Journal articles on the topic 'Mercury dibromide'

To see the other types of publications on this topic, follow the link: Mercury dibromide.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 23 journal articles for your research on the topic 'Mercury dibromide.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Малініна, А. О., and О. М. Малінін. "EMISSION OF MERCURY MONOBROMIDE EXCIPLEX IN GAS-DISHARGE PLASMA BASED ON MIXTURE OF MERCURY DIBROMIDE VAPOR AND ARGON." Scientific Herald of Uzhhorod University.Series Physics 36 (December 23, 2014): 144–50. http://dx.doi.org/10.24144/2415-8038.2014.36.144-150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Малініна, Антоніна Олександрівна. "Parameters of barrier discharge plasma based on mercury dibromide vapor and argon mixture." Scientific Herald of Uzhhorod University.Series Physics 38 (July 1, 2015): 121–28. http://dx.doi.org/10.24144/2415-8038.2015.38.121-128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Malinina, A. A., and A. K. Shuaibov. "Emission of mercury monobromide exciplex in gas-discharge plasma based on mixture of mercury dibromide vapor with sulfur hexafluoride and helium." Optics and Spectroscopy 110, no. 2 (February 2011): 191–200. http://dx.doi.org/10.1134/s0030400x10061086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Malinina, A. A., A. N. Malinin, and A. K. Shuaibov. "Optical Emission and Parameters of Dielectric Barrier Discharge Plasma In A Mixture of Mercury Diiodide and Mercury Dibromide Vapor With Helium." Open Physics Journal 4, no. 1 (October 31, 2018): 43–54. http://dx.doi.org/10.2174/1874843001804010043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Malinina, A. A., S. M. Starikovskaya, and A. N. Malinin. "Nanosecond barrier discharge in a krypton/helium mixture containing mercury dibromide: Optical emission and plasma parameters." Optics and Spectroscopy 118, no. 1 (January 2015): 26–36. http://dx.doi.org/10.1134/s0030400x14120157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Al-Saadawy, Nuha Hussain. "Synthesis, Characterization, and Theoretical Study of Some New Organotellurium Compounds Derived from Camphor." Indonesian Journal of Chemistry 22, no. 2 (January 12, 2022): 437. http://dx.doi.org/10.22146/ijc.69805.

Full text
Abstract:
The present work describes the synthesis of a variety of organotellurium compounds. The first part describes the synthesis of a new series of organotellurium compounds containing azomethine groups. Reaction of (E)-(4-((1,7,7-trimethyl bicyclo[2.2.1]heptan-2-ylidene)amino)phenyl)mercury(II)chloride and (E)-(5-methyl-2-((1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene)amino)phenyl) mercury(II)chloride with tellurium tetrabromide in 2:1 mole ratio yielded the tellurated Schiff bases Ar2TeBr2 (where Ar = 1-(C9H16C=N)C=N)C6H4 and 1-(C9H16C=N)C=N)-4-CH3C6H3) respectively. Reduction of organyl tellurium dibromide Ar2TeBr2 by hydrazine hydrate obtained the corresponding tellurides (i.e., Ar2Te) in good yields. Characterization of the prepared compounds was carried out using infrared spectrum (FT-IR), proton nuclear magnetic resonance spectrum (1H-NMR), and elemental analysis (CHN). The molecular structure of the organotellurium compounds was investigated using the density functional theory with hybrid functional (B3LYP), and the basis set 6-31G Geometrical structure, HOMO surfaces, LUMO surfaces, and energy gap have been produced throughout the geometry optimization. The molecular geometry and contours for the organotellurium compounds were investigated throughout the geometrical optimization. The donor and acceptor properties have been studied by comparing organotellurium compounds' highest occupied molecular orbital energies (HOMO). The present study aims to prepare organotellurium compounds derived from aniline, p-toluidine, and camphor and their derivatives using tellurated Schiff bases.
APA, Harvard, Vancouver, ISO, and other styles
7

Малініна, А. О. "Energy characteristics of radiation of law-temperature plasma based on mixtures of mercury dibromide vapor with gases." Scientific Herald of Uzhhorod University.Series Physics 30 (December 31, 2011): 225–33. http://dx.doi.org/10.24144/2415-8038.2011.30.225-233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Malinina, A. A., and A. N. Malinin. "Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with neon." Plasma Physics Reports 39, no. 12 (December 2013): 1035–42. http://dx.doi.org/10.1134/s1063780x13120052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Malinina, A. A., and A. N. Malinin. "Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with argon." Plasma Physics Reports 41, no. 3 (March 2015): 281–89. http://dx.doi.org/10.1134/s1063780x1503006x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Malinin, A. N., and A. V. Polyak. "Optical characteristics of barrier discharge plasma based on mixtures of mercury diiodide and dibromide vapors with gases." Optics and Spectroscopy 95, no. 5 (November 2003): 707–13. http://dx.doi.org/10.1134/1.1628718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Queiroz, Erika Kaltenecker Retto de, and William Waissmann. "Occupational exposure and effects on the male reproductive system." Cadernos de Saúde Pública 22, no. 3 (March 2006): 485–93. http://dx.doi.org/10.1590/s0102-311x2006000300003.

Full text
Abstract:
A significant increase in the incidence of male infertility has been described in the international literature, raising questions about its causes. Part of this effect may result from synthetic toxic substances acting on the endocrine system (endocrine disruptors), many of which are routinely used in work processes. We provide a critical review of the specialized literature on work-related chemical substances capable of causing male infertility. Pesticides such as DDT, linuron, and others, heavy metals like mercury, lead, cadmium, and copper, and substances from various industrial uses and residues such as dioxins, polychlorinated biphenyls (PCBs), ethylene dibromide (EDB), phthalates, polyvinyl chloride (PVC), and ethanol are among the main endocrine disruptors that can cause male infertility. Based on the literature, gonadal dysfunction and congenital malformation are the main alterations caused by these substances in the male reproductive system. We conclude that despite the relative lack of studies on this issue, the relevance of such risk calls for further studies as well as measures to prevent workers' exposure to the various substances.
APA, Harvard, Vancouver, ISO, and other styles
12

Malinina, A. A., N. N. Guivan, and A. K. Shuaibov. "Optical characteristics and parameters of a gas discharge plasma based on a mixture of mercury dibromide vapor and helium." Journal of Applied Spectroscopy 76, no. 5 (September 2009): 711–19. http://dx.doi.org/10.1007/s10812-009-9245-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Huang, Ling, Ralph A. Zingaro, Edward A. Meyers, and Joseph H. Reibenspies. "Reaction of mercury (II) dibromide with tris(n-butyl) phosphine telluride: Formation of an unusual (Hg Te)3 ring system." Heteroatom Chemistry 7, no. 1 (1996): 57–65. http://dx.doi.org/10.1002/(sici)1098-1071(199601)7:1<57::aid-hc10>3.0.co;2-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Малініна, А. О., and М. М. Гуйван. "Efficiency of excitation of HgBr * exciplex in the gas-discharge plasma in a mixture of mercury dibromide and helium." Scientific Herald of Uzhhorod University.Series Physics 24 (June 30, 2009): 115–19. http://dx.doi.org/10.24144/2415-8038.2009.24.115-119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Malinina, A. A., N. N. Guivan, L. L. Shimon, and A. K. Shuaibov. "Optical characteristics and parameters of the plasma of a barrier discharge excited in a mixture of mercury dibromide vapor with nitrogen and helium." Plasma Physics Reports 36, no. 9 (September 2010): 803–11. http://dx.doi.org/10.1134/s1063780x10090072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Malinin, A. N., and Lyudvik L. Shimon. "Excitation of the B2Σg+1/2+state of the HgBr* molecules in a gas-discharge plasma formed from a mixture of mercury dibromide and helium." Quantum Electronics 26, no. 12 (December 31, 1996): 1047–50. http://dx.doi.org/10.1070/qe1996v026n12abeh000871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kalateh, Khadijeh, Ali Norouzi, Amin Ebadi, Roya Ahmadi, and Vahid Amani. "Dibromido(di-2-pyridylamine-κ2N,N′)mercury(II)." Acta Crystallographica Section E Structure Reports Online 64, no. 12 (November 20, 2008): m1583—m1584. http://dx.doi.org/10.1107/s1600536808038129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Alizadeh, Robabeh, Amene Heidari, Roya Ahmadi, and Vahid Amani. "Dibromido(2,9-dimethyl-1,10-phenanthroline-κ2N,N′)mercury(II)." Acta Crystallographica Section E Structure Reports Online 65, no. 5 (April 2, 2009): m483—m484. http://dx.doi.org/10.1107/s1600536809009994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Abedi, Anita. "Dibromido(2,2′-dimethyl-4,4′-bi-1,3-thiazole-κ2N,N′)mercury(II)." Acta Crystallographica Section E Structure Reports Online 67, no. 1 (December 15, 2010): m76—m77. http://dx.doi.org/10.1107/s1600536810051494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Song, Rui-Feng, Xue-Hua Zhu, and Yu-Hong Wang. "Dibromido[methyl 2-(quinolin-8-yloxy-κ2N,O)acetic acid-κO]mercury(II)." Acta Crystallographica Section E Structure Reports Online 68, no. 7 (June 23, 2012): m968. http://dx.doi.org/10.1107/s1600536812028085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Adams, Perrie M., Roger T. Hanlon, and John W. Forsythe. "Toxic exposure to ethylene dibromide and mercuric chloride: Effects on laboratory-reared octopuses." Neurotoxicology and Teratology 10, no. 6 (November 1988): 519–23. http://dx.doi.org/10.1016/0892-0362(88)90087-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Wang, Xia, Jing-Jing Shi, Shu-Ling Zhang, and Han-Bing Li. "Crystal structure of dibromido-bis[μ-1-[(2-methyl-1H-benzoimidazol-1-yl)methyl]-1H-benzotriazole-κN]mercury(II), C30H26Br2HgN10." Zeitschrift für Kristallographie - New Crystal Structures 232, no. 1 (January 1, 2017): 79–80. http://dx.doi.org/10.1515/ncrs-2016-0157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kozma, Anton, Antonina Malinina, Evgeniy Golub, Vasylyna Rusyn, Nelya Golub, Vitalii Dziamko, Viktoriia Dziamko, Oleksandr Malinin, and Andrii Solomon. "Thermodynamic, thermochemical and thermophysical properties of HgBr2." Chemija 34, no. 2 (July 5, 2023). http://dx.doi.org/10.6001/chemija.2023.34.2.1.

Full text
Abstract:
For mercury dibromide HgBr2, a promising component of the working mixture of gas-discharge exciplex sources of coherent (lasers) and spontaneous (exciplex lamps) radiation, as well as a promising nonlinear optical crystal for the infrared radiation process, thermodynamic and thermochemical properties in the temperature range 173–512 K were investigated. The established basic thermodynamic (isobaric heat capacity Ср, total entropy S, enthalpy H and Gibbs energy G) and thermochemical (enthalpy ΔHf and Gibbs energy ΔGf of formation) functions of HgBr2 were compared with the known literature data at 298–514 K. The obtained results differed from the literature within 1–2% (for Ср), 0.1–0.2% (for S, H and G) and 0.1–0.6% (for ΔHf and ΔGf). The experimental data, combined with semi-empirical approaches and ab initio calculations taken from the literature, were used to estimate the previously unknown additional thermodynamic and thermophysical properties of HgBr2: isochoric heat capacity CV, Debye temperature θD, volume thermal expansion αV, isothermal compressibility βT (isothermal bulk modulus BT = 1/βT), Grüneisen constant γG, phonon longitudinal vl, transverse vs, average –v velocities and phonon thermal conductivity κ. In the present work, it was found that crystalline mercury dibromide expands strongly upon heating and has a low phonon thermal conductivity.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography