Journal articles on the topic 'Mesenchymal stromal cells derivedfrom Wharton's Jelly'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Mesenchymal stromal cells derivedfrom Wharton's Jelly.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Badraiq, H., A. Cvoro, A. Galleu, M. Simon, F. Dazzi, and D. Ilic. "Maternal obesity alters characteristics of Wharton's Jelly mesenchymal stromal cells." Cytotherapy 19, no. 5 (May 2017): S160. http://dx.doi.org/10.1016/j.jcyt.2017.02.248.
Full textLopez-Rodriguez, Y., E. Trevino, and M. L. Weiss. "Wharton's jelly mesenchymal stromal cells (WJCs) as immunoregulators in allogeneic transplantation." Placenta 32 (October 2011): S329. http://dx.doi.org/10.1016/j.placenta.2011.07.040.
Full textMajumdar, D., R. Bhonde, and I. Datta. "Influence of ischemic microenvironment on human Wharton's Jelly mesenchymal stromal cells." Placenta 34, no. 8 (August 2013): 642–49. http://dx.doi.org/10.1016/j.placenta.2013.04.021.
Full textBatsali, A., C. G. Pontikoglou, E. Kouvidi, A. Damianaki, M. Kastrinaki, and H. A. Papadaki. "Direct comparison of Wharton's Jelly and bone marrow mesenchymal stem/stromal cells." Cytotherapy 16, no. 4 (April 2014): S73—S74. http://dx.doi.org/10.1016/j.jcyt.2014.01.272.
Full textAljitawi, Omar S., Yinghua Xiao, Da Zhang, Lisa Stehno-Bittel, Rama Garimella, Richard A. Hopkins, and Michael S. Detamore. "Generating CK19-Positive Cells with Hair-Like Structures from Wharton's Jelly Mesenchymal Stromal Cells." Stem Cells and Development 22, no. 1 (January 2013): 18–26. http://dx.doi.org/10.1089/scd.2012.0184.
Full textPanta, W., H. Kunkanjanawan, T. Kunkanjanawan, R. Parnpai, and V. Khemarangsan. "Stability characteristic of cryopreserved human umbilical cord wharton's jelly–derived mesenchymal stromal cells." Cytotherapy 21, no. 5 (May 2019): S86. http://dx.doi.org/10.1016/j.jcyt.2019.03.509.
Full textMalagon, A., M. Hautefeuille, G. Piñon, and A. Castell. "Osteogenic potential of Wharton's jelly mesenchymal stromal cells cultured on a biomimetic scaffold." Cytotherapy 22, no. 5 (May 2020): S204—S205. http://dx.doi.org/10.1016/j.jcyt.2020.04.083.
Full textDavies, John E., John T. Walker, and Armand Keating. "Concise Review: Wharton's Jelly: The Rich, but Enigmatic, Source of Mesenchymal Stromal Cells." STEM CELLS Translational Medicine 6, no. 7 (May 10, 2017): 1620–30. http://dx.doi.org/10.1002/sctm.16-0492.
Full textZhang, Ying-Nan, Pu-Chang Lie, and Xing Wei. "Differentiation of mesenchymal stromal cells derived from umbilical cord Wharton's jelly into hepatocyte-like cells." Cytotherapy 11, no. 5 (January 2009): 548–58. http://dx.doi.org/10.1080/14653240903051533.
Full textLupatov, A. Yu, R. Yu Saryglar, V. D. Chuprynin, S. V. Pavlovich, and K. N. Yarygin. "Comparison of the expression profile of surface molecular markers on mesenchymal stromal cell cultures isolated from human endometrium and umbilical cord." Biomeditsinskaya Khimiya 63, no. 1 (January 2017): 85–90. http://dx.doi.org/10.18097/pbmc20176301085.
Full textDatta, Indrani, Swati Mishra, Lipsa Mohanty, Sunitha Pulikkot, and Preeti G. Joshi. "Neuronal plasticity of human Wharton's jelly mesenchymal stromal cells to the dopaminergic cell type compared with human bone marrow mesenchymal stromal cells." Cytotherapy 13, no. 8 (September 2011): 918–32. http://dx.doi.org/10.3109/14653249.2011.579957.
Full textShohara, Ryutaro, Akihito Yamamoto, Sachiko Takikawa, Akira Iwase, Hideharu Hibi, Fumitaka Kikkawa, and Minoru Ueda. "Mesenchymal stromal cells of human umbilical cord Wharton's jelly accelerate wound healing by paracrine mechanisms." Cytotherapy 14, no. 10 (September 2012): 1171–81. http://dx.doi.org/10.3109/14653249.2012.706705.
Full textGovindasamy, V., M. Chai, Z. Lee, K. Then, S. Cheong, and N. Abu Kasim. "Wharton's jelly mesenchymal stromal cells express pancreatic lineage markers upon culturing in hanging drop technique." Cytotherapy 20, no. 5 (May 2018): S39. http://dx.doi.org/10.1016/j.jcyt.2018.02.096.
Full textManochantr, S., Y. U-pratya, P. Kheolamai, S. Rojphisan, M. Chayosumrit, C. Tantrawatpan, A. Supokawej, and S. Issaragrisil. "Immunosuppressive properties of mesenchymal stromal cells derived from amnion, placenta, Wharton's jelly and umbilical cord." Internal Medicine Journal 43, no. 4 (April 2013): 430–39. http://dx.doi.org/10.1111/imj.12044.
Full textVivas Pradillo, D., L. Martorell, R. Cabrera-Pérez, C. Mirabel, C. Frago, J. Ayats, M. Monguió-Tortajada, et al. "Toward the use of Wharton's Jelly-derived multipotent Mesenchymal Stromal Cells in bone Tissue Engineering strategies." Cytotherapy 20, no. 5 (May 2018): S55. http://dx.doi.org/10.1016/j.jcyt.2018.02.152.
Full textSV, Konovalov, Moroz VM, Husakova IV, Deryabina OG, and Tochilovskyi AA. "Comparative influence of mesenchymal stromal cells of different origin on DNA fragmentation of neuronal nuclei during ischemia-reperfusion of the somatosensory cortex of the rat brain." Advances in Tissue Engineering & Regenerative Medicine: Open Access 9, no. 1 (September 18, 2023): 29–33. http://dx.doi.org/10.15406/atroa.2023.09.00138.
Full textWu, Li-Fang, Ni-Na Wang, Yuan-Sheng Liu, and Xing Wei. "Differentiation of Wharton's Jelly Primitive Stromal Cells into Insulin-Producing Cells in Comparison with Bone Marrow Mesenchymal Stem Cells." Tissue Engineering Part A 15, no. 10 (October 2009): 2865–73. http://dx.doi.org/10.1089/ten.tea.2008.0579.
Full textAljitawi, Omar S., Peggy Keefe, Lindsey Ott, Dandan Li, Da Zhang, Sunil Abhyankar, Rama Garimella, Joseph McGuirk, and Michael Detamore. "A Wharton's Jelly Mesenchymal Stromal Cell Derived 3D Osteogenic Niche Allows for Cord Blood Stem Cell Attachment." Blood 118, no. 21 (November 18, 2011): 4813. http://dx.doi.org/10.1182/blood.v118.21.4813.4813.
Full textBalasubramanian, Sudha, Parvathy Venugopal, Swathi Sundarraj, Zubaidah Zakaria, Anish Sen Majumdar, and Malancha Ta. "Comparison of chemokine and receptor gene expression between Wharton's jelly and bone marrow-derived mesenchymal stromal cells." Cytotherapy 14, no. 1 (January 2012): 26–33. http://dx.doi.org/10.3109/14653249.2011.605119.
Full textHou, Tianyong, Jianzhong Xu, Xuehui Wu, Zhao Xie, Fei Luo, Zehua Zhang, and Ling Zeng. "Umbilical Cord Wharton's Jelly: A New Potential Cell Source of Mesenchymal Stromal Cells for Bone Tissue Engineering." Tissue Engineering Part A 15, no. 9 (September 2009): 2325–34. http://dx.doi.org/10.1089/ten.tea.2008.0402.
Full textPanta, W., T. Yoisungnern, S. Imsoonthornruksa, S. Suksaweang, M. Ketudat-Cairns, and R. Parnpai. "Enhance hepatic differentiation of human Wharton's jelly–derived mesenchymal stromal cells by using sodium butyrate pre-treated." Cytotherapy 21, no. 5 (May 2019): S83. http://dx.doi.org/10.1016/j.jcyt.2019.03.499.
Full textLopez, Yelica. "Evaluating the Impact of Oxygen Concentration and Plating Density on Human Wharton's Jelly-Derived Mesenchymal Stromal Cells." Open Tissue Engineering and Regenerative Medicine Journal 4, no. 1 (December 30, 2011): 82–94. http://dx.doi.org/10.2174/1875043501104010082.
Full textCason, Carolina, Giuseppina Campisciano, Nunzia Zanotta, Erica Valencic, Serena Delbue, Ramona Bella, and Manola Comar. "SV40 Infection of Mesenchymal Stromal Cells From Wharton's Jelly Drives the Production of Inflammatory and Tumoral Mediators." Journal of Cellular Physiology 232, no. 11 (December 29, 2016): 3060–66. http://dx.doi.org/10.1002/jcp.25723.
Full textChoi, Moran, Hyun-Sun Lee, Purevjargal Naidansaren, Hyun-Kyung Kim, Eunju O, Jung-Ho Cha, Hyun-Young Ahn, Park In Yang, Jong-Chul Shin, and Young Ae Joe. "Proangiogenic features of Wharton's jelly-derived mesenchymal stromal/stem cells and their ability to form functional vessels." International Journal of Biochemistry & Cell Biology 45, no. 3 (March 2013): 560–70. http://dx.doi.org/10.1016/j.biocel.2012.12.001.
Full textGladysz, D., A. Krzywdzinska, M. Murzyn, K. Kapturska, K. K. Hozyasz, and T. Oldak. "The influence of Wharton's jelly-derived mesenchymal stromal cells on T regulatory cells in patients with autism spectrum disorder." Cytotherapy 20, no. 5 (May 2018): S97—S98. http://dx.doi.org/10.1016/j.jcyt.2018.02.287.
Full textFrausin, Stefano, Serena Viventi, Lucia Verga Falzacappa, Miriana Jlenia Quattromani, Giampiero Leanza, Alberto Tommasini, and Erica Valencic. "Wharton's jelly derived mesenchymal stromal cells: Biological properties, induction of neuronal phenotype and current applications in neurodegeneration research." Acta Histochemica 117, no. 4-5 (May 2015): 329–38. http://dx.doi.org/10.1016/j.acthis.2015.02.005.
Full textNajar, Mehdi, Gordana Raicevic, Hicham Id Boufker, Hussein Fayyad-Kazan, Cécile De Bruyn, Nathalie Meuleman, Dominique Bron, Michel Toungouz, and Laurence Lagneaux. "Adipose-Tissue-Derived and Wharton's Jelly–Derived Mesenchymal Stromal Cells Suppress Lymphocyte Responses by Secreting Leukemia Inhibitory Factor." Tissue Engineering Part A 16, no. 11 (November 2010): 3537–46. http://dx.doi.org/10.1089/ten.tea.2010.0159.
Full textOliver-Vila, Irene, Maria Isabel Coca, Marta Grau-Vorster, Noèlia Pujals-Fonts, Marta Caminal, Alba Casamayor-Genescà, Isabel Ortega, et al. "Evaluation of a cell-banking strategy for the production of clinical grade mesenchymal stromal cells from Wharton's jelly." Cytotherapy 18, no. 1 (January 2016): 25–35. http://dx.doi.org/10.1016/j.jcyt.2015.10.001.
Full textBoey, K. P., D. S. Lim, C. Ong, J. Mesilamani, K. Tang, M. Li, P. Zhu, and T. T. Phan. "Comparison of extraction methods and culture medium for umbilical cord lining- and wharton's jelly-derived mesenchymal stromal cells." Cytotherapy 21, no. 5 (May 2019): S80. http://dx.doi.org/10.1016/j.jcyt.2019.03.489.
Full textHang, Zhao, and Xiao Haijun. "Proliferative, Differentiative, and Immunological Characteristics of Chondro-Differentiated Mesenchymal Stromal Cells Derived from Rabbit Umbilical Cord Wharton's Jelly." Journal of Biomaterials and Tissue Engineering 8, no. 7 (July 1, 2018): 1046–52. http://dx.doi.org/10.1166/jbt.2018.1833.
Full textLee, Hyun-Sun, Kwang S. Kim, Hee-Suk Lim, Moran Choi, Hyun-Kyung Kim, Hyun-Young Ahn, Jong-Chul Shin, and Young Ae Joe. "Priming Wharton's Jelly-Derived Mesenchymal Stromal/Stem Cells With ROCK Inhibitor Improves Recovery in an Intracerebral Hemorrhage Model." Journal of Cellular Biochemistry 116, no. 2 (December 12, 2014): 310–19. http://dx.doi.org/10.1002/jcb.24969.
Full textSharma, Tulika, Poonam Kumari, Neha Pincha, Naresh Mutukula, Shekhar Saha, Siddhartha S. Jana, and Malancha Ta. "Inhibition of non-muscle myosin II leads to G0/G1 arrest of Wharton's jelly-derived mesenchymal stromal cells." Cytotherapy 16, no. 5 (May 2014): 640–52. http://dx.doi.org/10.1016/j.jcyt.2013.09.003.
Full textOppliger, Byron, Marianne S. Joerger-Messerli, Cedric Simillion, Martin Mueller, Daniel V. Surbek, and Andreina Schoeberlein. "Mesenchymal stromal cells from umbilical cord Wharton's jelly trigger oligodendroglial differentiation in neural progenitor cells through cell-to-cell contact." Cytotherapy 19, no. 7 (July 2017): 829–38. http://dx.doi.org/10.1016/j.jcyt.2017.03.075.
Full textMilazzo, Luisa, Francesca Vulcano, Alessandra Barca, Giampiero Macioce, Emanuela Paldino, Stefania Rossi, Carmela Ciccarelli, Hamisa J. Hassan, and Adele Giampaolo. "Cord blood CD34+ cells expanded on Wharton's jelly multipotent mesenchymal stromal cells improve the hematopoietic engraftment in NOD/SCID mice." European Journal of Haematology 93, no. 5 (May 26, 2014): 384–91. http://dx.doi.org/10.1111/ejh.12363.
Full textBatsali, Aristea, Charalampos Pontikoglou, Elisavet Kouvidi, Athina Damianaki, Aikaterini Stratigi, Maria-Christina Kastrinaki, and Helen A. Papadaki. "Comparative Analysis Of Bone Marrow and Wharton’s Jelly Mesenchymal Stem/Stromal Cells." Blood 122, no. 21 (November 15, 2013): 1212. http://dx.doi.org/10.1182/blood.v122.21.1212.1212.
Full textBatsali, Aristea, Charalampos Pontikoglou, Emmanuel Agrafiotis, Elisavet Kouvidi, Irene Mavroudi, Athina Damianaki, Maria-Christina Kastrinaki, and Helen Papadaki. "Emerging Roles of Wisp-1 and SFRP4 in Proliferation and Differentiation Potential of Wharton's Jelly Mesenchymal Stem/Stromal Cells." Blood 124, no. 21 (December 6, 2014): 4375. http://dx.doi.org/10.1182/blood.v124.21.4375.4375.
Full textDe Bruyn, Cécile, Mehdi Najar, Gordana Raicevic, Nathalie Meuleman, Karlien Pieters, Basile Stamatopoulos, Alain Delforge, Dominique Bron, and Laurence Lagneaux. "A Rapid, Simple, and Reproducible Method for the Isolation of Mesenchymal Stromal Cells from Wharton's Jelly Without Enzymatic Treatment." Stem Cells and Development 20, no. 3 (March 2011): 547–57. http://dx.doi.org/10.1089/scd.2010.0260.
Full textQuaranta, Paola, Daniele Focosi, Marilena Di Iesu, Chiara Cursi, Alessandra Zucca, Michele Curcio, Simone Lapi, et al. "Human Wharton's jelly–derived mesenchymal stromal cells engineered to secrete Epstein-Barr virus interleukin-10 show enhanced immunosuppressive properties." Cytotherapy 18, no. 2 (February 2016): 205–18. http://dx.doi.org/10.1016/j.jcyt.2015.11.011.
Full textColl, R., J. Vidal, H. Kumru, J. Benito, M. Valles, N. Ribó, M. Codinach, et al. "Intrathecal administration of expanded wharton's jelly mesenchymal stromal cells (WJ-MSC) in chronic traumatic spinal cord injury (SCI) (NCT03003364)." Cytotherapy 20, no. 5 (May 2018): S33—S34. http://dx.doi.org/10.1016/j.jcyt.2018.02.082.
Full textColl, R., J. Vidal, H. Kumru, J. Benito, M. Valles, M. Codinach, M. Blanco, et al. "Is HLA matching relevant for treating Spinal Cord Injury with intrathecal administration of expanded Wharton's Jelly Mesenchymal Stromal Cells?" Cytotherapy 22, no. 5 (May 2020): S26—S27. http://dx.doi.org/10.1016/j.jcyt.2020.03.006.
Full textFernández, A. López, I. Carreras Sánchez, and J. Vives. "Successful scale up expansion of Wharton's jelly mesenchymal stromal cells in different commercial xeno-free and serum-free media." Cytotherapy 22, no. 5 (May 2020): S94. http://dx.doi.org/10.1016/j.jcyt.2020.03.162.
Full textPochon, Cecile, Romain Perouf, Allan Bertrand, Anne-Béatrice Notarantonio, Naceur Charif, Marcelo De Carvalho Bittencourt, Guillemette Fouquet, et al. "IFN-γ Primed Wharton's Jelly Mesenchymal Stromal Cells Inhibit T Cell Proliferation By Synergistic IDO and Mitochondrial Transfer Mechanisms." Blood 140, Supplement 1 (November 15, 2022): 4504–5. http://dx.doi.org/10.1182/blood-2022-167814.
Full textKaushik, Komal, and Amitava Das. "Cycloxygenase-2 inhibition potentiates trans-differentiation of Wharton's jelly–mesenchymal stromal cells into endothelial cells: Transplantation enhances neovascularization-mediated wound repair." Cytotherapy 21, no. 2 (February 2019): 260–73. http://dx.doi.org/10.1016/j.jcyt.2019.01.004.
Full textWang, Ying, Feng Chen, Bing Gu, Guanghua Chen, Huirong Chang, and Depei Wu. "Mesenchymal Stromal Cells as an Adjuvant Treatment for Severe Late-Onset Hemorrhagic Cystitis after Allogeneic Hematopoietic Stem Cell Transplantation." Acta Haematologica 133, no. 1 (August 16, 2014): 72–77. http://dx.doi.org/10.1159/000362530.
Full textJing, Bai, Hu Yuan, Wang Yi-Ru, Liu Li-Feng, Chen Jie, Su Shao-Ping, and Wang Yu. "Comparison of human amniotic fluid-derived and umbilical cord Wharton's Jelly-derived mesenchymal stromal cells: Characterization and myocardial differentiation capacity." Journal of Geriatric Cardiology 9, no. 2 (July 20, 2012): 166–71. http://dx.doi.org/10.3724/sp.j.1263.2011.12091.
Full textBai, Jing, and Yu Wang. "COMPARISON OF HUMAN AMNIOTIC FLUID-DERIVED AND UMBILICAL CORD WHARTON'S JELLY-DERIVED MESENCHYMAL STROMAL CELLS: CHARACTERISATION AND MYOCARDIAL DIFFERENTIATION CAPACITY." Heart 98, Suppl 2 (October 2012): E67.3—E68. http://dx.doi.org/10.1136/heartjnl-2012-302920a.167.
Full textvan der Garde, Mark, Melissa van Pel, Jose Eduardo Millán Rivero, Alice de Graaf-Dijkstra, Manon C. Slot, Yoshiko Kleinveld, Suzanne M. Watt, Helene Roelofs, and Jaap Jan Zwaginga. "Direct Comparison of Wharton's Jelly and Bone Marrow-Derived Mesenchymal Stromal Cells to Enhance Engraftment of Cord Blood CD34+Transplants." Stem Cells and Development 24, no. 22 (November 15, 2015): 2649–59. http://dx.doi.org/10.1089/scd.2015.0138.
Full textMoreira, Alvaro, Caitlyn Winter, Jooby Joy, Lauryn Winter, Maxwell Jones, Michelle Noronha, Melissa Porter, et al. "Intranasal delivery of human umbilical cord Wharton's jelly mesenchymal stromal cells restores lung alveolarization and vascularization in experimental bronchopulmonary dysplasia." STEM CELLS Translational Medicine 9, no. 2 (November 27, 2019): 221–34. http://dx.doi.org/10.1002/sctm.18-0273.
Full textVulcano, Francesca, Luisa Milazzo, Carmela Ciccarelli, Adriana Eramo, Giovanni Sette, Annunziata Mauro, Giampiero Macioce, et al. "Wharton's jelly mesenchymal stromal cells have contrasting effects on proliferation and phenotype of cancer stem cells from different subtypes of lung cancer." Experimental Cell Research 345, no. 2 (July 2016): 190–98. http://dx.doi.org/10.1016/j.yexcr.2016.06.003.
Full textvan der Garde, Mark, Melissa Van Pel, Jose Millan Rivero, Alice de Graaf-Dijkstra, Manon Slot, Yoshiko Kleinveld, Suzanne Watt, Helene Roelofs, and Jaap Jan Zwaginga. "Direct Comparison of Wharton Jelly and Bone Marrow Derived Mesenchymal Stromal Cells to Enhance Engraftment of Cord Blood CD34+ Transplants." Blood 126, no. 23 (December 3, 2015): 5410. http://dx.doi.org/10.1182/blood.v126.23.5410.5410.
Full text