi.org/10.1007/s002360050131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Liu, Xinguo, Hujun Bao, PhengAnn Heng, TienTsin Wong, and Qunsheng Peng. "Constrained Fairing for Meshes." Computer Graphics Forum 20, no. 2 (June 2001): 115–23. http://dx.doi.org/10.1111/1467-8659.00483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Lian, Zhouhui, Paul L. Rosin, and Xianfang Sun. "Rectilinearity of 3D Meshes." International Journal of Computer Vision 89, no. 2-3 (September 23, 2009): 130–51. http://dx.doi.org/10.1007/s11263-009-0295-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Solntsev, Igor A., Abhishek Chintagunta, Annabel P. Markesteijn, and Sergey A. Karabasov. "CABARET on rotating meshes." Applied Mathematics and Computation 446 (June 2023): 127871. http://dx.doi.org/10.1016/j.amc.2023.127871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Field, David A., and María-Cecilia Rivara. "Nonlinear graded Delaunay meshes." Finite Elements in Analysis and Design 90 (November 2014): 106–12. http://dx.doi.org/10.1016/j.finel.2014.06.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Bishop, Christopher J. "Quadrilateral Meshes for PSLGs." Discrete & Computational Geometry 56, no. 1 (March 14, 2016): 1–42. http://dx.doi.org/10.1007/s00454-016-9771-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Devillers, Olivier, Sylvain Lazard, and William J. Lenhart. "Rounding Meshes in 3D." Discrete & Computational Geometry 64, no. 1 (April 20, 2020): 37–62. http://dx.doi.org/10.1007/s00454-020-00202-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Plantevin, Frédérique. "Wavelets on irregular meshes." Advances in Computational Mathematics 4, no. 1 (December 1995): 293–329. http://dx.doi.org/10.1007/bf02123479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Oestmann, S., M. Maischak, and E. P. Stephan. "Nonconforming Meshes and Adaptivity." PAMM 4, no. 1 (December 2004): 646–47. http://dx.doi.org/10.1002/pamm.200410304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

MATSUMAE, Susumu. "SIMULATION OF MESHES WITH SEPARABLE BUSES BY MESHES WITH MULTIPLE PARTITIONED BUSES." International Journal of Foundations of Computer Science 15, no. 03 (June 2004): 475–84. http://dx.doi.org/10.1142/s0129054104002558.

Full text
Abstract:
This paper studies the simulation problem of meshes with separable buses [Formula: see text] by meshes with multiple partitioned buses [Formula: see text]. The [Formula: see text] and the [Formula: see text] are the mesh connected computers enhanced by the addition of broadcasting buses along every row and column. The broadcasting buses of the [Formula: see text], called separable buses, can be dynamically sectioned into smaller bus segments by program control, while those of the [Formula: see text], called partitioned buses, are statically partitioned in advance. In the [Formula: see text] model, each row/column has only one separable bus, while in the [Formula: see text] model, each row/column has L partitioned buses (L≥2). We consider the simulation and the scaling-simulation of the [Formula: see text] by the [Formula: see text], and show that the [Formula: see text] of size n×n can be simulated in O(n1/(2L)) steps by the [Formula: see text] of size n×n, and that the [Formula: see text] of size n×n can be simulated in [Formula: see text] steps by the [Formula: see text] of size m×m(m<n). The latter result implies that the [Formula: see text] of size n×n can be simulated time-optimally by the [Formula: see text] of size m×m when n≥m1+∊ holds where [Formula: see text].
APA, Harvard, Vancouver, ISO, and other styles
50

Salazar, Gelasio. "Small meshes of curves and their role in the analysis of optimal meshes." Discrete Mathematics 263, no. 1-3 (February 2003): 233–46. http://dx.doi.org/10.1016/s0012-365x(02)00531-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography