Academic literature on the topic 'Memory disaggregation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Memory disaggregation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Memory disaggregation"
Aguilera, Marcos K., Emmanuel Amaro, Nadav Amit, Erika Hunhoff, Anil Yelam, and Gerd Zellweger. "Memory disaggregation: why now and what are the challenges." ACM SIGOPS Operating Systems Review 57, no. 1 (June 26, 2023): 38–46. http://dx.doi.org/10.1145/3606557.3606563.
Full textMehra, Pankaj, and Tom Coughlin. "Taming Memory With Disaggregation." Computer 55, no. 9 (September 2022): 94–98. http://dx.doi.org/10.1109/mc.2022.3187847.
Full textWu, Chenyuan, Mohammad Javad Amiri, Jared Asch, Heena Nagda, Qizhen Zhang, and Boon Thau Loo. "FlexChain." Proceedings of the VLDB Endowment 16, no. 1 (September 2022): 23–36. http://dx.doi.org/10.14778/3561261.3561264.
Full textAl Maruf, Hasan, and Mosharaf Chowdhury. "Memory Disaggregation: Advances and Open Challenges." ACM SIGOPS Operating Systems Review 57, no. 1 (June 26, 2023): 29–37. http://dx.doi.org/10.1145/3606557.3606562.
Full textNam, Jaeyoun, Hokeun Cha, ByeongKeon Lee, and Beomseok Nam. "Xpass: NUMA-aware Persistent Memory Disaggregation." Journal of KIISE 48, no. 7 (July 31, 2021): 735–41. http://dx.doi.org/10.5626/jok.2021.48.7.735.
Full textCelov, Dmitrij, and Remigijus Leipus. "Time series aggregation, disaggregation and long memory." Lietuvos matematikos rinkinys 46 (September 21, 2023): 255–62. http://dx.doi.org/10.15388/lmr.2006.30723.
Full textWang, Zhonghua, Yixing Guo, Kai Lu, Jiguang Wan, Daohui Wang, Ting Yao, and Huatao Wu. "Rcmp: Reconstructing RDMA-Based Memory Disaggregation via CXL." ACM Transactions on Architecture and Code Optimization 21, no. 1 (January 19, 2024): 1–26. http://dx.doi.org/10.1145/3634916.
Full textCelov, D., R. Leipus, and A. Philippe. "Time series aggregation, disaggregation, and long memory." Lithuanian Mathematical Journal 47, no. 4 (October 2007): 379–93. http://dx.doi.org/10.1007/s10986-007-0026-6.
Full textZhang, Yingqiang, Chaoyi Ruan, Cheng Li, Xinjun Yang, Wei Cao, Feifei Li, Bo Wang, et al. "Towards cost-effective and elastic cloud database deployment via memory disaggregation." Proceedings of the VLDB Endowment 14, no. 10 (June 2021): 1900–1912. http://dx.doi.org/10.14778/3467861.3467877.
Full textWang, Ruihong, Jianguo Wang, Stratos Idreos, M. Tamer Özsu, and Walid G. Aref. "The case for distributed shared-memory databases with RDMA-enabled memory disaggregation." Proceedings of the VLDB Endowment 16, no. 1 (September 2022): 15–22. http://dx.doi.org/10.14778/3561261.3561263.
Full textDissertations / Theses on the topic "Memory disaggregation"
Dulong, Rémi. "Towards new memory paradigms : Integrating non-volatile main memory and remote direct memory access in modern systems." Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAS027.
Full textModern computers are built around two main parts: their Central Processing Unit (CPU), and their volatile main memory, or Random Access Memory (RAM). The basis of this architecture takes its roots in the 1970's first computers. Since, this principle has been constantly upgraded to provide more functionnality and performance.In this thesis, we study two memory paradigms that drastically change the way we can interact with memory in modern systems: non-volatile memory and remote memory access. We implement software tools that leverage them in order to make them compatible and exploit their performance with concrete applications. We also analyze the impact of the technologies underlying these new memory medium, and the perspectives of their evolution in the coming years.For non-volatile memory, as the main memory performance is key to unlock the full potential of a CPU, this feature has historically been abandoned on the race for performance. Even if the first computers were designed with non-volatile forms of memory, computer architects started to use volatile RAM for its incomparable performance compared to durable storage, and never questioned this decision for years. However, in 2019 Intel released a new component called Optane DC Persistent Memory (DCPMM), a device that made possible the use of Non-Volatile Main Memory (NVMM). That product, by its capabilities, provides a new way of thinking about data persistence. Yet, it also challenges the hardware architecture used in our current machines and the way we program them.With this new form of memory we implemented NVCACHE, a cache designed for non-volatile memory that helps boosting the interactions with slower persistent storage medias, such as solid state drive (SSD). We find NVCACHE to be quite performant for workloads that require a high granularity of persistence guarantees, while being as easy to use as the traditional POSIX interface. Compared to file systems designed for NVMM, NVCACHE can reach similar or higher throughput when the non-volatile memory is used. In addition, NVCACHE allows the code to exploit NVMM performance while not being limited by the amount of NVMM installed in the machine.Another major change of in the computer landscape has been the popularity of distributed systems. As individual machines tend to reach performance limitations, using several machines and sharing workloads became the new way to build powerful computers. While this mode of computation allows the software to scale up the number of CPUs used simultaneously, it requires fast interconnection between the computing nodes. For that reason, several communication protocols implemented Remote Direct Memory Access (RDMA), a way to read or write directly into a distant machine's memory. RDMA provides low latencies and high throughput, bypassing many steps of the traditional network stack.However, RDMA remains limited in its native features. For instance, there is no advanced multicast equivalent for the most efficient RDMA functions. Thanks to a programmable switch (the Intel Tofino), we implemented a special mode for RDMA that allows a client to read or write in multiple servers at the same time, with no performance penalty. Our system called Byp4ss makes the switch participate in transfers, duplicating RDMA packets. On top of Byp4ss, we implement a consensus protocol named DISMU, which shows the typical use of Byp4ss features and its impact on performance. By design, DISMU is optimal in terms of latency and throughput, as it can reduce to the minimum the number of packets exchanged through the network to reach a consensus.Finally, by using these two technologies, we notice that future generations of hardware may require a new interface for memories of all kinds, in order to ease the interoperability in systems that tend to get more and more heterogeneous and complex
Amaral, Marcelo. "Improving resource efficiency in virtualized datacenters." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/666753.
Full textEn els últims anys hi ha hagut un gran creixement del Internet of Things (IoT) i els seus protocols. La creixent difusió de dispositius electrònics amb capacitats d'identificació, computació i comunicació esta establint les bases de l’aparició de serveis altament distribuïts i del seu entorn de xarxa. L’esmentada situació implica que hi ha una creixent demanda de plataformes de processament i gestió avançada de dades per IoT. Aquestes plataformes requereixen suport per a múltiples protocols al Edge per connectivitat amb el objectes, però també necessiten d’una organització de dades interna i capacitats avançades de processament de dades per satisfer les demandes de les aplicacions i els serveis que consumeixen dades IoT. Una de les aproximacions inicials per abordar aquesta demanda és la integració entre IoT i el paradigma del Cloud computing. Hi ha molts avantatges d'integrar IoT amb el Cloud. IoT genera quantitats massives de dades i el Cloud proporciona una via perquè aquestes dades viatgin a la seva destinació. Però els models actuals del Cloud no s'ajusten del tot al volum, varietat i velocitat de les dades que genera l'IoT. Entre les noves tecnologies que sorgeixen al voltant del IoT per proporcionar un escenari nou, el paradigma del Fog Computing s'ha convertit en la més rellevant. Fog Computing es va introduir fa uns anys com a resposta als desafiaments que plantegen moltes aplicacions IoT, incloent requisits com baixa latència, operacions en temps real, distribució geogràfica extensa i mobilitat. També aquest entorn està cobert per l'arquitectura de xarxa MEC (Mobile Edge Computing) que proporciona serveis de TI i capacitats Cloud al edge per la xarxa mòbil dins la Radio Access Network (RAN) i a prop dels subscriptors mòbils. El Fog aborda casos d’us amb requisits que van més enllà de les capacitats de solucions només Cloud. La interacció entre Cloud i Fog és crucial per a l'evolució de l'anomenat IoT, però l'abast i especificació d'aquesta interacció és un problema obert. Aquesta tesi té com objectiu trobar les decisions de disseny i les tècniques adequades per construir un sistema distribuït escalable per IoT sota el paradigma del Fog Computing per a ingerir i processar dades. L'objectiu final és explorar els avantatges/desavantatges i els desafiaments en el disseny d'una solució des del Edge al Cloud per abordar les oportunitats que les tecnologies actuals i futures portaran d'una manera integrada. Aquesta tesi descriu un enfocament arquitectònic que aborda alguns dels reptes tècnics que hi ha darrere de la convergència entre IoT, Cloud i Fog amb especial atenció a reduir la bretxa entre el Cloud i el Fog. Amb aquesta finalitat, s'introdueixen nous models i tècniques per explorar solucions per entorns IoT. Aquesta tesi contribueix a les propostes arquitectòniques per a la ingesta i el processament de dades IoT mitjançant 1) proposant la caracterització d'una plataforma per a l'allotjament de workloads IoT en el Cloud que proporcioni capacitats de processament de flux de dades multi-tenant, les interfícies a través d'una tecnologia centrada en dades incloent la construcció d'una infraestructura avançada per avaluar el rendiment i validar la solució proposada. 2) estudiar un enfocament arquitectònic seguint el paradigma Fog que aborda alguns dels reptes tècnics que es troben en la primera contribució. La idea és estudiar una extensió del model que abordi alguns dels reptes centrals que hi ha darrere de la convergència de Fog i IoT. 3) Dissenyar una plataforma distribuïda i escalable per a realitzar operacions IoT en un entorn de dades en moviment. La idea després d'estudiar el processament de dades en el Cloud, i després d'estudiar la conveniència del paradigma Fog per resoldre els desafiaments de IoT a prop del Edge, és definir els protocols, les interfícies i la gestió de dades per resoldre la ingestió i processament de dades d’una manera més eficient
ANDREAN, VICTOR, and 鄧利勝. "A Parallel Bidirectional Long Short-Term Memory Model for Energy Disaggregation." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/aq24et.
Full text國立臺灣科技大學
電機工程系
107
Non-intrusive load monitoring (NILM) is an elegant solution for monitoring energy consumption. NILM was getting popular since the advance of machine learning and deep learning technique. For the past years, there have been some deep learning techniques proposed for NILM. The results have shown that the performance of deep learning models can outperform the prior state of the art of NILM models such as Factorial Hidden Markov Model. A NILM model needs to identify distinctive power patterns of certain appliances in order to monitor the power consumptions. Statistical features (SFs) such as power difference and difference of variant power can be utilized to help the network learn better. As there is no single perfect model that can perfectly fit for everything, based on empirical research, we find that particular SF can be useful at certain type of load. This paper proposes a parallel bidirectional long short-term memory model with SFs to improve learning capability of the network. The proposed method is tested along with some most recent deep learning models on NILM such as DCNN, GLU-Res, BLSTM, and AE. The proposed method can successfully outperform those methods and shows consistent results.
Book chapters on the topic "Memory disaggregation"
Call, Aaron, Jordà Polo, David Carrera, Francesc Guim, and Sujoy Sen. "Disaggregating Non-Volatile Memory for Throughput-Oriented Genomics Workloads." In Lecture Notes in Computer Science, 613–25. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-10549-5_48.
Full textZiblatt, Daniel. "Conclusion." In Politics, Violence, Memory, 297–306. Cornell University Press, 2023. http://dx.doi.org/10.7591/cornell/9781501766749.003.0017.
Full textConference papers on the topic "Memory disaggregation"
Rao, Pramod Subba, and George Porter. "Is Memory Disaggregation Feasible?" In ANCS '16: Symposium on Architectures for Networking and Communications Systems. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2881025.2881030.
Full textShalf, John, George Michelogiannakis, Brian Austin, Taylor Groves, Manya Ghobadi, Larry Dennison, Tom Gray, et al. "Photonic Memory Disaggregation in Datacenters." In Photonics in Switching and Computing. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/psc.2020.psw1f.5.
Full textLiu, Ling, Wenqi Cao, Semih Sahin, Qi Zhang, Juhyun Bae, and Yanzhao Wu. "Memory Disaggregation: Research Problems and Opportunities." In 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). IEEE, 2019. http://dx.doi.org/10.1109/icdcs.2019.00165.
Full textHuang, Ruizhe, Ding Li, Yao Guo, Xiangqun Chen, Yuntao Liu, Yuxin Ren, Ning Jia, and Xinwei Hu. "Towards Efficient Hugepage-aware Memory Deduplication." In WORDS '23: 4th Workshop on Resource Disaggregation and Serverless. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3605181.3626285.
Full textYelam, Anil, Stewart Grant, Enze Liu, Radhika Niranjan Mysore, Marcos K. Aguilera, Amy Ousterhout, and Alex C. Snoeren. "Limited Access: The Truth Behind Far Memory." In WORDS '23: 4th Workshop on Resource Disaggregation and Serverless. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3605181.3626288.
Full textPatke, Archit, Haoran Qiu, Saurabh Jha, Srikumar Venugopal, Michele Gazzetti, Christian Pinto, Zbigniew Kalbarczyk, and Ravishankar Iyer. "Evaluating Hardware Memory Disaggregation under Delay and Contention." In 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2022. http://dx.doi.org/10.1109/ipdpsw55747.2022.00210.
Full textUta, Alexandru, Ana-Maria Oprescu, and Thilo Kielmann. "Towards Resource Disaggregation — Memory Scavenging for Scientific Workloads." In 2016 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 2016. http://dx.doi.org/10.1109/cluster.2016.18.
Full textRuan, Chaoyi, Yingqiang Zhang, Chao Bi, Xiaosong Ma, Hao Chen, Feifei Li, Xinjun Yang, Cheng Li, Ashraf Aboulnaga, and Yinlong Xu. "Persistent Memory Disaggregation for Cloud-Native Relational Databases." In ASPLOS '23: 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3582016.3582055.
Full textWang, Ruihong, Jianguo Wang, Prishita Kadam, M. Tamer Özsu, and Walid G. Aref. "dLSM: An LSM-Based Index for Memory Disaggregation." In 2023 IEEE 39th International Conference on Data Engineering (ICDE). IEEE, 2023. http://dx.doi.org/10.1109/icde55515.2023.00217.
Full textYoon, Wonsup, Jisu Ok, Sue Moon, and Youngjin Kwon. "Poster: Designing a Memory Disaggregation System for Cloud." In ACM SIGCOMM '23: ACM SIGCOMM 2023 Conference. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3603269.3610854.
Full text