Journal articles on the topic 'Memory processes'

To see the other types of publications on this topic, follow the link: Memory processes.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Memory processes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Owen, Adrian M. "Memory: Dissociating multiple memory processes." Current Biology 8, no. 23 (November 1998): R850—R852. http://dx.doi.org/10.1016/s0960-9822(07)00529-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hijman, Ron. "Memory processes and memory systems: Fractionation of human memory." Neuroscience Research Communications 19, no. 3 (November 1996): 189–96. http://dx.doi.org/10.1002/(sici)1520-6769(199611)19:3<189::aid-nrc179>3.0.co;2-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

B. WRIGHT, DANIEL, and GEORGE D. GASKELL. "Surveying Memory Processes: Introduction." Memory 6, no. 4 (July 1998): 337–38. http://dx.doi.org/10.1080/741942608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhukov, Alexander V., Sang Wook Kim, and Thomas F. George. "Activation Processes with Memory." Journal of Physical Chemistry A 112, no. 13 (April 2008): 2794–802. http://dx.doi.org/10.1021/jp710649k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ray, W. D., and J. Beran. "Statistics for Long-Memory Processes." Journal of the Royal Statistical Society. Series A (Statistics in Society) 159, no. 1 (1996): 180. http://dx.doi.org/10.2307/2983481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cortese, Michael J., Jason M. Watson, Maya M. Khanna, and Mathie McCallion. "Revisiting distinctive processes in memory." Psychonomic Bulletin & Review 13, no. 3 (June 2006): 446–51. http://dx.doi.org/10.3758/bf03193868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Percival, Donald B., and Jan Beran. "Statistics for Long-Memory Processes." Journal of the American Statistical Association 91, no. 435 (September 1996): 1378. http://dx.doi.org/10.2307/2291761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ding, Yiming, Yaozhong Hu, Weilin Xiao, and Litan Yan. "Long-Memory Processes and Applications." Abstract and Applied Analysis 2014 (2014): 1–2. http://dx.doi.org/10.1155/2014/384085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wilding, Edward L., and Lisa H. Evans. "Electrophysiological correlates of memory processes." Cognitive Neuroscience 3, no. 3-4 (September 2012): 217–18. http://dx.doi.org/10.1080/17588928.2012.689971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

McCollough, A., and E. Vogel. "Control processes in working memory." Journal of Vision 6, no. 6 (March 18, 2010): 32. http://dx.doi.org/10.1167/6.6.32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Mokshin, Anatolii V., Renat M. Yulmetyev, and Peter Hänggi. "Diffusion processes and memory effects." New Journal of Physics 7 (February 1, 2005): 9. http://dx.doi.org/10.1088/1367-2630/7/1/009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Taranto, Philip. "Memory effects in quantum processes." International Journal of Quantum Information 18, no. 02 (January 7, 2020): 1941002. http://dx.doi.org/10.1142/s0219749919410028.

Full text
Abstract:
Understanding temporal processes and their correlations in time is of paramount importance for the development of near-term technologies that operate under realistic conditions. Capturing the complete multi-time statistics that define a stochastic process lies at the heart of any proper treatment of memory effects. This is well understood in classical theory, where a hierarchy of joint probability distributions completely characterizes the process at hand. However, attempting to generalize this notion to quantum mechanics is problematic: observing realizations of a quantum process necessarily disturbs the state of the system, breaking an implicit, and crucial, assumption in the classical setting. This issue can be overcome by separating the experimental interventions from the underlying process, enabling an unambiguous description of the process itself and accounting for all possible multi-time correlations for any choice of interrogating instruments. In this paper, using a novel framework for the characterization of quantum stochastic processes, we first solve the long standing question of unambiguously describing the memory length of a quantum processes. This is achieved by constructing a quantum Markov order condition, which naturally generalizes its classical counterpart for the quantification of finite-length memory effects. As measurements are inherently invasive in quantum mechanics, one has no choice but to define Markov order with respect to the interrogating instruments that are used to probe the process at hand: different memory effects are exhibited depending on how one addresses the system, in contrast to the standard classical setting. We then fully characterize the structural constraints imposed on quantum processes with finite Markov order, shedding light on a variety of memory effects that can arise through various examples. Finally, we introduce an instrument-specific notion of memory strength that allows for a meaningful quantification of the temporal correlations between the history and the future of a process for a given choice of experimental intervention. These findings are directly relevant to both characterizing and exploiting memory effects that persist for a finite duration. In particular, immediate applications range from developing efficient compression and recovery schemes for the description of quantum processes with memory to designing coherent control protocols that efficiently perform information-theoretic tasks, amongst a plethora of others.
APA, Harvard, Vancouver, ISO, and other styles
13

DURSO, FRANCIS T., RICHARD REARDON, WENDELYN J. SHORE, and SCOTT M. DELYS. "Memory Processes and Hypochondriacal Tendencies." Journal of Nervous and Mental Disease 179, no. 5 (May 1991): 279–83. http://dx.doi.org/10.1097/00005053-199105000-00006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Glosup, Jeffrey. "Statistics for Long-Memory Processes." Technometrics 39, no. 1 (February 1997): 105–6. http://dx.doi.org/10.1080/00401706.1997.10485452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bouton, Mark E., and Erik W. Moody. "Memory processes in classical conditioning." Neuroscience & Biobehavioral Reviews 28, no. 7 (January 2004): 663–74. http://dx.doi.org/10.1016/j.neubiorev.2004.09.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gerrig, Richard J., and Gail McKoon. "Memory Processes and Experiential Continuity." Psychological Science 12, no. 1 (January 2001): 81–85. http://dx.doi.org/10.1111/1467-9280.00314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

KELLERMANN, KATHY. "MEMORY PROCESSES IN MEDIA EFFECTS." Communication Research 12, no. 1 (January 1985): 83–131. http://dx.doi.org/10.1177/009365085012001004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Smith, Carlyle. "Sleep states and memory processes." Behavioural Brain Research 69, no. 1-2 (July 1995): 137–45. http://dx.doi.org/10.1016/0166-4328(95)00024-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Einstein, Gilles O., and Mark A. McDaniel. "Prospective Memory." Current Directions in Psychological Science 14, no. 6 (December 2005): 286–90. http://dx.doi.org/10.1111/j.0963-7214.2005.00382.x.

Full text
Abstract:
An interesting challenge for researchers who study prospective memory is to explain how people recognize environmental events as cues for actions. Whereas some theorists propose that a capacity-consuming monitoring process is the only means by which intentions can be retrieved, we argue that the cognitive system relies on multiple processes, including spontaneous processes that reflexively respond to the presence of target events. We present evidence for the existence of spontaneous retrieval processes and apply the idea of multiple processes to mixed findings on age-related decline in prospective memory.
APA, Harvard, Vancouver, ISO, and other styles
20

Fuke, Taissa S. S., and Caitlin E. V. Mahy. "Executive and retrospective memory processes in preschoolers’ prospective memory development." Cognitive Development 62 (April 2022): 101172. http://dx.doi.org/10.1016/j.cogdev.2022.101172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Mrchev, Simeon J. "Bionics: psychocybernetics of the human memory – Part I: memory processes." Kybernetes 25, no. 6 (August 1996): 32–46. http://dx.doi.org/10.1108/03684929610126300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Faliagkas, Leonidas, Priyanka Rao-Ruiz, and Merel Kindt. "Emotional memory expression is misleading: delineating transitions between memory processes." Current Opinion in Behavioral Sciences 19 (February 2018): 116–22. http://dx.doi.org/10.1016/j.cobeha.2017.12.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Szőllősi, Ágnes, Péter Pajkossy, Gyula Demeter, Szabolcs Kéri, and Mihály Racsmány. "Acute stress affects prospective memory functions via associative memory processes." Acta Psychologica 182 (January 2018): 82–90. http://dx.doi.org/10.1016/j.actpsy.2017.11.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Nikolai, Arkashov. "Gaussian approximation of special memory processes." Science Bulletin of the Novosibirsk State Technical University, no. 2 (June 20, 2016): 49–60. http://dx.doi.org/10.17212/1814-1196-2016-2-49-60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Breneiser, Jennifer E., and Mark A. Mcdaniel. "Discrepancy processes in prospective memory retrieval." Psychonomic Bulletin & Review 13, no. 5 (October 2006): 837–41. http://dx.doi.org/10.3758/bf03194006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Stephan, Artur, and Holger Stephan. "Memory equations as reduced Markov processes." Discrete & Continuous Dynamical Systems - A 39, no. 4 (2019): 2133–55. http://dx.doi.org/10.3934/dcds.2019089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Lee, Kyeongmin, and Changryong Baek. "Outlier detection for long memory processes." Journal of the Korean Data And Information Science Society 32, no. 6 (November 30, 2021): 1205–18. http://dx.doi.org/10.7465/jkdi.2021.32.6.1205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Biao Wu, Wei. "Empirical processes of long-memory sequences." Bernoulli 9, no. 5 (October 2003): 809–31. http://dx.doi.org/10.3150/bj/1066418879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Samorodnitsky, Gennady. "Long memory and self-similar processes." Annales de la faculté des sciences de Toulouse Mathématiques 15, no. 1 (2006): 107–23. http://dx.doi.org/10.5802/afst.1115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Funahashi, Shintaro. "Neuronal mechanisms of working memory processes." Higher Brain Function Research 17, no. 2 (1997): 126–33. http://dx.doi.org/10.2496/apr.17.126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Heit, Evan, Noellie Brockdorff, and Koen Lamberts. "Strategic processes in false recognition memory." Psychonomic Bulletin & Review 11, no. 2 (April 2004): 380–86. http://dx.doi.org/10.3758/bf03196586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Guerraoui, Rachid, Ron R. Levy, Bastian Pochon, and Jim Pugh. "The collective memory of amnesic processes." ACM Transactions on Algorithms 4, no. 1 (March 2008): 1–31. http://dx.doi.org/10.1145/1328911.1328923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Neufang, M., H. J. Heinze, and E. Düzel. "Electromagnetic Correlates of Recognition Memory Processes." Clinical EEG and Neuroscience 37, no. 4 (October 2006): 300–308. http://dx.doi.org/10.1177/155005940603700407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Shuval, Boaz, and Ido Tal. "Fast Polarization for Processes With Memory." IEEE Transactions on Information Theory 65, no. 4 (April 2019): 2004–20. http://dx.doi.org/10.1109/tit.2018.2878575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Sasoglu, Eren, and Ido Tal. "Polar Coding for Processes With Memory." IEEE Transactions on Information Theory 65, no. 4 (April 2019): 1994–2003. http://dx.doi.org/10.1109/tit.2018.2885797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Gais, Steffen, and Jan Born. "Multiple Processes Strengthen Memory during Sleep." Psychologica Belgica 44, no. 1-2 (January 1, 2004): 105. http://dx.doi.org/10.5334/pb.1019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Lindgren, Scott D., Lynn C. Richman, and Michele J. Eliason. "Memory processes in reading disability subtypes." Developmental Neuropsychology 2, no. 3 (January 1986): 173–81. http://dx.doi.org/10.1080/87565648609540340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Wu, Wei Biao, Yinxiao Huang, and Wei Zheng. "Covariances Estimation for Long-Memory Processes." Advances in Applied Probability 42, no. 1 (March 2010): 137–57. http://dx.doi.org/10.1239/aap/1269611147.

Full text
Abstract:
For a time series, a plot of sample covariances is a popular way to assess its dependence properties. In this paper we give a systematic characterization of the asymptotic behavior of sample covariances of long-memory linear processes. Central and noncentral limit theorems are obtained for sample covariances with bounded as well as unbounded lags. It is shown that the limiting distribution depends in a very interesting way on the strength of dependence, the heavy-tailedness of the innovations, and the magnitude of the lags.
APA, Harvard, Vancouver, ISO, and other styles
39

Hollingshead, Andrea B. "Retrieval processes in transactive memory systems." Journal of Personality and Social Psychology 74, no. 3 (1998): 659–71. http://dx.doi.org/10.1037/0022-3514.74.3.659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Nadel, Lynn, and Oliver Hardt. "Update on Memory Systems and Processes." Neuropsychopharmacology 36, no. 1 (September 22, 2010): 251–73. http://dx.doi.org/10.1038/npp.2010.169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Funahashi, S. "Prefrontal cortex and working memory processes." Neuroscience 139, no. 1 (April 2006): 251–61. http://dx.doi.org/10.1016/j.neuroscience.2005.07.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Bisognin, C., and S. R. C. Lopes. "Properties of seasonal long memory processes." Mathematical and Computer Modelling 49, no. 9-10 (May 2009): 1837–51. http://dx.doi.org/10.1016/j.mcm.2008.12.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Wu, Wei Biao, Yinxiao Huang, and Wei Zheng. "Covariances Estimation for Long-Memory Processes." Advances in Applied Probability 42, no. 01 (March 2010): 137–57. http://dx.doi.org/10.1017/s0001867800003943.

Full text
Abstract:
For a time series, a plot of sample covariances is a popular way to assess its dependence properties. In this paper we give a systematic characterization of the asymptotic behavior of sample covariances of long-memory linear processes. Central and noncentral limit theorems are obtained for sample covariances with bounded as well as unbounded lags. It is shown that the limiting distribution depends in a very interesting way on the strength of dependence, the heavy-tailedness of the innovations, and the magnitude of the lags.
APA, Harvard, Vancouver, ISO, and other styles
44

Donaldson, D. I., S. E. Petersen, and R. L. Buckner. "Dissociating Memory Retrieval Processes Using fMRI." Neuron 31, no. 6 (September 2001): 1047–59. http://dx.doi.org/10.1016/s0896-6273(01)00429-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Magnussen, Svein. "Low-level memory processes in vision." Trends in Neurosciences 23, no. 6 (June 2000): 247–51. http://dx.doi.org/10.1016/s0166-2236(00)01569-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Izquierdo, Ivan, Claudio Cunha, and Jorge H. Medina. "Endogenous benzodiazepine modulation of memory processes." Neuroscience & Biobehavioral Reviews 14, no. 4 (December 1990): 419–24. http://dx.doi.org/10.1016/s0149-7634(05)80064-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Stough, Shara, Justin L. Shobe, and Thomas J. Carew. "Intermediate-term processes in memory formation." Current Opinion in Neurobiology 16, no. 6 (December 2006): 672–78. http://dx.doi.org/10.1016/j.conb.2006.10.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Giese, K. P., and S. Kida. "New mechanistic insights into memory processes." Brain Research Bulletin 141 (July 2018): 1–2. http://dx.doi.org/10.1016/j.brainresbull.2018.04.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Klimesch, W. "EEG-alpha rhythms and memory processes." International Journal of Psychophysiology 26, no. 1-3 (June 1997): 319–40. http://dx.doi.org/10.1016/s0167-8760(97)00773-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Sánchez-Alavez, Manuel, Margarita Gómez-Chavarı́n, Luz Navarro, Anabel Jiménez-Anguiano, Eric Murillo-Rodrı́guez, Roberto A. Prado-Alcalá, Rene Drucker-Colin, and Oscar Prospéro-Garcı́a. "Cortistatin modulates memory processes in rats." Brain Research 858, no. 1 (March 2000): 78–83. http://dx.doi.org/10.1016/s0006-8993(99)02336-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography