Academic literature on the topic 'MEMS Gas Sensors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'MEMS Gas Sensors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "MEMS Gas Sensors"
Khater, M. E., M. Al-Ghamdi, S. Park, K. M. E. Stewart, E. M. Abdel-Rahman, A. Penlidis, A. H. Nayfeh, A. K. S. Abdel-Aziz, and M. Basha. "Binary MEMS gas sensors." Journal of Micromechanics and Microengineering 24, no. 6 (April 28, 2014): 065007. http://dx.doi.org/10.1088/0960-1317/24/6/065007.
Full textZhu, Jianxiong, Xinmiao Liu, Qiongfeng Shi, Tianyiyi He, Zhongda Sun, Xinge Guo, Weixin Liu, Othman Bin Sulaiman, Bowei Dong, and Chengkuo Lee. "Development Trends and Perspectives of Future Sensors and MEMS/NEMS." Micromachines 11, no. 1 (December 18, 2019): 7. http://dx.doi.org/10.3390/mi11010007.
Full textSamotaev, Nikolay, Konstantin Oblov, Anastasia Ivanova, Boris Podlepetsky, Nikolay Volkov, and Nazar Zibilyuk. "Technology for SMD Packaging MOX Gas Sensors." Proceedings 2, no. 13 (November 30, 2018): 934. http://dx.doi.org/10.3390/proceedings2130934.
Full textSamotaev, Nikolay, Konstantin Oblov, and Anastasia Ivanova. "Laser Micromilling Technology as a Key for Rapid Prototyping SMD ceramic MEMS devices." MATEC Web of Conferences 207 (2018): 04003. http://dx.doi.org/10.1051/matecconf/201820704003.
Full textAsri, Muhammad Izzudin Ahmad, Md Nazibul Hasan, Mariatul Rawdhah Ahmad Fuaad, Yusri Md Yunos, and Mohamed Sultan Mohamed Ali. "MEMS Gas Sensors: A Review." IEEE Sensors Journal 21, no. 17 (September 1, 2021): 18381–97. http://dx.doi.org/10.1109/jsen.2021.3091854.
Full textDiMeo, Frank, Ing-Shin Chen, Philip Chen, Jeffrey Neuner, Andreas Roerhl, and James Welch. "MEMS-based hydrogen gas sensors." Sensors and Actuators B: Chemical 117, no. 1 (September 2006): 10–16. http://dx.doi.org/10.1016/j.snb.2005.05.007.
Full textAl-Ghamdi, M. S., M. E. Khater, K. M. E. Stewart, A. Alneamy, E. M. Abdel-Rahman, and A. Penlidis. "Dynamic bifurcation MEMS gas sensors." Journal of Micromechanics and Microengineering 29, no. 1 (November 26, 2018): 015005. http://dx.doi.org/10.1088/1361-6439/aaedf9.
Full textWang, Yu-Hsiang, Chang-Pen Chen, Chih-Ming Chang, Chia-Pin Lin, Che-Hsin Lin, Lung-Ming Fu, and Chia-Yen Lee. "MEMS-based gas flow sensors." Microfluidics and Nanofluidics 6, no. 3 (January 8, 2009): 333–46. http://dx.doi.org/10.1007/s10404-008-0383-4.
Full textSamotaev, Nikolay, Konstantin Oblov, Pavel Dzhumaev, Marco Fritsch, Sindy Mosch, Mykola Vinnichenko, Nikolai Trofimenko, Christoph Baumgärtner, Franz-Martin Fuchs, and Lena Wissmeier. "Combination of Ceramic Laser Micromachining and Printed Technology as a Way for Rapid Prototyping Semiconductor Gas Sensors." Micromachines 12, no. 12 (November 25, 2021): 1440. http://dx.doi.org/10.3390/mi12121440.
Full textSingh, Avneet, Anjali Sharma, Nidhi Dhull, Anil Arora, Monika Tomar, and Vinay Gupta. "MEMS-based microheaters integrated gas sensors." Integrated Ferroelectrics 193, no. 1 (October 13, 2018): 72–87. http://dx.doi.org/10.1080/10584587.2018.1514877.
Full textDissertations / Theses on the topic "MEMS Gas Sensors"
Gatty, Hithesh K. "MEMS-based electrochemical gas sensors and wafer-level methods." Doctoral thesis, KTH, Mikro- och nanosystemteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-172955.
Full textQC 20150907
DeBoer, John Raymond. "Evaluation Methods for Porous Silicon Gas Sensors." Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4971.
Full textZhang, Chen. "Piezoelectric-Based Gas Sensors for Harsh Environment Gas Component Monitoring." Thesis, University of North Texas, 2019. https://digital.library.unt.edu/ark:/67531/metadc1538769/.
Full textUdina, Oliva Sergi. "Smart Chemical Sensors: Concepts and Application." Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/84079.
Full textLa tesis introduce conceptos básicos sobre el diseño de sensores químicos inteligentes, en particular presenta los estándares propuestos IEEE-1451 y BS-7986, y elabora una propuesta para el diseño óptimo de dichos sensores químicos inteligentes. Se implementa la propuesta de diseño para una aplicación concreta, el análisis de gas natural. Además de la aplicación de los conceptos sobre sensores químicos inteligentes se pretende además diseñar un analizador compacto, rápido y de bajo coste, para ello se estudia el uso de un microsensor termoeéctrico como sensor principal del analizador. Una vez probada su viabilidad se implementan ambos conceptos (sensores inteligentes y microsensor termoeléctrico) en un prototipo funcional validado en laboratorio. Como resultado se obtiene una propuesta para el diseño de sensores químicos inteligentes basada en estándares, y por otro lado se presenta un nuevo analizador de gas natural, más rápido y compacto que los existentes. Los resultados obtenidos originan diversas publicaciones en revistas así como dos patentes de método y sistema.
Haapalainen, T. (Tomi). "Gas response properties of metal oxide nanoparticle based sensors on MEMS microhotplate platforms." Master's thesis, University of Oulu, 2015. http://jultika.oulu.fi/Record/nbnfioulu-201509031953.
Full textPuigcorbé, Punzano Jordi. "Anàlisi termo-mecànica d'estructures micromecanitzades per a sensors de gas." Doctoral thesis, Universitat de Barcelona, 2003. http://hdl.handle.net/10803/1509.
Full textL'estudi del comportament tèrmic de les estructures micromecanitzades ha permès obtenir les característiques bàsiques que controlaran el comportament del sensor, com són el consum en potència, la distribució de temperatura i el temps de resposta del substrat. L'anàlisi termomecànic ha consistit en determinar els esforços residuals en cada estructura així com l'estudi de la deformació dels diferents dissenys per a diferents temperatures de treball. S'han identificat diferents mecanismes de degradació en els materials que formen els sensors i s'ha obtingut el comportament termomecànic fins la ruptura del sensor. Tant en l'estudi tèrmic com en el termomecànic, la interacció entre la capa sensora i el substrat micromecanitzat així com l'influencia del material sensor en el comportament global del dispositiu han estat aspectes investigats.
El treball inclou, a més, la caracterització termomecànica del Pt-Ti emprat en estructures micromecanitzades a través de la utilització de mètodes de Nanoindentació, Microscopia de Forces Atòmiques (AFM), Difracció de Raigs X (XRD) i espectroscopia Auger.
També inclou el desenvolupament d'una metodologia per predir la fatiga tèrmica en microsistemes basada en la combinació dels models elasto-plàstics de metalls en capa prima (Alumini, Pt-Ti) amb simulacions numèriques.
Finalment, de la metodologia d'anàlisi electro-termo-mecànic que s'ha dut a terme, es poden obtenir regles de disseny per la implementació de microsistemes que treballin en diferents règims de temperatura i en concret, directament aplicables al disseny i fabricació d'estructures micromecanitzades per a sensors de gas
This work presents a complete thermomechanical study of different micromachined gas sensor substrates based on closed and suspended membrane microstructures. The work has been carried out combining coupled electro-thermo-mechanical three-dimensional finite element method simulations with different experimental techniques such as those used in Microsystems characterization (thermo-electrical, thermography, AFM, XRD, confocal microscopy, Auger..). The performances predicted by simulations, such as the power consumption, the temperature distribution, the time response, the membrane deflection during operation and the preferential failure sites in the micromachined substrates have been confirmed by experience.
The work includes the thermo-mechanical characterization of Pt-Ti thin films used in the structures using Nanoindentation, AFM, XRD and Auger spectroscopy. Additionally, a methodology to predict the thermal fatigue in microsystems, which combines experimental thin metal elasto-plastic models (Al, Pt-Ti) and coupled thermo-mechanical FEM simulations, has been developed.
The good agreement between simulations and experimental results validates the numerical models, and allows us to consider the adaptability of the analyzed designs as micromachined substrates for integrated gas sensors.
Keywords: MEMS, Microsystems, gas sensors, thermal fatigue, Al, Pt-Ti, FEM.
En este trabajo se ha establecido una metodología de análisis y caracterización térmica y termomecánica de estructuras micromecanizadas en silicio para aplicaciones en sensores de gas. Esta investigación ha combinado simulaciones numéricas mediante el método de los elementos finitos con técnicas experimentales de caracterización utilizadas en el campo de los microsistemas (medidas electro-térmicas, termografía, AFM, XRD, microscopia confocal, Auger).
El estudio térmico de dichas estructuras ha permitido obtener su consumo en potencia, la distribución de temperaturas, la dinámica térmica, así como ha permitido fijar con precisión las propiedades térmicas de los materiales típicamente utilizados en la tecnología de los microsistemas. El estudio mecánico ha permitido obtener los esfuerzos residuales inducidos por los procesos de fabricación. Además, se ha obtenido la deformación de las estructuras a diferentes temperaturas de trabajo hasta la ruptura total de las membranas. Durante las altas temperaturas de trabajo se han detectado y analizado diferentes mecanismos de degradación en los materiales.
El trabajo incluye además, la caracterización termo-mecánica del Pt-Ti depositado por sputtering, ampliamente utilizado en microsensores de gas, mediante el empleo de técnicas de Nanoindentación, Microscopia AFM, Difracción de Rayos X (XRD) y espectrocopia Auger.
También presenta el desarrollo de una metodología para la predicción de la fatiga térmica en microsistemas, que se basa en la combinación de modelos elasto-plásticos para metales en capa delgada con simulaciones numéricas.
Finalmente, de la metodología de análisis termo-mecánico que se ha llevado a cabo, se pueden obtener reglas de diseño para microsistemas que trabajen a diferentes temperaturas, y en concreto directamente aplicables al diseño y fabricación de estructuras micromecanizadas para sensores de gas.
Palabras clave: MEMS, microsistemas, sensores de gas, fatiga térmica, Al, Pt-Ti, MEF.
Nagaiah, Narasimha. "NOVEL CONCEPTUAL DESIGN AND ANLYSIS OF POLYMER DERIVED CERAMIC MEMS SENSORS FOR GAS TURBINE ENVIRONMENT." Master's thesis, University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4086.
Full textM.S.M.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Mechanical Engineering
Gong, Jianwei. "NON-SILICON MICROFABRICATED NANOSTRUCTURED CHEMICAL SENSORS FOR ELECTRIC NOSE APPLICATION." Doctoral diss., University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4082.
Full textPh.D.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Mechanical Engineering
CICIOTTI, FULVIO. "Oscillator-Based CMOS Readout Interfaces for Gas Sensing Applications." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241089.
Full textDetection of toxic and dangerous gases has always been a need for safety purpose and, in recent years, portable and low-cost gas sensing systems are becoming of main interest. This thesis presents fast, high precision, low-power, versatile CMOS interface circuits for portable gas sensing applications. The target sensors are Metal Oxide Semiconductor (MOX) sensors which are widely used due to their inherent compatibility with integrated MEMS technologies. The chosen readout typologies are based on the time-domain Resistor-Controlled Oscillator. This guarantees wide dynamic range, good precision and the ability to cope with the large MOX sensor resistance variations. Four different prototypes have been successfully developed and tested. Chemical measurements with a real SnO2 MOX sensor have also been performed to validate the results, showing a minimum CO detection capability in ambient air of 5 ppm. The ASICs are able to cover 128 dB of DR at 4 Hz of digital output data rate, or 148 dB at 0.4 Hz, while providing a relative error always better than 0.4% (SNDR >48 dB). Target performances have been achieved with aggressive design strategies and system-level optimization, and using a scaled (compared to typical implementations in this field) 130nm CMOS technology provided by Infineon Technologies AG. Power consumption is about 450 μA. Moreover, this work introduces the possibility to use the same oscillator-based architecture to perform capacitive sensors readout. Measurement results with capacitive MEMS sensors have shown 116 dB of DR in CSENS mode, with an SNR of 74 dB at 10 Hz of digital output data rate. The architectures developed in this thesis are compatible with the modern standards in the portable gas sensing industry.
Navaei, Milad. "Integration of a micro-gas chromatography system for detection of volatile organic compounds." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53924.
Full textBooks on the topic "MEMS Gas Sensors"
Sarkar, Chandan Kumar, and Sunipa Roy. MEMS and Nanotechnology for Gas Sensors. Taylor & Francis Group, 2017.
Find full textSarkar, Chandan Kumar, and Sunipa Roy. Mems and Nanotechnology for Gas Sensors. Taylor & Francis Group, 2020.
Find full textSarkar, Chandan Kumar, and Sunipa Roy. MEMS and Nanotechnology for Gas Sensors. Taylor & Francis Group, 2017.
Find full textSarkar, Chandan Kumar, and Sunipa Roy. MEMS and Nanotechnology for Gas Sensors. Taylor & Francis Group, 2017.
Find full textSarkar, Chandan Kumar, and Sunipa Roy. MEMS and Nanotechnology for Gas Sensors. Taylor & Francis Group, 2017.
Find full textMEMS and Nanotechnology for Gas Sensors. Taylor & Francis Group, 2015.
Find full textBook chapters on the topic "MEMS Gas Sensors"
Heidari, Yasaman, Mahshid Padash, and Mohammadreza Faridafshin. "MEMS-based electrochemical gas sensor." In Sensors for Next-Generation Electronic Systems and Technologies, 55–69. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003288633-3.
Full textYou, Rui, Wenshuai Lu, Dongdong Han, and Yonglai Zhang. "Micromachining Based on Mask-Free Direct Writing: An Advanced Approach to Innovative MEMS Gas Sensors." In Advanced MEMS/NEMS Fabrication and Sensors, 49–73. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79749-2_3.
Full textWu, Jin, Kai Tao, Jianmin Miao, and Leslie K. Norford. "Graphene for Future High-Performance Gas Sensing." In Outlook and Challenges of Nano Devices, Sensors, and MEMS, 347–63. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50824-5_12.
Full textWang, Hairong, Xin Tian, and Yankun Tang. "The Sputtered Thin Films as the Sensing Materials for the MEMS Gas Sensors." In Materials for Devices, 105–46. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003141358-5.
Full textLange, D., O. Brand, and H. Baltes. "Resonant Gas Sensor." In Microtechnology and Mems, 57–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05060-6_4.
Full textAlneamy, A., N. Heidari, W. Lacarbonara, and E. Abdel-Rahman. "Single Input–Single Output MEMS Gas Sensor." In NODYCON Conference Proceedings Series, 321–34. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81170-9_29.
Full textNebhen, Jamel, Stéphane Meillère, Mohamed Masmoudi, Jean-Luc Seguin, and Khalifa Aguir. "Low Noise CMOS Chopper Amplifier for MEMS Gas Sensor." In Autonomous and Intelligent Systems, 366–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21538-4_36.
Full textBhattacharyya, P., K. Dutta, and P. P. Chattopadhyay. "Electrochemically Derived Oxide Nanoform-Based Gas Sensor Devices: Challenges and Prospects with MEMS Integration." In Advanced Mechatronics and MEMS Devices II, 297–328. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32180-6_14.
Full textDas, Surajit, and Jamil Akhtar. "Comparative Study on Temperature Coefficient of Resistance (TCR) of the E-beam and Sputter Deposited Nichrome Thin Film for Precise Temperature Control of Microheater for MEMS Gas Sensor." In Physics of Semiconductor Devices, 495–97. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_124.
Full textRoy, Sunipa, and Chandan Kumar Sarkar. "Substrate for MEMS." In MEMS and Nanotechnology for Gas Sensors, 17–30. CRC Press, 2017. http://dx.doi.org/10.1201/b18928-2.
Full textConference papers on the topic "MEMS Gas Sensors"
Bruckner, K., V. Cimalla, F. Niebelschutz, R. Stephan, K. Tonisch, O. Ambacher, and M. A. Hein. "Gas Pressure Sensing Based on MEMS Resonators." In 2007 IEEE Sensors. IEEE, 2007. http://dx.doi.org/10.1109/icsens.2007.4388636.
Full textUdina, S., A. Pardo, S. Marco, J. Santander, and L. Fonseca. "Thermoelectric MEMS sensors for natural gas analysis." In 2008 IEEE Sensors. IEEE, 2008. http://dx.doi.org/10.1109/icsens.2008.4716699.
Full textLi, Q., J. F. L. Goosen, F. van Keulen, and J. T. M. van Beek. "Gas ambient dependence of quality factor in MEMS resonators." In 2009 IEEE Sensors. IEEE, 2009. http://dx.doi.org/10.1109/icsens.2009.5398588.
Full textSerry, Mohamed, Ioana Voiculcscu, and Ahmed Kobtan. "Catalytic Hafnium Oxide Calorimetric MEMS Gas and Chemical Sensor." In 2018 IEEE Sensors. IEEE, 2018. http://dx.doi.org/10.1109/icsens.2018.8589851.
Full textGrzebyk, Tomasz, and Anna Gorecka-Drzazga. "MEMS Nanoleak Gas Injection System." In 2018 XV International Scientific Conference on Optoelectronic and Electronic Sensors (COE). IEEE, 2018. http://dx.doi.org/10.1109/coe.2018.8435150.
Full textJalbert, Paul. "MEMS Chemical Gas Sensors for Gas Turbine Engine Applications." In 2005 U.S. Air Force T&E Days. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-7646.
Full textBond, Tiziana C., Garrett D. Cole, Lynford L. Goddard, and Elaine M. Behymer. "Photonic MEMS for NIR in-situ Gas Detection and Identification." In 2007 IEEE Sensors. IEEE, 2007. http://dx.doi.org/10.1109/icsens.2007.4388666.
Full textAlfeeli, Bassam, Syed Ali, Vaibhav Jain, Reza Montazami, James Heflin, and Masoud Agah. "MEMS-based gas chromatography columns with nano-structured stationary phases." In 2008 IEEE Sensors. IEEE, 2008. http://dx.doi.org/10.1109/icsens.2008.4716545.
Full textHajjam, Arash, Andrew Logan, and Siavash Pourkamali. "Fabrication and characterization of MEMS-based resonant organic gas sniffers." In 2011 IEEE Sensors. IEEE, 2011. http://dx.doi.org/10.1109/icsens.2011.6127389.
Full textKalaiselvi, S., L. Sujatha, and R. Sundar. "Fabrication of MEMS Accelerometer for Vibration Sensing in Gas Turbine." In 2018 IEEE Sensors. IEEE, 2018. http://dx.doi.org/10.1109/icsens.2018.8589799.
Full textReports on the topic "MEMS Gas Sensors"
Field and Gunther. PR-365-08608-R02 MEMS Technology for Natural Gas-Liquid Quality Measurement (Phase II). Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2009. http://dx.doi.org/10.55274/r0010980.
Full textHall and Brown. PR-343-14607-R01 Miniaturized Gas Chromatography and Gas Quality Sensor. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), February 2015. http://dx.doi.org/10.55274/r0010558.
Full textLoui, A., S. McCall, and J. Zumstein. Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for Targeted Gas Detection. Office of Scientific and Technical Information (OSTI), November 2012. http://dx.doi.org/10.2172/1059450.
Full textLoui, A., and S. McCall. Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for Targeted Gas Detection. Office of Scientific and Technical Information (OSTI), October 2011. http://dx.doi.org/10.2172/1035279.
Full text